
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D6.3
Final Report on User Validation

Version 1.0

Main Authors:
Roberto M. Amadio, Gabriele Pulcini, Claudio Sacerdoti Coen

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract We review the techniques experimented in CerCo for cost annotation exploitment
at the user level. We also report on recent work towards precise time analysis at the source
level for modern hardware architectures whose instructions cost is a function of the internal
hardware state (pipelines, caches, branch prediction units, etc.).

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Task 4

2 Review of cost synthesis techniques 5
2.1 The Cost plug-in and its application to the Lustre compiler 5
2.2 Handling C programs with simple loops . 6
2.3 C programs with pointers . 7
2.4 The cost of higher-order functional programs 7
2.5 The cost of memory management . 8
2.6 Feasible bounds by light typing . 8

3 Middle and Long Term Improvements 9

CerCo, FP7-ICT-2009-C-243881 4

1 Task

The Grant Agreement describes deliverable D6.3 as follows:

Final Report on User Validation: An articulated analysis and critics of
the user validation experiences. In particular we will review the effectiveness of
the techniques for cost annotation exploitment that have been employed in the
project and that have been validated on simple and non trivial examples. We will
also identify additional techniques that could be exploited in the middle and long
term to bring the CerCo compiler to its full potentialities.

CerCo, FP7-ICT-2009-C-243881 5

2 Review of cost synthesis techniques

We review the cost synthesis techniques developed in the project.
The starting hypothesis is that we have a certified methodology to annotate ‘blocks’ in the

source code with constants which provide a sound and possibly precise upper bound on the
cost of executing the ‘blocks’ after compilation to binary code.

The principle that we have followed in designing the cost synthesis tools is that the syn-
thetic bounds should be expressed and proved within a general purpose tool built to reason
on the source code. In particular, we rely on the Frama− C tool to reason on C code and on
the Coq proof-assistant to reason on higher-order functional programs.

This principle entails that:

• The inferred synthetic bounds are indeed correct as long as the general purpose tool is.

• There is no limitation on the class of programs that can be handled as long as the user
is willing to carry on an interactive proof.

Of course, automation is desirable whenever possible. Within this framework, automation
means writing programs that give hints to the general purpose tool. These hints may take the
form, say, of loop invariants/variants, of predicates describing the structure of the heap, or of
types in a light logic. If these hints are correct and sufficiently precise the general purpose tool
will produce a proof automatically, otherwise, user interaction is required. What follows is a
summary of work described in more detail in deliverables D5.1 and D5.3. The cost synthesis
techniques we outline are at varying degree of maturity ranging from a complete experimental
validation to preliminary thought experiments.

2.1 The Cost plug-in and its application to the Lustre compiler

Frama− C is a set of analysers for C programs with a specification language called ACSL. New
analyses can be dynamically added through a plug-in system. For instance, the Jessie plug-in
allows deductive verification of C programs with respect to their specification in ACSL, with
various provers as back-end tools.

We developed the Cost plug-in for the Frama− C platform as a proof of concept of an
automatic environment exploiting the cost annotations produced by the CerCo compiler. It
consists of an ocaml program which in first approximation takes the following actions: (1)
it receives as input a C program, (2) it applies the CerCo compiler to produce a related C
program with cost annotations, (3) it applies some heuristics to produce a tentative bound
on the cost of executing the C functions of the program as a function of the value of their
parameters, (4) the user can then call the Jessie tool to discharge the related proof obligations.

In the following we elaborate on the soundness of the framework and the experiments we
performed with the Cost tool on the C programs produced by a Lustre compiler.

Soundness The soundness of the whole framework depends on the cost annotations added
by the CerCo compiler, the synthetic costs produced by the Cost plug-in, the verification
conditions (VCs) generated by Jessie, and the external provers discharging the VCs. The
synthetic costs being in ACSL format, Jessie can be used to verify them. Thus, even if the
added synthetic costs are incorrect (relatively to the cost annotations), the process in its
globality is still correct: indeed, Jessie will not validate incorrect costs and no conclusion can

CerCo, FP7-ICT-2009-C-243881 6

be made about the WCET of the program in this case. In other terms, the soundness does not
really depend on the action of the Cost plug-in, which can in principle produce any synthetic
cost. However, in order to be able to actually prove a WCET of a C function, we need to
add correct annotations in a way that Jessie and subsequent automatic provers have enough
information to deduce their validity. In practice this is not straightforward even for very
simple programs composed of branching and assignments (no loops and no recursion) because
a fine analysis of the VCs associated with branching may lead to a complexity blow up.

Experience with Lustre Lustre is a data-flow language to program synchronous systems and
the language comes with a compiler to C. We designed a wrapper for supporting Lustre files.
The C function produced by the compiler implements the step function of the synchronous
system and computing the WCET of the function amounts to obtain a bound on the reaction
time of the system. We tested the Cost plug-in and the Lustre wrapper on the C programs
generated by the Lustre compiler. For programs consisting of a few hundreds loc, the Cost
plug-in computes a WCET and Alt− Ergo is able to discharge all VCs automatically.

2.2 Handling C programs with simple loops

The cost annotations added by the CerCo compiler take the form of C instructions that
update by a constant a fresh global variable called the cost variable. Synthesizing a WCET
of a C function thus consists in statically resolving an upper bound of the difference between
the value of the cost variable before and after the execution of the function, i.e. find in the
function the instructions that update the cost variable and establish the number of times they
are passed through during the flow of execution. In order to do the analysis the plugin makes
the following assumptions on the programs:

• No recursive functions.

• Every loop must be annotated with a variant. The variants of ‘for’ loops are automati-
cally inferred.

The plugin proceeds as follows.

• First the callgraph of the program is computed. If the function f calls the function g
then the function g is processed before the function f .

• The computation of the cost of the function is performed by traversing its control flow
graph. The cost at a node is the maximum of the costs of the successors.

• In the case of a loop with a body that has a constant cost for every step of the loop, the
cost is the product of the cost of the body and of the variant taken at the start of the
loop.

• In the case of a loop with a body whose cost depends on the values of some free variables,
a fresh logic function f is introduced to represent the cost of the loop in the logic asser-
tions. This logic function takes the variant as a first parameter. The other parameters
of f are the free variables of the body of the loop. An axiom is added to account the
fact that the cost is accumulated at each step of the loop:

f(v, ~x) = if v < 0 then 0 else (f(v − 1, φ(~x)) + ψ(~x))

CerCo, FP7-ICT-2009-C-243881 7

where ~x are the free variables, v is the variant, φ computes the modification of the
variable at each step of the loop, and ψ is the cost of the body of the loop.

• The cost of the function is directly added as post-condition of the function: cost ≤
\old(cost) + t where t is the term computing the cost of the function, cost is the
time taken from the start of the program, \old(cost) is the same time but before the
execution of the function.

The user can influence the annotation by different means:

• By using more precise variants.

• By annotating function with cost specification. The plugin will use this cost for the
function instead of computing it.

2.3 C programs with pointers

When it comes to verifying programs involving pointer-based data structures, such as linked
lists, trees, or graphs, the use of traditional first-order logic to specify, and of SMT solvers
to verify, shows some limitations. Separation logic is then an elegant alternative. Designed
at the turn of the century, it is a program logic with a new notion of conjunction to express
spatial heap separation. Separation logic has been implemented in dedicated theorem provers
such as Smallfoot or VeriFast. One drawback of such provers, however, is to either limit the
expressiveness of formulas (e.g. to the so-called symbolic heaps), or to require some user-
guidance (e.g. open/close commands in Verifast).

In an attempt to conciliate both approaches, Bobot introduced the notion of separation
predicates during his PhD thesis. The approach consists in reformulating some ideas from
separation logic into a traditional verification framework where the specification language, the
verification condition generator, and the theorem provers were not designed with separation
logic in mind. Separation predicates are automatically derived from user-defined inductive
predicates, on demand. Then they can be used in program annotations, exactly as other
predicates, i.e., without any constraint. Simply speaking, where one would write P ∗ Q in
separation logic, one will here ask for the generation of a separation predicate sep and then
use it as P ∧ Q ∧ sep(P,Q). We have implemented separation predicates within the Jessie
plug-in and tested it on a non-trivial case study (the composite pattern from the VACID-0
benchmark). In this case, we achieve a fully automatic proof using three existing SMT solver.
We have also used the separation predicates to reason on the cost of executing simple heap
manipulating programs such as an in-place list reversal.

2.4 The cost of higher-order functional programs

We have analysed a rather standard compilation chain from a higher-order functional lan-
guages to an abstract RTL language which corresponds directly to the source language of the
back-end of the C compiler developed in the CerCo project. The compilation consists of four
transformations: continuation passing-style, value naming, closure conversion, and hoisting.

We have shown that it is possible to extend the labelling approach described for the C
language to a higher-order call-by-value functional language.

The first issue we have considered is that of designing a ‘good labelling’ function, i.e.,
a function that inserts labels in the source code which correspond to ‘basic blocks’ of the

CerCo, FP7-ICT-2009-C-243881 8

compiled code. To this end, we have introduced two labelling operators: a pre-labelling ` > M
which emits the label ` before running M and a post-labelling M > ` which reduces M to
a value and then emits the label `. Roughly speaking, the ‘good labelling’ associates a pre-
labelling to every function abstraction and a post-labelling to every application which is not
immediately surrounded by an abstraction. In particular, the post-labelling takes care of the
functions created by the CPS translation.

The second issue relates to the instrumentation of the program. To this end, we have
relied on a cost monad which associates to each program a pair consisting of its denotation
and the cost of reducing the program to a value. In this way, the instrumented program can
still be regarded as a higher-order functional program.

The third issue concerns the method to reason on the instrumented (functional) program.
We have built on a higher-order Hoare logic and a related tool that generates automatically
the proof obligations. These proof obligations can either be discharged automatically or
interactively using the Coq proof assistant and its tactics. Some simple experiments are
described in the LamCost software.

2.5 The cost of memory management

In a realistic implementation of a functional programming language, the runtime environment
usually includes a garbage collector. In spite of considerable progress in real-time garbage
collectors it seems to us that such collectors do not offer yet a viable path to a certified and
usable WCET prediction of the running time of functional programs. As far as we know, the
cost predictions concern the amortized case rather than the worst case and are supported more
by experimental evaluations than by formal proofs.

The approach we have adopted instead, following the seminal work of Tofte et al., is
to enrich the last calculus of the compilation chain : (1) with a notion of memory region,
(2) with operations to allocate and dispose memory regions, and (3) with a type and effect
system that guarantees the safety of the dispose operation. This allows to further extend the
compilation chain mentioned above and then to include the cost of safe memory management
in our analysis. Actually, because effects are intertwined with types, what we have actually
done, following the work of Morrisett et al., is to extend a typed version of the compilation
chain. An experimental validation of the approach is left for future work and it would require
the integration of region-inference algorithms such as those developed by Aiken et al. in the
compilation chain.

2.6 Feasible bounds by light typing

In our experience, the cost analysis of higher-order programs requires human intervention both
at the level of the specification and of the proofs. One path to automation consists in devising
programming disciplines that entail feasible bounds (polynomial time). The most interesting
approaches to this problem build on light versions of linear logic. Our main contribution
is to devise a type system that guarantees feasible bounds for a higher-order call-by-value
functional language with references and threads. The first proof of this result relies on a
kind of standardisation theorem and it is of a combinatorial nature. More recently, we have
shown that a proof of a similar result can be obtained by semantic means building on the so
called quantitative realizability models proposed by Dal Lago and Hofmann. We believe this
semantic setting is particularly appropriate because it allows to reason both on typed and

CerCo, FP7-ICT-2009-C-243881 9

untyped programs. Thus one can imagine a framework where some programs are feasible ‘by
typing’ while others are feasible as a result of an ‘interactive proof’ of the obligations generated
by quantitative realizability. Beyond building such a framework, an interesting issue concerns
the certification of concrete bounds at the level of the compiled code. This has to be contrasted
with the current state of the art in implicit computational complexity where most bounds are
asymptotic and are stated at the level of the source code.

3 Middle and Long Term Improvements

The future improvements that will affect the user experience falls into two categories:

1. Improvements to invariant generators The invariant generator that we imple-
mented in the plug-in allows to compute the parametric worst case execution time for
all Lustre programs and for almost all the C tests that we targeted. Nevertheless, at the
moment the generator does not degrade gracefully: if the source code does not respects
the syntactic requirements of the generator, no cost invariants are generated at all. This
behaviour is consistent with the traditional use in proving functional properties, but for
non functional ones we are interested in always providing a worst case bound, possibly
by dropping the dependencies and computing a very rough one. That is the behaviour
of standard WCET analyzers (that, most of the time, are not parametric anyway).

Other future improvements consist in enlarging the class of recognized program shapes
by integrating more advanced techniques or interacting with existing tools.

Both kind of improvements can be performed in the middle term.

2. Improvements to cost annotation exploitment One benefit of CerCo w.r.t. tradi-
tional WCET is that the user does not need to trust the bound provided by the tool,
but it can at least partially verify it manually or using automated techniques.

The combinations of techniques described in the previous section allowed to automat-
ically certify the parametric worst case execution time for all Lustre programs and for
the majority of simple C tests we had at our disposal. Nevertheless, we expect automa-
tion to fail more frequently on real world, industrial examples. In the middle term we
should experiment with more complex code and enlarge the set of techniques according
to the observed results. In particular, we should implement at the source level at least
all those that are used on the object code in standard WCET tools. It may well be
the case that we identify a set of recurrent proof obligations that are not solved by the
existing theorem provers, but that admit a solution by means of a uniform strategy. In
any case, the failure to automatically prove sound a cost invariant does not invalidate
the invariant itself, assuming that the invariant generator is correct.

3. Applications to time analysis for modern hardware At the moment, the main
drawback of the CerCo Prototype is that it cannot be ported to modern architec-
tures whose instruction cost depend on the internal state of hardware components like
pipelines, caches or branch predictors. The major long term improvement to the CerCo
Prototype will be the study of how to accommodate in the labelling approach these kind
of cost models. We attach to this document the technical report “Dependent labelling
applied to stateful hardware components” which describes what seems to be at the mo-
ment the most promising approach to the problem. Unsurprisingly, the solution uses

CerCo, FP7-ICT-2009-C-243881 10

dependent labels, that allow to associate a different cost to multiple executions of the
same block. Dependent labels were developed in CerCo to allow loop optimizations,
where the dependency was over the number of iterations of the loops. In the case of
modern hardware, the dependency is on approximations of the internal hardware state,
that needs to be made manifest in the source code too.

The strategy described in the technical report is assumed to work on pipelines, while
additional research is expected for caches. Moreover, in the middle term we need to be
implement the solution for pipelines to be able to perform experiments. In particular, we
need to understand the behaviour on automated provers on the more complex generated
cost invariants, and we need to understand to which extent the cost invariants can work
with the more precise cost models before introducing severe approximations.

Dependent labelling applied to stateful hardware components

G. Pulcini∗, C. Sacerdoti Coen∗

{pulcini,sacerdot}@cs.unibo.it

Dipartimento di Informatica - Scienza ed Ingegneria
Università di Bologna

03/04/2013

Abstract

The Certified Complexity (CerCo) EU Project [1] aims at integrating and unifying the
functional and non functional analyses of safety and time critical software by performing
both of them together on the source code. It is based on the labelling approach [2] that
allows to write compilers that induce on the source code a sound and precise cost model
for basic blocks. The cost model is computed on object code blocks and then transferred
to the source code by reversing the optimizations to the control flow [3].

In this technical report we address the important issue of stateful hardware whose
instructions cost is a function of the internal state. Typical examples are pipelines and
caches. In order to avoid loss of precision, the cost model must be parametric on the state,
which has no correspondent one at the source level. We show how to enrich the source
code with the minimal amount of information that allows to compute costs precisely. We
also briefly argue in favour of probabilistic static time analysis and we examine how it is
already supported by the labelling approach.

1 Introduction

The labelling approach [2, 3] is a new technique to implement compilers that induce on the
source code a sound and precise cost model for basic blocks. The cost model is computed on
object code blocks and then transferred to the source code by reversing the optimizations
to the control flow [3]. In the rest of this technical report we assume reader’s knowledge
on the labelling approach.

At the end of the CerCo project, we are convinced that the labelling approach can
support most optimizations currently supported by real world compilers. Moreover, we
have formally certified the code of a compiler that transfers cost models according to the
labelling approach, greatly reducing the trusted code base of time analysis. The main issue
that is left is to identify the classes of cost models that can be expressed at the source
level and that we can automatically reason on. In particular, we know that cost models
for modern hardware are complex objects that assign to each instruction a cost which
also depends on the internal state of stateful hardware components that are designed to

∗The project CerCo acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European Commission, under FET-
Open grant number: 243881

1

optimize the average case. Pipelines, caches, branch predictors are typical examples of
components that have no impact on the functional behavior of the code, but that greatly
augment the code performance.

Ignorance on the internal state of these components during a WCET analysis forces to
assume the worst case, leading to useless time bounds. Therefore, standard WCET tools
tend to statically execute code fragments as much as possible, to minimize the ignorance
on the state. For loops, for example, are totally unrolled. In CerCo we could do the same,
departing from the labelling approach. However, what is more natural is to stay closer to
the labelling approach and avoid loosing precision by computing parametric exact costs.
This is the topic of this research report.

In Section 2 we briefly review the premises and goals of the CerCo approach in order
to compare the CerCo approach to the traditional WCET one, which is able to deal with
modern hardware. In Section 3 we compare the control flow analyses performed in CerCo
and in traditional WCET, arguing that our approach is winning. In Section 4 we compare
the static analyses performed in CerCo and in traditional WCET. Only the latter can deal
with modern hardware. Section 5 contains the new material. We revise our static analysis
and the labelling approach in general to accommodate modern hardware. Temporary
conclusions are found in Section 6.

2 CerCo: premises and goals

We briefly review here the premises and goals of the CerCo approach to resource analysis.

• There is a lot of recent and renewed activity in the formal method community to
accommodate resource analysis using techniques derived from functional analysis
(type systems, logics, abstract interpretation, amortized analysis applied to data
structures, etc.)

• Most of this work, which currently remains at theoretical level, is focused on high
level languages and it assumes the existence of correct and compositional resource
cost models.

• High level languages are compiled to object code by compilers that should respect
the functional properties of the program. However, because of optimizations and
the inherently non compositional nature of compilation, compilers do not respect
compositional cost models that are imposed a priori on the source language. By
controlling the compiler and coupling it with a WCET analyser, it is actually possible
to choose the cost model in such a way that the cost bounds are high enough to bound
the cost of every produced code. This was attempted for instance in the EMBounded
project [4] with good success. However, we believe that bounds obtained in this way
have few possibilities of being tight.

• Therefore our approach consists in having the compiler generate the cost model for
the user by combining tracking of basic blocks during code transformations with
a static resource analysis on the object code for basic blocks. We formally prove
the compiler to respect the cost model that is induced on the source level based on
a very few assumptions: basically the cost of a sequence of instructions should be
associative and commutative and it should not depend on the machine status, except
its program counter. Commutativity can be relaxed at the price of introducing more
cost updates in the instrumented source code.

• The cost model for basic blocks induced on the source language must then be ex-
ploited to derive cost invariants and to prove them automatically. In CerCo we have
shown how even simple invariant generations techniques are sufficient to enable the
fully automatic proving of parametric WCET bounds for simple C programs and for
Lustre programs of arbitrary complexity.

2

Compared to traditional WCET techniques, our approach currently has many similar-
ities, some advantages and some limitations. Both techniques need to perform data flow
analysis on the control flow graph of the program and both techniques need to estimate
the cost of control blocks of instructions.

3 Control flow analysis

The first main difference is in the control flow analysis. Traditional WCET starts from
object code and reconstructs the control flow graph from it. Moreover, abstract interpreta-
tion is heavily employed to bound the number of executions of cycles. In order to improve
the accuracy of estimation, control flow constraints are provided by the user, usually as
systems of (linear) inequalities. In order to do this, the user, helped by the system, needs
to relate the object code control flow graph with the source one, because it is on the latter
that the bounds can be figured out and be understood. This operations is untrusted and
potentially error prone for complex optimizations (like aggressive loop optimizations). Ef-
ficient tools from linear algebra are then used to solve the systems of inequations obtained
by the abstract interpreter and from the user constraints.

In CerCo, instead, we assume full control on the compiler that is able to relate, even in
non trivial ways, the object code control flow graph onto the source code control flow graph.
A clear disadvantage is the impossibility of applying the tool on the object code produced
by third party compilers. On the other hand, we get rid of the possibility of errors in the
reconstruction of the control flow graph and in the translation of high level constraints
into low level constraints. The second potentially important advantage is that, once we are
dealing with the source language, we can augment the precision of our dataflow analysis by
combining together functional and non functional invariants. This is what we attempted
with the CerCo Cost Annotating Frama-C Plug-In. The Frama-C architecture allows
several plug-ins to perform all kind of static analysis on the source code, reusing results
from other plug-ins and augmenting the source code with their results. The techniques
are absolutely not limited to linear algebra and abstract interpretation, and the most
important plug-ins call domain specific and general purpose automated theorem provers
to close proof obligations of arbitrary shape and complexity.

In principle, the extended flexibility of the analysis should allow for a major advantage
of our technique in terms of precision, also considering that all analysis used in traditional
WCET can still be implemented as plug-ins. In particular, the target we have in mind are
systems that are both (hard) real time and safety critical. Being safety critical, we can
already expect them to be fully or partially specified at the functional level. Therefore
we expect that the additional functional invariants should allow to augment the precision
of the cost bounds, up to the point where the parametric cost bound is fully precise. In
practice, we have not had the time to perform extensive comparisons on the kind of code
used by industry in production systems. The first middle term improvement of CerCo
would then consist in this kind of analysis, to support or disprove our expectations. It
seems that the newborn TACLe Cost Action (Timing Analysis on Code Level) would be
the best framework to achieve this improvement. In the case where our technique remains
promising, the next long term improvement would consist in integrating in the Frama-C
plug-in ad-hoc analysis and combinations of analysis that would augment the coverage of
the efficiency of the cost estimation techniques.

4 Static analysis of costs of basic blocks

At the beginning of the project we have deliberately decided to focus our attention on
the control flow preservation, the cost model propagation and the exploitation of the cost
model induced on the high level code. For this reason we have devoted almost no attention

3

to the static analysis of basic blocks. This was achieved by picking a very simple hardware
architecture (the 8051 microprocessor family) whose cost model is fully predictable and
compositional: the cost of every instruction — except those that deal with I/O — is
constant, i.e. it does not depend on the machine status. We do not regret this choice
because, with the limited amount of man power available in the project, it would have
been difficult to also consider this aspect. However, without showing if the approach can
scale to most complex architectures, our methodology remains of limited interest for the
industry. Therefore, the next important middle term improvement will be the extension of
our methodology to cover pipelines and simple caches. We will now present our ideas on
how we intend to address the problem. The obvious long term improvement would be to
take in consideration multicores system and complex memory architectures like the ones
currently in use in networks on chips. The problem of execution time analysis for these
systems is currently considered extremely hard or even unfeasible and at the moments it
seems unlikely that our methodology could contribute to the solution of the problem.

5 Static analysis of costs of basic blocks revisited

We will now describe what currently seems to be the most interesting technique for the
static analysis of the cost of basic blocks in presence of complex hardware architectures
that do not have non compositional cost models.

We start presenting an idealized model of the execution of a generic microprocessor
(with caches) that has all interrupts disabled and no I/O instructions. We then classify
the models according to some properties of their cost model. Then we show how to extend
the labelling approach of CerCo to cover models that are classified in a certain way.

The microprocessor model Let σ, σ1, . . . range over Σ, the set of the fragments of
the microprocessor states that hold the program counter, the program status word and all
the data manipulated by the object code program, i.e. registers and memory cells. We
call these fragments the data states.

Let δ, δ1, . . . range over ∆, the set of the fragments of the microprocessor state that
holds the internal state of the microprocessor (e.g. the content of the pipeline and caches,
the status of the branch prediction unit, etc.). The internal state of the microprocessor
influences the execution cost of the next instruction, but it has no effect on the functional
behaviour of the processor. The whole state of the processor is represented by a pair (σ, δ).

Let I, I1, . . . range over I, the the set of instructions of the processor and let γ, γ1, . . .
range over Γ, the set of operands of instructions after the fetching and decoding passes.
Thus a pair (I, γ) represents a decoded instruction and already contains the data required
for execution. Execution needs to access the data state only to write the result.

Let fetch : Σ→ I×Γ be the function that performs the fetching and execution phases,
returning the decoded instruction ready for execution. This is not meant to be the real
fetch-decode function, that exploits the internal state too to speed up execution (e.g. by
retrieving the instruction arguments from caches) and that, in case of pipelines, works in
several stages. However, such a function exists and it is observationally equivalent to the
real fetch-decode.

We capture the semantics of the microprocessor with the following set of functions:

• The functional transition function −→: Σ → Σ over data states. This is the only
part of the semantics that is relevant to functional analysis.

• The internal state transition function =⇒: Σ × ∆ → ∆ that updates the internal
state.

• The cost function K : I×Γ×∆→ N that assigns a cost to transitions. Since decoded
instructions hold the data they act on, the cost of an instruction may depend both
on the data being manipulated and on the internal state.

4

Given a processor state (σ, δ), the processor evolves in the new state (σ′, δ′) in n cost
units if σ −→ σ′ and (σ, δ) =⇒ δ′ and fetch(σ) = (I, γ) and K(I, γ, δ) = n.

An execution history is a stream of states and transitions σ0 −→ σ1 −→ σ2 . . . that
can be either finite or infinite. Given an execution history, the corresponding execution
path is the stream of program counters obtained from the execution history by forgetting
all the remaining information. The execution path of the history σ0 −→ σ1 −→ σ2 . . .
is pc0, pc1, . . . where each pci is the program counter of σi. We denote the set of finite
execution paths with EP .

We claim this simple model to be generic enough to cover real world architectures.

Classification of cost models A cost function is exact if it assigns to transitions
the real cost incurred. It is approximated if it returns an upper bound of the real cost.

A cost function is operand insensitive if it does not depend on the operands of the
instructions to be executed. Formally, K is operand insensitive if there exists a K ′ :
I ×∆→ N such that K(I, γ, δ) = K ′(I, δ). In this case, with an abuse of terminology, we
will identify K with K ′.

The cost functions of simple hardware architectures, in particular RISC ones, are nat-
urally operand insensitive. In the other cases an exact operand sensitive cost function
can always be turned into an approximated operand insensitive one by taking K ′(I, δ) =
max{K(I, γ, δ) | γ ∈ Γ}. The question when one performs these approximation is how
severe the approximation is. A measure is given by the jitter, which is defined as the
difference between the best and worst cases. In our case, the jitter of the approximation
K ′ would be max{K(I, γ, δ) | γ ∈ Γ} − min{K(I, γ, δ) | γ ∈ Γ}. According to experts
of WCET analysis, the jitters relative to operand sensitivity in modern architectures are
small enough to make WCET estimations still useful. Therefore, in the sequel we will
focus on operand insensitive cost models only.

Note that cost model that are operand insensitive may still have significant depen-
dencies over the data manipulated by the instructions, because of the dependency over
internal states. For example, an instruction that reads data from the memory may change
the state of the cache and thus greatly affect the execution time of successive instructions.

Nevertheless, operand insensitivity is an important property for the labelling approach.
In [3] we introduced dependent labels and dependent costs, which are the possibility of
assigning costs to basic blocks of instructions which are also dependent on the state of the
high level program at the beginning of the block. The idea we will now try to pursue is to
exploit dependent costs to capture cost models that are sensitive to the internal states of
the microprocessor. Operand sensitivity, however, is a major issue in presence of dependent
labels: to lift a data sensitive cost model from the object code to the source language, we
need a function that maps high level states to the operands of the instructions to be
executed, and we need these functions to be simple enough to allow reasoning over them.
Complex optimizations performed by the compiler, however, make the mappings extremely
cumbersome and history dependent. Moreover, keeping track of status transformations
during compilation would be a significant departure from classical compilation models
which we are not willing to undertake. By assuming or removing operand sensitivity, we
get rid of part of the problem: we only need to make our costs dependent on the internal
state of the microprocessor. The latter, however, is not at all visible in the high level code.
Our next step is to make it visible.

In general, the value of the internal state at a certain point in the program history is
affected by all the preceding history. For instance, the pipeline stages either hold operands
of instructions in execution or bubbles 1. The execution history contains data states that

1A bubble is formed in the pipeline stage n when an instruction is stuck in the pipeline stage n− 1, waiting
for some data which is not available yet.

5

in turn contain the object code data which we do not know how to relate simply to the
source code data. We therefore introduce a new classification.

A view over internal states is a pair (V, |.|) where V is a finite non empty set and
|.| : ∆→ V is a forgetful function over internal states.

The operand insensitive cost function K is dependent on the view V if there exists a
K ′ : I ×V → N such that K(I, δ) = K ′(I, |δ|). In this case, with an abuse of terminology,
we will identify K with K ′.

Among the possible views, the ones that we will easily be able to work with in the
labelling approach are the execution history dependent views. A view (V, |.|) is execution
history dependent with a lookahead of length n when there exists a transition function
↪→: PCn×V → V such that for all (σ, δ) and pc1, . . . , pcn such that every pci is the program
counter of σi defined by σ −→i σi, we have (σ, δ) =⇒ δ′ iff ((pc1, . . . , pcn), |δ|) ↪→ |δ′|.

Less formally, a view is dependent on the execution history if the evolution of the views
is fully determined by the evolution of the program counters. To better understand the
definition, consider the case where the next instruction to be executed is a conditional
jump. Without knowing the values of the registers, it is impossible to determine if the
true or false branches will be taken. Therefore it is likely to be impossible to determine the
value of the view the follows the current one. On the other hand, knowing the program
counter that will be reached executing the conditional branch, we also know which branch
will be taken and this may be sufficient to compute the new view. Lookaheads longer
then 1 will be used in case of pipelines: when executing one instruction in a system with
a pipeline of length n, the internal state of the pipeline already holds information on the
next n instructions to be executed.

The reference to execution histories in the names is due to the following fact: every
execution history dependent transition function ↪→ can be lifted to the type EP ×V → V
by folding the definition over the path trace: ((pc0, . . . , pcm), v0) ↪→ vn iff for all i ≤ m−n,
((pci, . . . , pci+n), vi) ↪→ vi+1. Moreover, the folding is clearly associative: (τ1@τ2, v) ↪→ v′′

iff (τ1, v) ↪→ v′ and (τ2, v
′) ↪→ v′′.

As a final definition, we say that a cost function K is data independent if it is dependent
on a view that is execution path dependent. In two paragraphs we will show how we can
extend the labelling approach to deal with data independent cost models.

Before that, we show that the class of data independent cost functions is not too
restricted to be interesting. In particular, at least simple pipeline models admit data
independent cost functions.

A data independent cost function for simple pipelines We consider here a
simple model for a pipeline with n stages without branch prediction and hazards. We also
assume that the actual value of the operands of the instruction that is being read have
no influence on stalls (i.e. the creation of bubbles) nor on the execution cost. The type
of operands, however, can. For example, reading the value 4 from a register may stall a
pipeline if the register has not been written yet, while reading 4 from a different register
may not stall the pipeline.

The internal states ∆ of the pipeline are n-tuples of decoded instructions or bubbles:
∆ = (I × Γ ∪ 1)n. This representation is not meant to describe the real data structures
used in the pipeline: in the implementation the operands are not present in every stage of
the pipeline, but are progressively fetched. A state (x1, x2, . . . , (I, γ)) represents the state
of the pipeline just before the completion of instruction (I, γ). The first n− 1 instructions
that follow I may already be stored in the pipeline, unless bubbles have delayed one or
more of them.

We introduce the following view over internal states: ({0, 1}n, |.|) where Nn = 0, . . . , 2n − 1
and |(x1, . . . , xn)| = (y1, . . . , yn) where yi is 1 iff xi is a bubble. Thus the view only re-
members which stages of the pipelines are stuck. The view holds enough information to
reconstruct the internal state given the current data state: from the data state we can fetch

6

the program counter of the current and the next n− 1 instructions and, by simulating at
most n execution steps and by knowing where the bubbles were, we can fill up the internal
state of the pipeline.

The assumptions on the lack of influence of operands values on stalls and execution
times ensures the existence of the data independent cost function K : PC × {0, 1}n → N.
The transition function for a pipeline with n stages may require n lookaheads: ↪→: PCn×
{0, 1}n → {0, 1}n.

While the model is a bit simplicist, it can nevertheless be used to describe existing
pipelines. It is also simple to be convinced that the same model also captures static branch
prediction: speculative execution of conditional jumps is performed by always taking the
same branch which does not depend on the execution history. In order to take in account
jump predictions based on the execution history, we just need to incorporate in the status
and the view statistical informations on the last executions of the branch.

The labelling approach for data independent cost models We now describe
how the labelling approach can be slightly modified to deal with a data independent cost
model (↪→,K) built over (V, |.|).

In the labelling approach, every basic block in the object code is identified with a unique
label L which is also associated to the corresponding basic block in the source level. Let
us assume that labels are also inserted after every function call and that this property
is preserved during compilation. Adding labels after calls makes the instrumented code
heavier to read and it generates more proof obligations on the instrumented code, but
it does not create any additional problems. The preservation during compilation creates
some significant technical complications in the proof of correctness of the compiler, but
those can be solved.

The static analysis performed in the last step of the basic labelling approach analyses
the object code in order to assign a cost to every label or, equivalently, to every basic
block. The cost is simply the sum of the cost of very instruction in the basic block.

In our scenario, instructions no longer have a cost, because the cost function K takes
in input a program counter but also a view v. Therefore we replace the static analysis
with the computation, for every basic block and every v ∈ V, of the sum of the costs of
the instructions in the block, starting in the initial view v. Formally, let the sequence of
the program counters of the basic block form the execution path pc0, . . . , pcn. The cost
K(v0, L) associated to the block labelled with L and the initial view v0 is K(pc0, v0) +
K(pc1, v1) + . . .+K(pcn, vn) where for every i < n, ((pci, . . . , pci+l), vi) ↪→ vk+1 where l is
the lookahead required. When the lookahead requires program counters outside the block
under analysis, we are free to use dummy ones because the parts of the view that deal with
future behaviour have no impact on the cost of the previous operations by assumption.

The static analysis can be performed in linear time in the size of the program because
the cardinality of the sets of labels (i.e. the number of basic blocks) is bounded by the
size of the program and because the set V is finite. In the case of the pipelines of the
previous paragraph, the static analysis is 2n times more expensive than the one of the
basic labelling approach, where n is the number of pipeline stages.

The first important theorem in the labelling approach is the correctness of the static
analysis: if the (dependent) cost associated to a label L is k, then executing a program
from the beginning of the basic block to the end of the basic block should take exactly k
cost units. The proof only relies on associativity and commutativity of the composition
of costs. Commutativity is only required if basic blocks can be nested, i.e. if a basic
block does not terminate when it reaches a call, but it continues after the called function
returns. By assuming to have a cost label after each block, we do not need commutativity
any longer, which does not hold for the definition of K we just gave. The reason is that,
if pci is a function call executed in the view (state) vi, it is not true that, after return, the
state will be vi + 1 defined by (pci, pci+1, vi) ↪→ vi+1 (assuming a lookahead of 1, which is

7

already problematic). Indeed pci+1 is the program counter of the instruction that follows
the call, whereas the next program counter to be reached is the one of the body of the
call. Moreover, even if the computation would make sense, vi+1 would be the state at the
beginning of the execution of the body of the call, while we should know the state after
the function returns. The latter cannot be statically predicted. That’s why we had to
impose labels after calls. Associativity, on the other hand, trivially holds. Therefore the
proof of correctness of the static analysis can be reused without any change.

So far, we have computed the dependent cost K : V × L → N that associates a cost
to basic blocks and views. The second step consists in statically computing the transition
function ↪→: L × L × V → V that associates to each pair of consecutively executed basic
blocks and input view the view obtained at the end of the execution of the first block.

The definition is the following: (L,L′, v) ↪→ v′ iff ((pc0, . . . , pcn, pc
′
0, . . . , pc

′
m), v) ↪→ v′

where (pc0, . . . , pcn) are the program counters of the block labelled by L and (pc′0, . . . , pc
′
m)

are those of the block labelled with L′. We assume here that m is always longer or equal
to the lookahead required by the transition function ↪→ over execution paths. When this
is not the case we could make the new transition function take in input a longer lookahead
of labels. Or we may assume to introduce enough NOPs at the beginning of the block L′ to
enforce the property. In the rest of the paragraph we assume to have followed the second
approach to simplify the presentation.

The extended transition function over labels is not present in the basic labelling ap-
proach. Actually, the basic labelling approach can be understood as the generalized ap-
proach where the view V = 1. The computation of the extended ↪→ transition function is
again linear in the size of the program.

Both the versions of K and ↪→ defined over labels can be lifted to work over traces
by folding them over the list of labels in the trace: for K we have K((L1, . . . , Ln), v) =
K(L1, v) +K((L2, . . . , Ln), v′) where (L1, L2, v) ↪→ v′; for ↪→ we have ((L1, . . . , Ln), v) ↪→
v′′ iff (L1, L2, v) ↪→ v′ and ((L2, . . . , Ln), v′) ↪→ v′′. The two definitions are also clearly
associative.

The second main theorem of the labelling approach is trace preservation: the trace
produced by the object code is the same as the trace produced by the source code. Without
any need to change the proof, we immediately obtain as a corollary that for every view v,
the cost K(τ, v) computed from the source code trace τ is the same than the cost K(τ, v)
computed on the object code trace, which is again τ .

The final step of the labelling approach is source code instrumentation. In the basic
labelling approach it consists in adding a global variable cost, initialized with 0, which
is incremented at the beginning of every basic block with the cost of the label of the basic
block. Here we just need a more complex instrumentation that keeps track of the values
of the views during execution:

• We define three global variables cost, initialized at 0, label, initialized with
NULL, and view, uninitialized.

• At the beginning of every basic block labelled by L we add the following code frag-
ment:

view = next(label,L, view);

cost += K(view, L);
label = L;

where next(L1, L2, v) = v′ iff (L1, L2, v) ↪→ v′ unless L1 is NULL. In that case
(next(NULL,L) = v0 where v0 = |δ0| and δ0 is the initial value of the internal
state at the beginning of program execution.

The first line of the code fragment computes the view at the beginning of the exe-
cution of the block from the view at the end of the previous block. Then we update
the cost function with the cost of the block. Finally we remember the current block
to use it for the computation of the next view at the beginning of the next block.

8

int fact (int n) {

int i, res = 1;

for (i = 1 ; i <= n ; i++) res *= i;

return res;

}

int main () {

return (fact(10));

}

Figure 1: A simple program that computes the factorial of 10.

An example of instrumentation in presence of a pipeline In Figure 2 we
show how the instrumentation of a program that computes the factorial of 10 would look
like in presence of a pipeline. The instrumentation has been manually produced. The
next function says that the body of the internal loop of the fact function can be executed

in two different internal states, summarized by the views 2 and 3. The view 2 holds at
the beginning of even iterations, while the view 3 holds at the beginning of odd ones.
Therefore even and odd iterations are assigned a different cost. Also the code after the
loop can be executed in two different states, depending on the oddness of the last loop
iteration.

The definitions of next and K are just examples. For instance, it is possible as well
that each one of the 10 iterations is executed in a different internal state.

Considerations on the instrumentation The example of instrumentation in the
previous paragraph shows that the approach we are proposing exposes at the source level
a certain amount of information about the machine behavior. Syntactically, the additional
details, are almost entirely confined into the next and K functions and they do not
affect at all the functional behaviour of the program. In particular, all invariants, proof
obligations and proofs that deal with the functional behavior only are preserved.

The interesting question, then, is what is the impact of the additional details on non
functional (intensional) invariants and proof obligations. At the moment, without a work-
ing implementation to perform some large scale tests, it is difficult to understand the level
of automation that can be achieved and the techniques that are likely to work better with-
out introducing major approximations. In any case, the preliminary considerations of the
project remain valid:

• The task of computing and proving invariants can be simplified, even automatically,
trading correctness with precision. For example, the most aggressive approximation
simply replaces the cost function K with the function that ignores the view and
returns for each label the maximum cost over all possible views. Correspondingly,
the function next can be dropped since it returns views that are later ignored.

A more refined possibility consists in approximating the output only on those labels
whose jitter is small or for those that mark basic blocks that are executed only a
small number of times. By simplifying the next function accordingly, it is possible
to considerably reduce the search space for automated provers.

• The situation is not worse than what happens with time analysis on the object code
(the current state of the art). There it is common practice to analyse larger chunks of
execution to minimize the effect of later approximations. For example, if it is known
that a loop can be executed at most 10 times, computing the cost of 10 iterations
yields a better bound than multiplying by 10 the worst case of a single interaction.

We clearly can do the same on the source level. More generally, every algorithm that
works in standard WCET tools on the object code is likely to have a counterpart on
the source code. We also expect to be able to do better working on the source code.
The reason is that we assume to know more functional properties of the program and

9

int __cost = 8;

int __label = 0;

int __view;

void __cost_incr(int incr) {

__cost = __cost + incr;

}

int __next(int label1, int label2, int view) {

if (label1 == 0) return 0;

else if (label1 == 0 && label2 == 1) return 1;

else if (label1 == 1 && label2 == 2) return 2;

else if (label1 == 2 && label2 == 2 && view == 2) return 3;

else if (label1 == 2 && label2 == 2 && view == 3) return 2;

else if (label1 == 2 && label2 == 3 && view == 2) return 1;

else if (label1 == 2 && label2 == 3 && view == 3) return 0;

else if (label1 == 3 && label2 == 4 && view == 0) return 0;

else if (label1 == 3 && label2 == 4 && view == 1) return 0;

}

int __K(int view, int label) {

if (view == 0 && label == 0) return 3;

else if (view == 1 && label == 1) return 14;

else if (view == 2 && label == 2) return 35;

else if (view == 3 && label == 2) return 26;

else if (view == 0 && label == 3) return 6;

else if (view == 1 && label == 3) return 8;

else if (view == 0 && label == 4) return 6;

}

int fact(int n)

{

int i;

int res;

__view = __next(__label,1,__view); __cost_incr(_K(__view,1)); __label = 1;

res = 1;

for (i = 1; i <= n; i = i + 1) {

__view = __next(__label,2,__view); __cost_incr(__K(__view,2)); __label = 2;

res = res * i;

}

__view = __next(__label,3,__view); __cost_incr(K(__view,3)); __label = 3;

return res;

}

int main(void)

{

int t;

__view = __next(__label,0,__view); __cost_incr(__K(__view,0)); __label = 0;

t = fact(10);

__view = __next(__label,4,__view); __cost_incr(__K(__view,4)); __label = 4;

return t;

}

Figure 2: The instrumented version of the program in Figure 1.

more high level invariants, and to have more techniques and tools at our disposal.
Even if at the moment we have no evidence to support our claims, we think that this
approach is worth pursuing in the long term.

The problem with caches Cost models for pipelines — at least simple ones — are
data independent, i.e. they are dependent on a view that is execution path dependent.
In other words, the knowledge about the sequence of executed instructions is sufficient to
predict the cost of future instructions.

The same property does not hold for caches. The cost of accessing a memory cell
strongly depends on the addresses of the memory cells that have been read in the past.
In turn, the accessed addresses are a function of the low level data state, that cannot be
correlated to the source program state.

The strong correlation between the internal state of caches and the data accessed in
the past is one of the two main responsibles for the lack of precision of static analysis
in modern uni-core architectures. The other one is the lack of precise knowledge on the
real behaviour of modern hardware systems. In order to overcome both problems, that
Cazorla&alt. [5] call the “Timing Analysis Walls”, the PROARTIS European Project has
proposed to design “a hardware/software architecture whose execution timing behaviour

10

eradicates dependence on execution history” ([5], Section 1.2). The statement is obviously
too strong. What is concretely proposed by PROARTIS is the design of a hardware/soft-
ware architecture whose execution timing is execution path dependent (our terminology).

We have already seen that we are able to accommodate in the labelling approach
cost functions that are dependent on views that are execution path dependent. Before
fully embracing the PROARTIS vision, we need to check if there are other aspects of the
PROARTIS proposal that can be problematic for CerCo.

Static Probabilistic Time Analysis The approach of PROARTIS to achieve ex-
ecution path dependent cost models consists in turning the hard-to-analyze deterministic
hardware components (e.g. the cache) into probabilistic hardware components. Intuitively,
algorithms that took decision based on the program history now throw a dice. The typical
example which has been thoroughly studied in PROARTIS [6] is that of caches. There
the proposal is to replace the commonly used deterministic placement and replacement
algorithms (e.g. LRU) with fully probabilistic choices: when the cache needs to evict a
page, the page to be evicted is randomly selected according to the uniform distribution.

The expectation is that probabilistic hardware will have worse performances in the
average case, but it will exhibit the worst case performance only with negligible probability.
Therefore, it becomes no longer interesting to estimate the actual worst case bound. What
becomes interesting is to plot the probability that the execution time will exceed a certain
threshold. For all practical purposes, a program that misses its deadline with a negligible
probability (e.g. 10−9 per hour of operation) will be perfectly acceptable when deployed
on an hardware system (e.g. a car or an airplane) that is already specified in such a way.

In order to plot the probability distribution of execution times, PROARTIS proposes
two methodologies: Static Probabilistic Time Analysis (SPTA) and Measurement Based
Probabilistic Time Analysis (MBPTA). The first one is similar to traditional static analy-
sis, but it operates on probabilistic hardware. It is the one that we would like to embrace.
The second one is based on measurements and it is justified by the following assumption:
if the probabilities associated to every hardware operation are all independent and identi-
cally distributed, then measuring the time spent on full runs of sub-systems components
yields a probabilistic estimate that remains valid when the sub-system is plugged in a
larger one. Moreover, the probabilistic distribution of past runs must be equal to the one
of future runs.

We understand that MBPTA is useful to analyze closed (sub)-systems whose functional
behavior is deterministic. It does not seem to have immediate applications to parametric
time analysis, which we are interested in. Therefore we focus on SPTA.

According to [5], “in SPTA, execution time probability distributions for individual oper-
ations . . . are determined statically from a model of the processor. The design principles of
PROARTIS will ensure . . . that the probabilities for the execution time of each instruction
are independent. . . . SPTA is performed by calculating the convolution (⊕) of the discrete
probability distributions which describe the execution time for each instruction on a CPU;
this provides a probability distribution . . . representing the timing behaviour of the entire
sequence of instructions.”

We will now analyze to what extend we can embrace SPTA in CerCo.

The labelling approach for Static Probabilistic Time Analysis To sum-
marize, the main practical differences between standard static time analysis and SPTA
are:

• The cost functions for single instructions or sequences of instructions no longer return
a natural numbers (number of cost units) but integral random variables.

• Cost functions are extended from single instructions to sequences of instructions by
using the associative convolution operator ⊕

11

By reviewing the papers that described the labelling approach, it is easy to get con-
vinced that the codomain of the cost analysis can be lifted from that of natural numbers
to any group. Moreover, by imposing labels after every function call, commutativity can
be dropped and the approach works on every monoid (usually called cost monoids in the
literature). Because random variables and convolutions form a monoid, we immediately
have that the labelling approach extends itself to SPTA. The instrumented code produced
by an SPTA-CerCo compiler will then have random variables (on a finite domain) as costs
and convolutions in place of the { cost incr} function.

What is left to be understood is the way to state and compute the probabilistic invari-
ants to do parametric SPTA. Indeed, it seems that PROARTIS only got interested into
non parametric PTA. For example, it is well known that actually computing the convo-
lutions results in an exponential growth of the memory required to represent the result
of the convolutions. Therefore, the analysis should work symbolically until the moment
where we are interested into extracting information from the convolution.

Moreover, assuming that the problem of computing invariants is solved, the actual
behavior of automated theorem provers on probabilistic invariants is to be understood. It
is likely that a good amount of domain specific knowledge about probability theory must
be exploited and incorporated into automatic provers to achieve concrete results.

Parametric SPTA using the methodology developed in CerCo is a future research di-
rection that we believe to be worth exploring in the middle and long term.

Static Probabilistic Time Analysis for Caches in CerCo As a final remark,
we note that the analysis in CerCo of systems that implement probabilistic caches requires
a combination of SPTA and data independent cost models. The need for a probabilistic
analysis is obvious but, as we saw in the previous paragraph, it requires no modification
of the labelling approach.

In order to understand the need for dependent labelling (to work on data independent
cost functions), we need to review the behaviour of probabilistic caches as proposed by
PROARTIS. The interested reader can consult [6] for further informations.

In a randomized cache, the probability of evicting a given line on every access is 1/N
where N stands for the number of cache entries. Therefore the hit probability of a specific
access to such a cache is P (hit) = (N−1

N)K where K is the number of cache misses between
two consecutive accesses to the same cache entry. For the purposes of our analysis, we
must assume that every cache access could cause an eviction. Therefore, we define K (the
reuse distance) to be the number of memory accesses between two consecutive accesses
to the same cache entry, including the access for which we are computing K. In order
to compute K for every code memory address, we need to know the execution path (in
our terminology). In other words, we need a view that records for each cache entry the
number of memory accesses that has occurred since the last access.

For pipelines with n stages, the number of possible views is limited to 2n: a view
can usually just be represented by a word. This is not the case for the views on caches,
which are in principle very large. Therefore, the dependent labelling approach for data
independent cost functions that we have presented here could still be unpractical for caches.
If that turns out to be the case, a possible strategy is the use of abstract interpretations
techniques on the object code to reduce the size of views exposed at the source level, at
the price of an early loss of precision in the analysis.

More research work must be performed at the current stage to understand if caches
can be analyzed, even probabilistically, using the CerCo technology. This is left for future
work and it will be postponed after the work on pipelines.

12

6 Conclusions

At the current state of the art functional properties of programs are better proved high
level languages, but the non functional ones are proved on the corresponding object code.
The non functional analysis, however, depends on functional invariants, e.g. to bound or
correlate the number of executions of cycles.

The aim of the CerCo project is to reconcile the two analysis by performing non
functional analysis on the source code. This requires computing a cost model on the
object code and reflecting the cost model on the source code. We achieve this in CerCo
by designing a certified Cost Annotating Compiler that keeps tracks of transformations of
basic blocks, in order to create a correspondence (not necessarily bijection) between the
basic blocks of the source and target language. We then prove that the sequence of basic
blocks that are met in the source and target executions is correlated. Then, we perform a
static analysis of the cost of basic blocks on the target language and we use it to compute
the cost model for the source language basic blocks. Finally, we compute cost invariants on
the source code from the inferred cost model and from the functional program invariants;
we generate proof obligations for the invariants; we use automatic provers to try to close
the proof obligations.

The cost of single instructions on modern architectures depend on the internal state
of various hardware components (pipelines, caches, branch predicting units, etc.). The
internal states are determined by the previous execution history. Therefore the cost of
basic blocks is parametric on the execution history, which means both the instructions
executed and the data manipulated by the instructions. The CerCo approach is able to
correlate the sequence of blocks of source instructions with the sequence of blocks of target
instructions. It does not correlate the high level and the low level data. Therefore we are
not able in the general case to lift a cost model parametric on the execution history on
the source code.

To overcome the problem, we have identified a particular class of cost models that are
not dependent on the data manipulated. We argue that the CerCo approach can cover
this scenario by exposing in the source program a finite data type of views over internal
machine states. The costs of basic blocks is parametric on these views, and the current view
is updated at basic block entry according to some abstraction of the machine hardware that
does not need to be understood. Further studies are needed to understand how invariant
generators and automatic provers can cope with these updates and parametric costs.

We have argued how pipelines, at least simple ones, are captured by the previous
scenario and can in principle be manipulated using CerCo tools. The same is not true
for caches, whose behaviour deeply depends on the data manipulated. By embracing the
PROARTIS proposal of turning caches into probabilistic components, we can break the
data dependency. Nevertheless, cache analysis remains more problematic because of the
size of the views. Further studies need to be focused on caches to understand if the problem
of size of the views can be tamed in practice without ruining the whole approach.

References

[1] Certified Complexity, R. Amadio, A. Asperti, N. Ayache, B. Campbell, D. Mulligan,
R. Pollack, Y. Regis-Gianas, C. Sacerdoti Coen, I. Stark, in Procedia Computer Science,
Volume 7, 2011, Proceedings of the 2 nd European Future Technologies Conference and
Exhibition 2011 (FET 11), 175-177.

[2] Certifying and Reasoning on Cost Annotations in C Programs, N. Ayache,
R.M. Amadio, Y.Régis-Gianas, in Proc. FMICS, Springer LNCS 7437: 32-46, 2012,
DOI:10.1007/978-3-642-32469-7 3.

13

[3] Indexed Labels for Loop Iteration Dependent Costs, P. Tranquilli, in Pro-
ceedings of the 11th International Workshop on Quantitative Aspects of Programming
Languages and Systems (QAPL 2013), Rome, 23rd-24th March 2013, Electronic Pro-
ceedings in Theoretical Computer Science, to appear in 2013.

[4] The EmBounded project (project paper), K. Hammond, R. Dyckhoff, C. Fer-
dinand, R. Heckmann, M. Hofmann, H. Loidl, G. Michaelson, J. Serot, A. Wallace, in
Trends in Functional Programming, Volume 6, Intellect Press, 2006.

[5] PROARTIS: Probabilistically Analysable Real-Time Systems, F.J. Cazorla,
E. Qui˜nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger, J. Abella, F.
Wartel, M. Houston, et al., in ACM Transactions on Embedded Computing Systems,
2012.

[6] A Cache Design for Probabilistic Real-Time Systems, L. Kosmidis, J. Abella,
E. Quinones, and F. Cazorla, in Design, Automation, and Test in Europe (DATE),
Grenoble, France, 03/2013.

14

	Task
	Review of cost synthesis techniques
	The Cost plug-in and its application to the Lustre compiler
	Handling C programs with simple loops
	C programs with pointers
	The cost of higher-order functional programs
	The cost of memory management
	Feasible bounds by light typing

	Middle and Long Term Improvements

