PROJECT PERIODIC REPORT

PROJECT OBIJECTIVES, PROGRESS AND ACHIEVEMENTS FOR THE
PERIOD

Grant Agreement number: 243381

Project acronym: CErRCO

Project title: Certified Complexity

Funding Scheme: STREP

Date of latest version of Annex | against which the assessment will be made:
Periodic report: 1@ 2" x 3@ 4@

Period covered: from 01 February 2011 to 31 January 2012

Project coordinator: Prof. Claudio Sacerdoti Coen
Alma Mater Studiorum — Universita di Bologna
Tel: +39 051 2094973

Fax: +39 051 2094510

E-mail: claudio.sacerdoticoen@unibo.it

Project website address: http://cerco.cs.unibo.it

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

Table of contents

1 Project objectives for the Period ... s e e e 2
OVEBIVIEW .ttt ettt e e e e e e e e e e e et b aaeeeeeee et e e bbb aaeeeeeeeaatebaaassaeeeseanessaannaeeesnees 2
FOIOW-UP OFf PreVIOUS FEVIEWiiiiiiiiieeiiieee ettt ettt saae e e s sbae e e s s abae e e snasaeee s 2

2 Work progress and achievements during the period.........cccccevviiiieinniiiiiiniiee e, 6
Progress overview and contribution to the research fieldccceeeeeeiiciiiiieeee e, 6
WOTK PACKAEZES PrOBIESS ...uuvrrreeieeeieiecireee et e e e eeccttee e e e e e e eesetbraeeeeeeeesesbrraeeeeeeeessssraseeeeeessessnsrenees 8

WP2: Untrusted COmMPIler PrototYPEeueeeeeiiieicciiieeei ettt e e e e e serreee e e e e e e e eannaes 8
WP3: Verified Compiler — FrONt ENGcveiiiiiieiiiieeecc ettt eeanraee e e e e 9
WPA4: Verified Compiler —Back ENdveeeeiiiiieiieieeee ettt e eenrree e e e e e e 10
WP5: Interfaces and Interactive COMPONENTSoeevveiiiieiiiiieeee e eecerreee e e e e e e eanns 12
WP6: Dissemination and exXploitation.......cccccceeeeiiieeiiciiiiiiieeeec e e e 14

3 Deliverables and milestones tablesc.ueeiiciiii e 16
Table 1. DEIIVEIAbIESot e e e e e e e e e e aaae e e e ennees 16
LI o] (S A 1V L T=E) o o 1= RS 19

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

1 Project objectives for the period

Overview

The two main objectives for the first period of the project have been:

1) the development of an untrusted prototype of a compiler from a large subset of C to the object
code of a simple microprocessor, of the kind used in embedded systems (first milestone of the
project). The prototype also instruments the source code with “ghost code” to keep track of the
total and exact execution time (in clock cycles) of the program. The cost of each basic block is
determined by keeping track of blocks during compilation, associating to each C block the cost of
the corresponding object code produced.

2) the formalization in the Matita interactive theorem prover of the two executable semantics
(emulators) for both the C subset we consider and the targeted microprocessor.

The two main objectives for the second period, as included in Annex | to the Grant Agreement,
have been:

1) the development of a proof-of-concept prototype that interfaces the untrusted prototype
compiler with extant tools for the certification of extensional properties of C programs. The new
prototype must allow the user to manually enrich the instrumented source code with cost
assertions and it must generate proof obligations to verify the assertions. Automatic and
interactive theorem provers can then be used to formally prove all obligations. Automatic
inference of cost assertions by means of abstract interpretation of the source code must also be
tested. The prototype represents the second milestone of the project and the first practical tool
suitable for dissemination.

2) the formalization in the Matita interactive theorem prover of the executable semantics for all
intermediate languages and the rewriting of the untrusted CerCo prototype in Matita. This is the
last preliminary step required to start the certification of the whole compiler, which will also start
during the second period and to be completed at the end of the project.

Follow-up of previous review

During the first project review the reviewers have made three main recommendations. We report
here the recommendations and describe our actions taken.

1) “In order to not limit the results that can be obtained in the project to processors with very old
architectures ... the project partners should explicitly consider how the assumptions on the
hardware architecture influence the results obtained and in how far these assumptions could be a
threat to the validity and generality of the results."

The basic labelling approach developed during the first period was based on the assumption that
there exists a function that associates to each basic block its execution cost (in cycles). The

2

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

assumption is clearly violated in modern processors where execution cost is a function of the state
of the system (internal processor state plus cache) and different executions of the same code
require a different number of cycles.

Let us assume the existence of a technique that associates different cost estimates to different
executions. For instance, such a technique can be found in WCET tools that take cache effects into
consideration: loops are virtually peeled or fully unrolled and each iteration is assigned a different
cost via abstract interpretation. From the point of view of the basic labelling approach, the
situation is identical to the one obtained via actual loop unrolling: the cost label for the loop body
is duplicated many times and different copies are assigned different costs. The basic labelling
approach can still compute a correct bound by picking the maximum of the different costs, but this
is extremely imprecise since it amounts to ignoring the analysis and always assuming the worst
cache configuration (all misses). The bounds obtained, then, are still valid, but so large as to be
useless.

In order to solve this problem, we need to relax our assumptions and allow functions that
associate to every cost label functions from an approximation of the program (processor) state to
cost bounds. In particular we are interested in associating to bodies of loops a cost that is
dependent on the number of loop iterations performed. This change surely permits us to
accommodate loop optimizations performed by the compiler, and so represents a major
improvement to the basic labelling approach. Moreover, we conjecture that it should be sufficient
to accommodate also modern architectures with caches. During the second period we have
worked on this idea producing: a) a new technique that extends the basic labelling approach that
we call the dependent labelling approach since it yields dependent cost annotations; b) a pen-and-
paper certification of a toy compiler for an IMP language extended with gotos and loop
optimizations; c) a new version of the CerCo untrusted compiler that has dependent labels and
loop optimizations; d) the integration of the new compiler in the larger CerCo prototype. In the
next period we will try to apply the same methodology to consider caches by either simulating a
cache at the software level or picking an MCS-51 variant with a cache.

“... we recommend to adapt the labelling approach such that basic complexity annotations can be
obtained by program pieces of larger granularity than is done now. This will allow ... the use of
WCET tools to infer time bounds...”

The solution recommended by the reviewers is to take extant WCET tools as black boxes and use
them to assign costs to larger program pieces, i.e. to program slices that contain loops. This is
basically the approach used by the EmBounded EU Project where the compiler is responsible for
informing the WCET component about high-level constraints on the control flow of the program,
like bounds to loops or recursive function invocations. Internally, the WCET tool does a fine
grained analysis where it computes upper bounds for the various loop executions under additional
assumptions about the control flow, either provided by the user or by an external tool (the
compiler in the EmBounded case). The result returned by the tool is less fine grained, usually being

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

just a number (and not a function of the program state), and is not “trusted” in our sense as the
tool is neither certified nor because the user provided assumptions are also not certified.

We would like to follow a different approach. We conjecture that, using our dependent labelling
approach, it should be possible to export from a WCET tool and expose the details of the fine
grained analysis performed internally. We are quite confident that this is the case for WCET tools
for simple processors that have a cache, but no other modern features like speculative branching.
To support this opinion, in the next period we will try to apply the same methodology to caches by
either simulating a cache at software level or picking an MCS-51 variant with a cache.

We would also like to stress what we believe to be a significant disadvantage in using WCET as
black box oracles for accurately estimating the cost of program pieces (w.r.t. the standard
application to whole programs). State of the art WCET tools for complex microprocessor
architectures, like Absint or Chronos,

do not permit the user to make analyses of code assuming a particular processor state. Rather, all
analyses run from a fixed initial assumed state, like an empty cache or pipeline, that evolves as the
analysis progresses. When the processor state is not the assumed one this leads to unsound
predictions (underestimates) because of the “timing anomalies” phenomenon. One possible
solution is to insert code that sets the processor state to the expected one before the code to be
analyzed. However this approach affects the global performance of the code.

2) “The authors should quickly outline a paper-and-pencil correctness proof for each of the seven
stages ... in order to allow for an estimation of the complexity and time required”

We have completed the suggestion above by sketching the proof at a high level of detail, and we
have also used data in existing compiler certification papers to estimate the number of man-
months required to complete the project as a function of the lines of code to be certified and their
estimated complexity. The exercise has given us some insights into the proof plan. In particular,
we spotted a major problem (described below in the description of WP4) with the proof that
relates the static cost prediction on object code with the actual execution cost. The solution has
had an impact on the whole proof plan that has been updated accordingly.

3) “Based on the outline of the paper-and-pencil proofs, the authors should estimate the effort for
two possible scenarios: a) proceed as planned in the Matita system (this involves porting all proofs
of the CompCert project to Matita); b) modify the existing proofs in Coq... If the project partners
stick to the usage of Matita they should argue convincingly why this is a suitable choice and in how
far Matita is superior to Coqg...”

We have argued in favour of the use of Matita in the Commitment Letter sent to the project
officer and reviewers. The effort estimation has not changed the opinion expressed there since it
did not demonstrate the infeasibility of the Project Plan presented in Annex | of the Contract
Agreement. All the other motivations expressed in the letter still hold. More details are given in

4

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

the conclusion part of the document that describes the compiler proof outline and estimates the
required effort.

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

2 Work progress and achievements during the period

Progress overview and contribution to the research field

As clearly visible in the Pert diagram in Annex 1, the workplan for CerCo has been designed to
maximize parallelism between two important activities. The first activity, performed in WP2 and
WP5, consists of the development of an untrusted framework for the analysis of intensional
properties of programs written in C. The important landmarks for this activity are:

1) the development of the untrusted cost annotating O'Caml compiler;

2) the integration of the compiler into a larger framework that allows one to manage
the machine-provided cost annotations and the human-provided cost invariants;

3) the integration within the framework of procedures to automate the trivial proof
cases commonly found in proofs of complexity obligations;

4) the study of some use-cases

Landmark 1), which is also the first project milestone, was successfully attained during the first
period of the project. Landmark 2) was successfully attained during the second period of the
project, and work on landmark 4) has been moved from the third period to the second one.
Landmark 3) and 4) will be fully attained at the end of the project.

Landmark 1), which is also the project milestone M1, already is a significant achievement in the
domain of compiler design. Indeed, this constitutes the first example of a compiler that is able to
induce absolutely precise cost annotations on the source language. As far as we know, in the
compiler construction literature there is no comparable work for comparative

assessment.

With our approach we finally obtain a fully certified compiler that preserves both the extensional
and intensional semantics of the program. However, at the end of the first period we paid the
price of not being able to exploit all the optimizations of existing compilers. In particular, loop
optimizations were prevented. During the second period we have dramatically enhanced the basic
labelling approach so that it now accomodates some loop optimizations and we are now confident
that the method scales to most optimizations in the literature. The same technique used for loop
optimizations should also accommodate some modern processor features like caches. This needs
further assessment in the third period of the project. Finally, we have extended the CerCo labelling
approach described in D2.1 to a standard compilation chain from a higher-order functional
language of the ML family to C. This shows that the approach is sufficiently general to be applied
to higher-order programs whose concrete complexity is generally regarded as difficult to estimate.

Practical applications of CerCo are enabled by Landmark 2) that allows one to prove worst case
execution times on functions as a function of the parameters of the function. This gives our tool a

6

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

distinct flavour respect to standard WCET techniques that focus on producing a number
representing the WCET of the function on every possible parameter.

Moreover, the results of the plugin have a very high level of trust. Firstly, because the cost
annotations added by CerCo will be proved correct. Secondly, because verification of the proof
obligations, which is performed comfortably on source code, is deductive and proof obligations
can be discharged with various provers. The more provers that discharge an obligation, the more
reliable we may view the result as being.

When automatic provers fail to discharge an obligation, the user can still try to verify them
manually, with an interactive theorem prover such as Coq or Matita. This possibility is enabled by
another peculiarity of the CerCo methodology: while other WCET tools act as black boxes, the cost
plugin provides the user with as much information as it possibly can. When a WCET tool fails, the
user generally has few hopes, if any, of understanding and resolving the issue in order to obtain a
result. Contrarily, when the cost plugin fails to add an annotation, the user can still try to complete
it. Further, since the output of CerCo is valid C code, it is also much easier to understand the
behavior of the annotations.

The work completed on Landmark 4) yields a trusted and completely automatic WCET analyser for
Lustre programs. It contributes evidence for the feasibility of our approach.

The second activity, performed in WP3 and WP4, consists of the formalisation of the core
component of the framework, the cost annotating compiler itself. The important landmarks for
this activity are:

1) the formalisation of the source language and the target architecture;

2) the formalisation of the intermediate languages used during compilation;
3) the rewriting of the untrusted compiler in Matita;

4) the certification of the rewritten compiler.

Landmark 1) has been successfully attained during the first period of the project and Landmarks 2)
and 3) during the second period.

In the literature there already exists several formalisations of assemblers and compilers. We
diverge from the existing literature in two ways. First, as far as we know we will formalize the first
compiler that infers and preserve intensional properties of high level programs parameterized on
the cost model. The closest existing work is represented by the Piton project, which formalized in
ACL2 a series of compilers for high-level languages to an assembly language. In order to formalize
the forward simulation in ACL2, the authors needed to define a clock function that, given a high-
level program and a status, returns the number of low level steps required to simulate the
execution of the next high level instruction. Clock functions are necessary in ACL2 to even state
the forward simulation theorem and they are not meant to be presented to the user for high level
reasoning on the code. In particular, the code of the functions, if presented to the user, could be

7

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

hardly understandable in presence of significant optimizations. Moreover, proofs done using clock
functions are menageable with a proof assistant, but not on paper, while our methodology is.
Moreover, clock functions measure time only and extending the methodology to deal with other
costs, like space or energy consumption, does not amount to a change of a single function, like in
our approach.

The second reason for divergence from the literature is the heavy exploitation of dependent types
and executable semantics in the formalization. Small examples of compilers implemented using
dependent types already exist, but ours is the first large-scale formalization to employ them.
Executable semantics are heavily used in ACL2 to prove compiler correctness, but not in
combination with dependent types. The combination of both techniques at once yields a totally
new proving style (“Russell-style”) where the user simply writes the code and the system opens
relevant proof obligations. At the moment this approach is supported only by the Coq and Matita
interactive theorem provers. Whilst support for the former is implemented in an external layer of
the system, this style is implemented in Matita at the refiner level and is therefore much more
flexible.

As expected, during the first formalization steps we have already faced some weaknesses in
Matita's support for this style of development, and we have modified Matita accordingly. A better
understanding of the methodology, and the requisite improvements to the interactive theorem
prover are valuable side-effects of CerCo. A final comparison between the proof style adopted and
the traditional one used, for instance, in CompCert is an interesting by-product of the project that
will be possible only after completion of the whole formalization.

Work packages progress
WP2: Untrusted compiler prototype

The goal of this Work Package is to implement a proof-of-concept prototype for the cost
annotating compiler. The compiler will be untrusted, meaning that no proof will be given that the
machine code and the cost annotations returned by the compiler are correct. It will be written in a
high-level, ergonomic programming language particularly tailored to compiler construction
(O'Caml).

The untrusted prototype compiler will drive the design and implementation of the trusted version,
and at the same time will allow us to start experimenting with the management of cost
annotations, the declaration of complexity assertions, the generation of complexity obligations
and their interactive solution (tasks covered by WP5).

During the second period one task have been active: Task 2.4.

Task 2.4, not active in the first and third periods of the project, was for integration, validation and
testing of the compiler developed in Deliverable D2.2. In particular, D2.2 has been modified to

8

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

reflect changes to the code suggested during the formalisation. The task has also been exploited
for the implementation of a realistic cost inference engine for MCS-51 and the implementation of
tail recursive calls and calls via function pointers. These features were expected for D2.2, but not
fully achieved during the first period. The integration of MCS-51 specific extensions, not originally
planned in Annex 1, has been accomplished in a fork of the code. These extensions have been
partially propagated to the Matita code. Their full integration and certification will be given a low
priority to avoid delays in our schedule.

Finally, in WP2 and WP5, a fork of the code has been produced that also implements loop
optimizations, extending the labelling approach to dependent labelling. Architectural changes and
code improvements have been back-ported from the fork to the main branch, leading to improved
code generation.

We do not deviate from Annex 1 for WP2.
WP3: Verified Compiler — Front End

The goal of this Work Package is to build the trusted version of the compiler front-end, from some
abstract syntax tree representation of (a large subset of) the C language to three-address like
intermediate code.

During the second period the active tasks have been: Task 3.2, Task 3.3, Task 3.4.

Task 3.2, active only in the second period, consisted of the formal rewriting of the (untrusted)
compiler front-end in the Calculus of (Co)Inductive Constructions, using the Matita interactive
theorem prover. A library of datastructures and generic algorithms to be used in common with the
back-end formalization has also been designed. The code is directly executable inside Matita.

Task 3.3, also active only in the second period, consisted in the formalization in Matita of a directly
executable semantics for the intermediate languages used in the front-end. This has allowed us to
obtain a first validation of the formalized compiler by emulating some C programs after each
compilation step, verifying that the semantics are preserved.

Task 3.4 is the certification of the compiler front-end. The two basic results to be proved are: 1)
for each compiler pass, the existence of a forward simulation between the source code and the
one obtained by applying the pass; the simulation must also show preservation of labelled traces;
2) the proof that the instrumented code and the source code behave the same way (up to the
update of cost variables) and that, for converging programs, the final value of the cost variable is
equal to the cost associated to the trace. An additional result, not planned in the description of
work, consists of showing the equivalence of our executable semantics for C with the non-
executable one developed in CompCert and ported to Matita. The aim of this additional proof is to
raise our confidence in the C semantics: bugs in the semantics may hide bugs in the compiler.

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

The task started on time at month 18 and focused first on the equivalence of the two semantics
and on the set-up of the infrastructure for the simulation proof. A very surprising discovery has
been bugs in the CompCert semantics, one of which actually masking a bug in the CompCert
compiler itself. This represents evidence of the benefits of an executable semantics that can be
tested by running it on actual programs. Contrary to CompCert, all the semantics in use in CerCo
will be executable.

A major problem with the operational semantics of the back-end will be discussed in the section
devoted to WPS5. It has led to the introduction of “structured traces”, used to capture the
execution runs of well-behaved back-end programs. Structured traces do not seem to be
applicable to the front-end languages that lack a good notion of program counter. Since the
certification of the back-end will be based on structured traces, an additional amount of
unplanned work completed in Task 3.4 has been the correlation of the labelled semantics used in
the front-end, based on flat traces, with the one used in the back-end, based on structured traces.
Flat traces are correlated to structured traces during the RTLabs to RTL translation, that is the first
pass of the back-end.

We do not deviate from Annex 1 for WP3.
WP4: Verified Compiler — Back End

The goal of this Work Package is to build the trusted version of the compiler back-end, from
intermediate three address code to assembly language.

During the second period the active tasks have been: Task 4.2, Task 4.3, Task 4.4.

Task 4.2, active only in the second period, consisted in the formal rewriting of the (untrusted)
compiler back-end in the Calculus of (Co)Inductive Constructions, using the Matita interactive
theorem prover. The back-end of the compiler is also comprised of a non-trivial assembler
performing branch displacement optimizations. According to a now well-established approach, we
have not formalized a few functions that are very difficult to prove correct, but whose results can
be easily tested. The main drawback of this approach is that the code is no longer directly
executable inside Matita, being based on a sort of oracle to be realized during code extraction.
However, instruction selection, the first pass of the back-end, augments the size of the code so
much that realistic programs are too large to enable direct execution inside Matita anyway.
Therefore, the code has been validated only on artificial examples.

After submission of D4.2, we started the re-writing of some of the passes using improved sets of
generic iterators over graphs, along with generic functions to translate a graph by expanding single
nodes into linear chains of nodes. Simpler versions of the generic functions were used in D4.2.
Moreover, during the re-writing we are also applying the patches, already applied to the untrusted
prototype, that are required to accommodate dependent labels and loop optimizations. Loop

10

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

optimizations will not be formalized in Matita due to time constraints, but we will try to formalize
the architecture to support dependent labels.

Task 4.3, also active only in the second period, consisted of the formalization in Matita of a
directly executable semantics for the intermediate languages used in the back-end. In the
formalization we decided to depart significantly from the untrusted compiler by introducing an
abstract definition of back-end language that can be instantiated to capture all the back-end
languages used in CerCo. We discuss the advantages of this novel approach in deliverable D4.3.
Amongst them: 1) it greatly simplifies the insertion of new intermediate back-end passes, in case
one pass is too complex to be certified without splitting; 2) it permits some passes to be written in
such a way that they can be freely permuted; 3) it should allow in the future to retarget the
compiler by simply parameterizing the generic grammar to directly embed the target processor
instructions. This would make all back-end passes but the first (instruction selection) generic in
the target architecture while, at the moment in CompCert, this is not the case.

After submission of D4.3 some of the generic definitions have been re-organized to better
accommodate the changes applied to D4.2 after submission. For example, the LTL to LIN pass of
the compiler is now a fully generic pass from generic graph languages to a corresponding linear
language. When applied to LTL it yields LIN, but it can now also be applied to previous languages
(e.g. RTL) to get a linearized syntax for the programs. We are thus now free to commute between
the two representations in case one makes the certification of the compiler easier.

Task 4.4, is the certification of the compiler back-end. The two basic results to be proved are: 1)
for each compiler pass, the existence of a forward simulation between the source code and the
one obtained by applying the pass; the simulation must also show preservation of labelled traces;
2) the proof that the labelled object code executes with a certain cost iff that cost is the sum of
the costs statically associated to each label occurring in the execution trace. Note that, comparing
with the proof methodology presented in D2.1, we are dropping the proof that shows that
compilation commutes with erasure of labels. That proof only provides more information on the
actual behaviour of the compiler by showing that insertion of cost labels has no ultimate effect on
the object code. At the C level it is already possible to easily prove that labels do not affect the
extensional properties and, as far as intensional properties are concerned, the additional insight
gained is not worth the effort of a formal proof. Moreover, it also rejects some potentially useful
compiler behaviours, like the possibility of compiling the same code twice, with and without
enabling an optimization, to compare the cost associated to cost labels and decide if the
optimization actually improves the execution time.

Task 4.4 has started at month 18. We focused first on the last part of the back-end: the
certification of the optimizing assembler, and the proof that relates to the object code the static
cost prediction with the dynamic one. The certification of the optimizing assembler is split into
two separate proofs: 1) the correctness of the algorithm that determines a strategy for branch
displacement optimization; 2) the correctness of the assembler that is parameterized over a
correct strategy. As far as we know, the two proofs, not yet completed, will constitute the first

11

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

formal certification of branch displacement algorithms, and are known in the literature as being
particularly hard to prove correct (displacement algorithms are heuristics to approximate the
solution of a problem that is NP-complete for many assembly languages).

Proofs about the object code, like the one about cost prediction, are extremely hard and time
consuming. The main reasons are the following: 1) we reason on a realistic formalization of the
microprocessor, where memory is limited and fetching an instruction may overflow the program
counter even when execution of the instruction is correct and unaffected by the overflow (e.g.
unconditional jumps); 2) in CISC architectures, different opcodes are represented in memory using
a different number of bytes; therefore not every value of the program counter represents a valid
opcode; misbehaving programs can even jump back in the code, re-decoding the code memory
starting from a different address, so that each byte in memory is read as part of two distinct
opcodes; 3) “function” calls in assembly, even if terminating, are not guaranteed to return to the
instruction immediately following the call.

In order to address the difficulties above we have introduced the notions of well formed program
and that of structured trace. Well formedness is used to statically recognize a subset of the object
code programs that is also a superset of the image of the compilation and that are not affected by
problems 1) and 2) listed above. Structured traces are used to describe the dynamic behaviour of
programs that do not suffer from 3). A structured trace also grants termination of every function
call. Termination plays an important role since, in the labelling approach, a label covers the cost of
the instructions that follow the label up to the next label, even when the instructions are
interrupted by a function call. Since the cost associated to a label is immediately paid when the
label is encountered, we are effectively paying in advance also the cost of the instructions that
follow function calls. If the function call is diverging or does not return control just after the calling
point, then the paid cost is over-estimated. Precision can thus be obtained only in presence of
terminating function calls. Using structured traces we have been able to prove that the dynamic
and static cost predictions are perfectly related (are correct and precise) for well formed programs
whose execution yields a structured trace.

Structured traces also incorporate cost labels in their definition, so that preservation of the
structure of a structured trace during compiler passes implies preservation of cost traces as well.
The forward simulation proof for the back-end will thus consist in demonstrating the preservation
of structured traces.

Finally, we have also provided a coinductive notion of infinite structured traces for diverging
programs. The structure of these traces clearly shows that it is still possible to provide precise
bounds for the execution cost of converging structured subtraces, like bodies of diverging loops.
An example application is the computation of precise cost bounds for the response time of a
server.

We do not deviate from Annex 1 for WP4.

WP5: Interfaces and Interactive components

12

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

The aim of WP5 is to develop a proof of concept prototype, by interfacing with extant tools, to
show how the annotations produced by the compiler can be exploited in order to draw complexity
assertions on the execution time of the program.

During the second period the only active task should have been T5.1. However, we moved Task
T6.1 forward from the third to the second period.

Task 5.1 is devoted to the management of the cost annotations (produced by the compiler) and
the complexity assertions (added by the user or synthesized automatically by an abstract
interpretation algorithm) in order to produce the right complexity obligations, that is the goals to
be proved in order to check the correctness of the assertions.

The most significant result, that is also the second CerCo milestone, has been the development of
a plugin for the Frama-C open source platform to reason on C programs using Hoare logic. The
plugin, to a first approximation, takes the following actions:

1) it receives asinput a C program;

2) it applies the CerCo compiler to produce a related C program with cost annotations;

3) it applies some heuristics based on an abstract interpretation analysis to produce a
tentative bound on the cost of executing a C function as a function of the value of
its parameters;

4) it calls the provers embedded in the Frama-C tool to discharge the related proof
obligations.

Like most WCET tools, the aim of the plugin is to provide a bound for the worst case execution
time of a function. The novelty, compared to standard WCET tools, are: 1) the automatic
generation of the bound of a function is a function of the value of the parameters and not simply a
number; 2) the bound is formally proved to be correct. The trusted code base for point 2) is
constituted by: a) the CerCo compiler that is untrusted at the moment but will be replaced by the
certified one at the end of the project; b) the theorem provers called by Frama-C; however it is
possible to obtain two independent validations from two different provers; c) the Frama-C plugin
that generates the proof obligations from the complexity assertions. The plugin is described in
D5.1.

Task 5.3 is aimed at delimiting the practical applicability of the plugin developed in T5.1. To this
end, the tool has been applied to the C code generated by the Lustre compiler and to some other
simple C programs.

Lustre is a synchronous language where reactive systems are described by the flow of values. It is
provided with a compiler that transforms a Lustre node (any part of or the whole system) into a C
step function that represents one synchronous cycle of the node. A WCET for the step function is
thus the worst case reaction time for the component, the most valuable non-functional property
of a synchronous language. The generated C step function neither contains loops nor is recursive,

13

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

which makes it particularly well suited for the use case: the complexity proof obligations
generated by Frama-C are simple enough to be automatically solved by the theorem provers
integrated in Frama-C without any human intervention.

The most significant result for T5.3 has been the development of another Frama-C plugin that,
given a Lustre program, compiles it to C using the standard Lustre compiler and then interfaces
with the previous cost plugin to fully automatically certify worst case reaction times for Lustre
programs. The plugin has been successfully tested on some test programs from the Lustre
distribution. The plugin code together with a description and some benchmarks has been released
as deliverable D5.3.

Follow-up work for the first review, unplanned in Annex 1, has been the development of the
dependent labelling approach also described in D5.1. The dependent labelling approach is an
extension of the basic labelling approach that allows the basic blocks marked by cost labels to be
assigned different costs during the execution of the program. In particular, the cost of a basic
block is now a function of the number of iterations performed in any loop that surrounds the basic
block. For example, the first iteration of a loop or all even iterations can be assigned a different
cost. The different costs for a single label yield dependent cost annotations in the instrumented
code.

The dependent labelling approach addresses two significant limitations of the basic labelling
approach: the impossibility of implementing loop optimizations, and the impossibility of applying
the existing CerCo methodology to modern processors that sport caches and speculative
branching. The second one was the most severe critique raised by the reviewers.

The follow up work on dependent costs has impacted both WP2 and WP5. The pen-and-paper
certification of a compiler for the toy language IMP, given in D2.1, has been extended to cover
gotos and loop optimizations. A fork of the untrusted compiler has been made to scale the
dependent labelling approach to the realistic C compiler. As a side effect, code generation has
been made more effective and the changes unrelated to dependent costs have been applied also
to the main untrusted compiler. The forked compiler implements loop optimizations, a more
aggressive constant propagation optimization and improved instruction selection. Finally, the
plugin developed in D5.1 has also been forked to obtain a plugin for reasoning on dependent
costs.

The follow up work is fully described in D5.1.
We deviate from Annex 1 for WP5 by moving Task 5.3 from the third to the second period and by
implementing a consistent amount of follow-up work driven by the comments of the reviewers

during the first Project Review.

WP6: Dissemination and exploitation

14

CERCO 243381 Project objectives, work progress and achievements
Second Periodic Report

The overall objective of WP6 is to manage the knowledge generated by the project and IPRs, and
to bring the technological advances developed within the CerCo project to the wider scientific
community and potential users. The project will target not only the scientific and academic
communities but also European industries potentially interested in applying formal verification
techniques to embedded software design.

The specific objectives of WP6 will be:
1) a tailored dissemination activity that will make use of specific dissemination
mechanisms in order to reach the relevant communities;
2) supervision of the entire project with regard to result applicability and the

promotion of the exploitation.

Task 6.1, user validation and exploitability, was not active in the first period. Task 6.2 is about the
contribution to portfolio and concertation activities at FET-Open level.

The dissemination activity performed in the second period is described in the Project management
report.

15

CERCO 243381
Second Periodi

c Report

3 Deliverables and milestones tables

Project objectives, work progress and achievements

Table 1. Deliverables

Del. No. Deliverable Version WP no. |Lead Dissemination [Delivery Actual / Status Contractual [Comments
name beneficiary Nature |level* date from |Forecast
Annex | delivery date
(proj month)
D6.1 Project Web Site|1.0 6 UNIBO P PU 3 15/06/2010 [Submitted Yes
and Software
Repository
D2.1 Compiler Design [1.0 2 UPD R PU 6 10/09/2010 Submitted | Yes
and
Intermediate
Languages
Addendum [Compiler Design [1.0 2 UPD R PU 16/05/2011 [Submitted Yes Required

PU = Public
PP = Restricted to other programme participants (including the Commission Services).
RE = Restricted to a group specified by the consortium (including the Commission Services).

CO = Confidential, only for members of the consortium (including the Commission Services).

EU restricted = Classified with the mention of the classification level restricted "EU Restricted"

EU confidential = Classified with the mention of the classification level confidential " EU Confidential "
EU secret = Classified with the mention of the classification level secret "EU Secret "

16

CERCO 243381
Second Periodic Report

toD2.1

and
Intermediate
Languages

Project objectives, work progress and achievements

after the
first

project
review

D6.2

Plan for the use
and
dissemination of
foreground

UNIBO

co

10/09/2010

Submitted

Yes

Addendum
to D6.2

Plan for the use
and
dissemination of
foreground

UNIBO

co

16/05/2011

Submitted

Yes

Required
after the
first

project
review

D3.1

Executable
Formal
Semantics of C

UEDIN

PU

10

16/12/2010

Submitted

Yes

D4.1

Executable
Formal
Semantics of
Machine Code

1.0

UNIBO

PU

10

16/12/2010

Submitted

Yes

D2.2

Untrusted Cost-
Annotating
Ocaml compiler

UPD

PU

12

16/02/2011

Submitted

Yes

D1.1

Periodic Activity
Report and

Financial

UNIBO

co

12

31/03/2011

Submitted

Yes

17

CERCO 243381
Second Periodi

c Report

Project objectives, work progress and achievements

Statements

D3.2

CIC encoding:
Front-end

1.0

UEDIN

PU

18

23/10/2011

Submitted

Yes

D3.3

Executable
Formal
Semantics of
front-end
intermediate
languages

1.0

UEDIN

PU

18

23/10/2011

Submitted

Yes

D4.2

CIC encoding
Back-end

1.0

UNIBO

PU

18

23/10/2011

Submitted

Yes

D4.3

Executable
Formal
Semantics of
back-end
intermediate
languages

1.0

UNIBO

PU

18

23/10/2011

Submitted

Yes

D5.1

Untrusted CerColl.

Prototype

UPD

PU

24

16/02/2012

Submitted

Yes

D1.2

Periodic Activity
Report and
Financial
Statements

UNIBO

co

24

Yes

This
document

D5.3

Case study:
analysis of
syncronous code

UPD

PU

36

16/02/2012

Submitted

Yes

18

CERCO 243381

Second Periodic Report

PU = Public

PP = Restricted to other programme participants (including the Commission Services).

RE = Restricted to a group specified by the consortium (including the Commission Services).
CO = Confidential, only for members of the consortium (including the Commission Services).
EU restricted = Classified with the mention of the classification level restricted “EU Restricted”

EU confidential = Classified with the mention of the classification level confidential “ EU Confidential “

EU secret = Classified with the mention of the classification level secret “EU Secret “

Table 2. Milestones

Project objectives, work progress and achievements

Milestone Milestone Work package | Lead beneficiary Delivery date Achieved Actual / Comments
no. name no from Annex Forecast
achievement
date
MS1 Untrusted 2 UPD 31/01/2011 Yes 16/02/2011
Cost
annotating
compiler
MS2 Untrusted 3,4,5 UPD 31/01/2012 Yes 16/02/2012
CerCo

Compiler

