include "ASM/BitVector.ma". include "ASM/Util.ma". definition nat_of_bool ≝ λb: bool. match b with [ false ⇒ O | true ⇒ S O ]. definition carry_of : bool → bool → bool → bool ≝ λa,b,c. match a with [ false ⇒ b ∧ c | true ⇒ b ∨ c ]. definition add_with_carries : ∀n:nat. BitVector n → BitVector n → bool → BitVector n × (BitVector n) ≝ λn,x,y,init_carry. fold_right2_i ??? (λn,b,c,r. let 〈lower_bits, carries〉 ≝ r in let last_carry ≝ match carries with [ VEmpty ⇒ init_carry | VCons _ cy _ ⇒ cy ] in let bit ≝ exclusive_disjunction (exclusive_disjunction b c) last_carry in let carry ≝ carry_of b c last_carry in 〈bit:::lower_bits, carry:::carries〉 ) 〈[[ ]], [[ ]]〉 n x y. (* Essentially the only difference for subtraction. *) definition borrow_of : bool → bool → bool → bool ≝ λa,b,c. match a with [ false ⇒ b ∨ c | true ⇒ b ∧ c ]. definition sub_with_borrows : ∀n:nat. BitVector n → BitVector n → bool → BitVector n × (BitVector n) ≝ λn,x,y,init_borrow. fold_right2_i ??? (λn,b,c,r. let 〈lower_bits, borrows〉 ≝ r in let last_borrow ≝ match borrows with [ VEmpty ⇒ init_borrow | VCons _ bw _ ⇒ bw ] in let bit ≝ exclusive_disjunction (exclusive_disjunction b c) last_borrow in let borrow ≝ borrow_of b c last_borrow in 〈bit:::lower_bits, borrow:::borrows〉 ) 〈[[ ]], [[ ]]〉 n x y. definition add_n_with_carry: ∀n: nat. ∀b, c: BitVector n. ∀carry: bool. n ≥ 5 → (BitVector n) × (BitVector 3) ≝ λn: nat. λb: BitVector n. λc: BitVector n. λcarry: bool. λpf:n ≥ 5. let 〈result, carries〉 ≝ add_with_carries n b c carry in let cy_flag ≝ get_index_v ?? carries 0 ? in let ov_flag ≝ exclusive_disjunction cy_flag (get_index_v ?? carries 1 ?) in let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. // @(transitive_le … pf) /2/ qed. definition sub_n_with_carry: ∀n: nat. ∀b,c: BitVector n. ∀carry: bool. n ≥ 5 → (BitVector n) × (BitVector 3) ≝ λn: nat. λb: BitVector n. λc: BitVector n. λcarry: bool. λpf:n ≥ 5. let 〈result, carries〉 ≝ sub_with_borrows n b c carry in let cy_flag ≝ get_index_v ?? carries 0 ? in let ov_flag ≝ exclusive_disjunction cy_flag (get_index_v ?? carries 1 ?) in let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. // @(transitive_le … pf) /2/ qed. definition add_8_with_carry ≝ λb, c: BitVector 8. λcarry: bool. add_n_with_carry 8 b c carry ?. @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) qed. definition add_16_with_carry ≝ λb, c: BitVector 16. λcarry: bool. add_n_with_carry 16 b c carry ?. @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) qed. definition sub_8_with_carry ≝ λb, c: BitVector 8. λcarry: bool. sub_n_with_carry 8 b c carry ?. @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) qed. definition sub_16_with_carry ≝ λb, c: BitVector 16. λcarry: bool. sub_n_with_carry 16 b c carry ?. @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) qed. definition increment ≝ λn: nat. λb: BitVector n. \fst (add_with_carries n b (zero n) true). definition decrement ≝ λn: nat. λb: BitVector n. \fst (sub_with_borrows n b (zero n) true). definition two_complement_negation ≝ λn: nat. λb: BitVector n. let new_b ≝ negation_bv n b in increment n new_b. definition addition_n ≝ λn: nat. λb, c: BitVector n. let 〈res,flags〉 ≝ add_with_carries n b c false in res. definition subtraction ≝ λn: nat. λb, c: BitVector n. addition_n n b (two_complement_negation n c). definition multiplication ≝ λn: nat. λb, c: BitVector n. let b_nat ≝ nat_of_bitvector ? b in let c_nat ≝ nat_of_bitvector ? c in let result ≝ b_nat * c_nat in bitvector_of_nat (n + n) result. definition division_u ≝ λn: nat. λb, c: BitVector n. let b_nat ≝ nat_of_bitvector ? b in let c_nat ≝ nat_of_bitvector ? c in match c_nat with [ O ⇒ None ? | _ ⇒ let result ≝ b_nat ÷ c_nat in Some ? (bitvector_of_nat n result) ]. definition division_s: ∀n. ∀b, c: BitVector n. option (BitVector n) ≝ λn. match n with [ O ⇒ λb, c. None ? | S p ⇒ λb, c: BitVector (S p). let b_sign_bit ≝ get_index_v ? ? b O ? in let c_sign_bit ≝ get_index_v ? ? c O ? in let b_as_nat ≝ nat_of_bitvector ? b in let c_as_nat ≝ nat_of_bitvector ? c in match c_as_nat with [ O ⇒ None ? | S o ⇒ match b_sign_bit with [ true ⇒ let temp_b ≝ b_as_nat - (2^p) in match c_sign_bit with [ true ⇒ let temp_c ≝ c_as_nat - (2^p) in Some ? (bitvector_of_nat ? (temp_b ÷ temp_c)) | false ⇒ let result ≝ (temp_b ÷ c_as_nat) + (2^p) in Some ? (bitvector_of_nat ? result) ] | false ⇒ match c_sign_bit with [ true ⇒ let temp_c ≝ c_as_nat - (2^p) in let result ≝ (b_as_nat ÷ temp_c) + (2^p) in Some ? (bitvector_of_nat ? result) | false ⇒ Some ? (bitvector_of_nat ? (b_as_nat ÷ c_as_nat)) ] ] ] ]. // qed. definition modulus_u ≝ λn. λb, c: BitVector n. let b_nat ≝ nat_of_bitvector ? b in let c_nat ≝ nat_of_bitvector ? c in match c_nat with [ O ⇒ None ? | _ ⇒ let result ≝ modulus b_nat c_nat in Some ? (bitvector_of_nat n result) ]. definition modulus_s ≝ λn. λb, c: BitVector n. match division_s n b c with [ None ⇒ None ? | Some result ⇒ let 〈high_bits, low_bits〉 ≝ split bool ? n (multiplication n result c) in Some ? (subtraction n b low_bits) ]. definition lt_u ≝ fold_right2_i ??? (λ_.λa,b,r. match a with [ true ⇒ b ∧ r | false ⇒ b ∨ r ]) false. definition gt_u ≝ λn, b, c. lt_u n c b. definition lte_u ≝ λn, b, c. ¬(gt_u n b c). definition gte_u ≝ λn, b, c. ¬(lt_u n b c). definition lt_s ≝ λn. λb, c: BitVector n. let 〈result, borrows〉 ≝ sub_with_borrows n b c false in match borrows with [ VEmpty ⇒ false | VCons _ bwn tl ⇒ match tl with [ VEmpty ⇒ false | VCons _ bwpn _ ⇒ if exclusive_disjunction bwn bwpn then match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] else match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] ] ]. definition gt_s ≝ λn,b,c. lt_s n c b. definition lte_s ≝ λn,b,c. ¬(gt_s n b c). definition gte_s ≝ λn. λb, c. ¬(lt_s n b c). alias symbol "greater_than_or_equal" (instance 1) = "nat greater than or equal prop". definition bitvector_of_bool: ∀n: nat. ∀b: bool. BitVector (S n) ≝ λn: nat. λb: bool. (pad n 1 [[b]])⌈n + 1 ↦ S n⌉. // qed. definition full_add ≝ λn: nat. λb, c: BitVector n. λd: Bit. fold_right2_i ? ? ? ( λn. λb1, b2: bool. λd: Bit × (BitVector n). let 〈c1,r〉 ≝ d in 〈(b1 ∧ b2) ∨ (c1 ∧ (b1 ∨ b2)), (exclusive_disjunction (exclusive_disjunction b1 b2) c1) ::: r〉) 〈d, [[ ]]〉 ? b c. definition half_add ≝ λn: nat. λb, c: BitVector n. full_add n b c false.