
Indexed Labels for Loop Iteration Dependent Costs

Paolo Tranquilli

Abstract

We present an extension to the labelling approach to lift resource consumption infor-
mation from compiled to source code [3]. Such an approach consists in inserting cost labels
at key points of the source code and keeping track of them during compilation. However,
the plain labelling approach looses preciseness when differences arise as to the cost of the
same portion of code, whether due to code transformation such as loop optimisation or
advanced architecture features (e.g. cache). Our approach addresses this weakness, allow-
ing to retain preciseness even when applying some loop transformations that rearrange the
iterations of a loop (namely loop peeling and unrolling). It consists in formally indexing
cost labels with the iterations of the containing loops they occur in within the source code.
These indexes can be transformed during the compilation, and when lifted back to source
code they produce dependent costs.

The proposed changes have been implemented in CerCo’s untrusted prototype compiler
from a large fragment of C to 8051 assembly [4].

1 Introduction

In [3], Armadio et al propose an approach for building a compiler for a large fragment of the
c programming language. The novelty of their proposal lies in the fact that their proposed
design is capable of lifting execution cost information from the compiled code and presenting
it to the user. This idea is foundational for the CerCo project, which strives to produce a
mechanically certified version of such a compiler.

To summarise, Armadio’s proposal consisted of ‘decorations’ on the source code, along
with the insertion of labels at key points. These labels are preserved as compilation progresses,
from one intermediate language to another. Once the final object code is produced, such labels
should correspond to the parts of the compiled code that have a constant cost.

Two properties must hold of any cost estimate. The first property, paramount to the
correctness of the method, is soundness, that is, that the actual execution cost is bounded by
the estimate. In the labelling approach, this is guaranteed if every loop in the control flow of
the compiled code passes through at least one cost label. The second property, optional but
desirable, is preciseness: the estimate is the actual cost. In the labelling approach, this will
be true if, for every label, every possible execution of the compiled code starting from such
a label yields the same cost before hitting another one. In simple architectures such as the
8051 micro-controller this can be guaranteed by placing labels at the start of any branch in
the control flow, and by ensuring that no labels are duplicated.

The reader should note that the above mentioned requirements must hold when executing
the code obtained at the end of the compilation chain. So even if one is careful about injecting
the labels at suitable places in the source code, the requirements might still fail because of
two main obstacles:

1

• The compilation process introduces important changes in the control flow, inserting
loops or branches. For example, the insertion of functions in the source code replacing
instructions that are unavailable in the target architecture. This require loops to be
inserted (for example, for multi-word division and generic shift in the 8051 architecture),
or effort spent in providing unbranching translations of higher level instructions [4].

• Even when the compiled code does—as far as the the syntactic control flow graph is
concerned—respect the conditions for soundness and preciseness, the cost of blocks of
instructions might not be independent of context, so that different passes through a label
might have different costs. This becomes a concern if one wishes to apply the approach
to more complex architectures, for example one with caching or pipelining.

The first point unveils a weakness of the current labelling approach when it comes to some
common code transformations performed along a compilation chain. In particular, most loop
optimisations are disruptive, in the sense outlined in the first bulletpoint above. An example
optimisation of this kind is loop peeling. This optimisation is employed by compilers in order
to trigger other optimisations, for example, dead code elimination or invariant code motion.
Here, a first iteration of the loop is hoisted out of the body of the loop, possibly being assigned
a different cost than later iterations.

The second bulletpoint above highlights another weakness. Different tools allow to predict
up to a certain extent the behaviour of cache. For example, the well known tool aiT [1]—based
on abstract interpretation—allows the user to estimate the worst-case execution time (wcet)
of a piece of source code, taking into account advanced features of the target architecture.
While such a tool is not fit for a compositional approach which is central to CerCo’s project1,
aiT’s ability to produce tight estimates of execution costs would sthill enhance the effectiveness
of the CerCo compiler, e.g. by integrating such techniques in its development. A typical case
where cache analysis yields a difference in the execution cost of a block is in loops: the first
iteration will usually stumble upon more cache misses than subsequent iterations.

If one looks closely, the source of the weakness of the labelling approach as presented in [3] is
common to both points: the inability to state different costs for different occurrences of labels,
where the difference might be originated by labels being duplicated along the compilation, or
the costs being sensitive to the current state of execution. The preliminary work we present
here addresses this weakness by introducing cost labels that are dependent on which iteration
of its containing loops it occurs in. This is achieved by means of indexed labels; all cost labels
are decorated with formal indices coming from the loops containing such labels. These indices
allow us to rebuild, even after multiple loop transformations, which iterations of the original
loops in the source code a particular label occurrence belongs to. During the annotation stage
of the source code, this information is presented to the user by means of dependent costs.

We concentrate on integrating the labelling approach with two loop transformations. For
general information on general compiler optimisations (and loop optimisations in particular)
we refer the reader to the vast literature on the subject (e.g. [8, 7]).

Loop peeling As already mentioned, loop peeling consists in preceding the loop with a copy
of its body, appropriately guarded. This is used, in general, to trigger further optimisations,
such as those that rely on execution information which can be computed at compile time,

1aiT assumes the cache is empty at the start of computation, and treats each procedure call separately,
unrolling a great part of the control flow.

2

but which is erased by further iterations of the loop, or those that use the hoisted code to
be more effective at eliminating redundant code. Integrating this transformation in to the
labelling approach would also allow the integration of the common case of cache analysis
explained above; the analysis of cache hits and misses usually benefits from a form of virtual
loop peeling [5].

Loop unrolling This optimisation consists of the repetition of several copies of the body
of the loop inside the loop itself (inserting appropriate guards, or avoiding them altogether
if enough information about the loop’s guard is available at compile time). This can limit
the number of (conditional or unconditional) jumps executed by the code and trigger further
optimisations dealing with pipelining, if appropriate for the architecture.

Whilst we cover only two loop optimisations in this report, we argue that the work presented
herein poses a good foundation for extending the labelling approach, in order to cover more
and more common optimisations, as well as gaining insight into how to integrate advanced cost
estimation techniques, such as cache analysis, into the CerCo compiler. Moreover loop peeling
itself has the fortuitous property of enhancing and enabling other optimisations. Experimen-
tation with CerCo’s untrusted prototype compiler, which implements constant propagation
and partial redundancy elimination [6, 8], show how loop peeling enhances those other opti-
misations.

Outline We will present our approach on a minimal ‘toy’ imperative language, Imp with
gotos, which we present in Section 2 along with formal definitions of the loop transformations.
This language already presents most of the difficulties encountered when dealing with c, so we
stick to it for the sake of this presentation. In Section 3 we summarize the labelling approach
as presented in [3]. Section 4 presents indexed labels, our proposal for dependent labels which
are able to describe precise costs even in the presence of the various loop transformations we
consider. Finally Section 5 goes into more detail regarding the implementation of indexed
labels in CerCo’s untrusted compiler and speculates on further work on the subject.

2 Imp with goto

We briefly outline the toy language, Imp with gotos. The language was designed in order to
pose problems for the existing labelling approach, and as a testing ground for our new notion
of indexed labels.

The syntax and operational semantics of our toy language are presented in 1. Note, we
may augment the language further, with break and continue, at no further expense. The
precise grammar for expressions is not particularly relevant so we do not give one in full. For
the sake of conciseness we also treat boolean and arithmetic expressions together (with the
usual c convention of an expression being true iff non-zero). We may omit the else clause of
a conditional if it leads to a skip statement.

We will presuppose that all programs are well-labelled, i.e. every label labels at most one
occurrence of a statement in a program, and every goto points to a label actually present in
the program. The find helper function has the task of not only finding the labelled statement
in the program, but also building the correct continuation. The continuation built by find
replaces the current continuation in the case of a jump.

3

Further down the compilation chain We abstract over the rest of the compilation chain.
We posit the existence of a suitable notion of ‘sequential instructions’, wherein each instruction
has a single natural successor to which we can add our own, for every language L further down
the compilation chain.

2.1 Loop transformations

We call a loop L single-entry in P if there is no goto to P outside of L which jumps into
L.2 Many loop optimisations do not preserve the semantics of multi-entry loops in general, or
are otherwise rendered ineffective. Usually compilers implement a single-entry loop detection
which avoids the multi-entry ones from being targeted by optimisations [8, 7]. The loop
transformations we present are local, i.e. they target a single loop and transform it. Which
loops are targeted may be decided by some ad hoc heuristic. However, the precise details of
which loops are targetted and how is not important here.

Loop peeling
while b do S 7→ if b then S; while b do S[`′i/`i]

where `′i is a fresh label for any `i labelling a statement in S. This relabelling is safe for
gotos occurring outside the loop because of the single-entry condition. Note that for break
and continue statements, those should be replaced with gotos in the peeled body S.

Loop unrolling

while b do S 7→ while b do (S; if b then (S[`1i /`i]; · · · if b then S[`ni /`i]) · · ·)

where `ji are again fresh labels for any `i labelling a statement in S. This is a wilfully
näıve version of loop unrolling, which usually targets less general loops. The problem this
transformation poses to CerCo’s labelling approach are independent of the sophistication of
the actual transformation.

Example 1 In Figure 2 we show a program (a wilfully inefficient computation of of the sum
of the first n factorials) and a possible transformation of it, combining loop peeling and loop
unrolling.

3 Labelling: a quick sketch of the previous approach

Plainly labelled Imp is obtained by adding to the code cost labels (with metavariables α, β, . . .),
and cost-labelled statements:

S, T ::= · · · | α : S

Cost labels allow us to track some program points along the compilation chain. For further
details we refer to [3].

2This is a reasonable aproximation: it defines a loop as multi-entry if it has an external but unreachable
goto jumping into it.

4

With labels the small step semantics turns into a labelled transition system along with a
natural notion of trace (i.e. lists of labels) arises. The evaluation of statements is enriched
with traces, so that rules follow a pattern similar to the following:

(α : S,K, s)
α→P (S,K, s)

(skip, S ·K, s) ε→P (S,K, s)
etc.

Here, we identify cost labels α with singleton traces and we use ε for the empty trace. Cost

labels are emitted by cost-labelled statements only3. We then write
λ→∗ for the transitive

closure of the small step semantics which produces by concatenation the trace λ.

Labelling Given an Imp program P its labelling α : L(P) in ` − Imp is defined by putting
cost labels after every branching statement, at the start of both branches, and a cost label
at the beginning of the program. Also, every labelled statement gets a cost label, which is a
conservative approach to ensuring that all loops have labels inside them, as a loop might be
done with gotos. The relevant cases are

L(if e then S else T) = if e then α : L(S) else β : L(T)

L(while e do S) = (while e do α : L(S));β : skip

L(` : S) = (` : α : L(S))

where α, β are fresh cost labels. In all other cases the definition just passes to substatements.

Labels in the rest of the compilation chain All languages further down the chain get a
new sequential statement emit α whose effect is to be consumed in a labelled transition while
keeping the same state. All other instructions guard their operational semantics and do not
emit cost labels.

Preservation of semantics throughout the compilation process is restated, in rough terms,
as:

starting state of P
λ→∗ halting state ⇐⇒ starting state of C(P)

λ→∗ halting state

Here P is a program of a language along the compilation chain, starting and halting states
depend on the language, and C is the compilation function4.

Instrumentations Let C be the whole compilation from `Imp to the labelled version of
some low-level language L. Supposing such compilation has not introduced any new loop or
branching, we have that:

• Every loop contains at least a cost label (soundness condition)

• Every branching has different labels for the two branches (preciseness condition).

3In the general case the evaluation of expressions can emit cost labels too (see 5).
4The case of divergent computations needs to be addressed too. Also, the requirement can be weakened by

demanding some sort weaker form of equivalence of the traces than equality. Both of these issues are beyond
the scope of this presentation.

5

With these two conditions, we have that each and every cost label in C(P) for any P cor-
responds to a block of sequential instructions, to which we can assign a constant cost5 We
therefore may assume the existence of a cost mapping κP from cost labels to natural numbers,
assigning to each cost label α the cost of the block containing the single occurrance of α.

Given any cost mapping κ, we can enrich a labelled program so that a particular fresh
variable (the cost variable c) keeps track of the summation of costs during the execution. We
call this procedure instrumentation of the program, and it is defined recursively by:

I(α : S) = c := c+ κ(α); I(S)

In all other cases the definition passes to substatements.

The problem with loop optimisations Let us take loop peeling, and apply it to the
labelling of a program without any prior adjustment:

(while e do α : S);β : skip 7→ (if b then α : S; while b do α : S[`′i/`i]);β : skip

What happens is that the cost label α is duplicated with two distinct occurrences. If these
two occurrences correspond to different costs in the compiled code, the best the cost mapping
can do is to take the maximum of the two, preserving soundness (i.e. the cost estimate still
bounds the actual one) but losing preciseness (i.e. the actual cost could be strictly less than
its estimate).

4 Indexed labels

This section presents the core of the new approach. In brief points it amounts to the following:

4.1. Enrich cost labels with formal indices corresponding, at the beginning of the process,
to which iteration of the loop they belong to.

4.2. Each time a loop transformation is applied and a cost labels is split in different occur-
rences, each of these will be reindexed so that every time they are emitted their position
in the original loop will be reconstructed.

4.3. Along the compilation chain, alongside the emit instruction we add other instructions
updating the indices, so that iterations of the original loops can be rebuilt at the oper-
ational semantics level.

4.4. The machinery computing the cost mapping will still work, but assigning costs to in-
dexed cost labels, rather than to cost labels as we wish. However, dependent costs can
be calculated, where dependency is on which iteration of the containing loops we are in.

4.1 Indexing the cost labels

Formal indices and ι`Imp Let i0, i1, . . . be a sequence of distinguished fresh identifiers that
will be used as loop indices. A simple expression is an affine arithmetical expression in one
of these indices, that is a ∗ ik + b with a, b, k ∈ N. Simple expressions e1 = a1 ∗ ik + b1,

5This in fact requires the machine architecture to be ‘simple enough’, or for some form of execution analysis
to take place.

6

e2 = a2∗ ik+b2 in the same index can be composed, yielding e1 ◦e2 := (a1a2)∗ ik+(a1b2+b1),
and this operation has an identity element in idk := 1 ∗ ik + 0. Constants can be expressed as
simple expressions, so that we identify a natural c with 0 ∗ ik + c.

An indexing (with metavariables I, J , . . .) is a list of transformations of successive formal
indices dictated by simple expressions, that is a mapping6

i0 7→ a0 ∗ i0 + b0, . . . , ik−1 7→ ak−1 ∗ ik−1 + bk−1

An indexed cost label (metavariables α, β, . . .) is the combination of a cost label α and
an indexing I, written α〈I〉. The cost label underlying an indexed one is called its atom. All
plain labels can be considered as indexed ones by taking an empty indexing.

Imp with indexed labels (ι`Imp) is defined by adding to Imp statements with indexed labels,
and by having loops with formal indices attached to them:

S, T, . . . ::= · · · ik : while e do S | α : S

Note than unindexed loops still exist in the language: they will correspond to multi-entry
loops which are ignored by indexing and optimisations. We will discuss the semantics later.

Indexed labelling Given an Imp program P , in order to index loops and assign indexed
labels, we must first distinguish single-entry loops. We sketch how this can be computed in
the sequel.

A first pass of the program P can easily compute two maps: loopofP from each label ` to
the occurrence (i.e. the path) of a while loop containing `, or the empty path if none exists;
and gotosofP from a label ` to the occurrences of gotos pointing to it. Then the set multientryP
of multi-entry loops of P can be computed by

multientryP := { p | ∃`, q.p = loopofP (`), q ∈ gotosofP (`), q 6≤ p }

Here ≤ is the prefix relation7.
Let Idk be the indexing of length k made from identity simple expressions, i.e. the sequence

i0 7→ id0, . . . , ik−1 7→ idk−1. We define the tiered indexed labelling LιP (S, k) in program P for
occurrence S of a statement in P and a natural k by recursion, setting:

LιP (S, k) :=

(ik : while b do α〈Idk+1〉 : LιP (T, k + 1));β〈Idk〉 : skip
if S = while b do T and S /∈ multientryP ,

(while b do α〈Idk〉 : LιP (T, k));β〈Idk〉 : skip
otherwise, if S = while b do T ,

if b then α〈Idk〉 : LιP (T1, k) else β〈Idk〉 : LιP (T2, k)
if S = if b then T1 else T2,

` : α〈Idk〉 : LιP (T, k) if S = ` : T ,

. . .

6Here we restrict each mapping to be a simple expression on the same index. This might not be the case if
more loop optimisations are accounted for (for example, interchanging two nested loops).

7Possible simplifications to this procedure include keeping track of just the while loops containing labels and
gotos (rather than paths in the syntactic tree of the program), and making two passes while avoiding building
the map to sets gotosof

7

Here, as usual, α and β are fresh cost labels, and other cases just keep making the recursive calls
on the substatements. The indexed labelling of a program P is then defined as α〈〉 : LιP (P, 0),
i.e. a further fresh unindexed cost label is added at the start, and we start from level 0.

In plainer words: each single-entry loop is indexed by ik where k is the number of other
single-entry loops containing this one, and all cost labels under the scope of a single-entry
loop indexed by ik are indexed by all indices i0, . . . , ik, without any transformation.

4.2 Indexed labels and loop transformations

We define the reindexing I ◦ (ik 7→ a ∗ ik + b) as an operator on indexings by setting:

(i0 7→ e0, . . . , ik 7→ ek, . . . , in 7→ en) ◦ (ik 7→ a ∗ ik + b) :=

i0 7→ e0, . . . , ik 7→ ek ◦ (a ∗ ik + b), . . . , in 7→ en,

We further extend to indexed labels (by α〈I〉 ◦ (ik 7→ e) := α〈I ◦ (ik 7→ e)〉) and also to
statements in ι`Imp (by applying the above transformation to all indexed labels).

We can then redefine loop peeling and loop unrolling, taking into account indexed labels.
It will only be possible to apply the transformation to indexed loops, that is loops that are
single-entry. The attentive reader will notice that no assumptions are made on the labelling
of the statements that are involved. In particular the transformation can be repeated and
composed at will. Also, note that after erasing all labelling information (i.e. indexed cost
labels and loop indices) we recover exactly the same transformations presented in 2.

Indexed loop peeling

ik : while b do S 7→ if b then S ◦ (ik 7→ 0); ik : while b do S[`′i/`i] ◦ (ik 7→ ik + 1)

As can be expected, the peeled iteration of the loop gets reindexed, always being the first
iteration of the loop, while the iterations of the remaining loop are shifted by 1. Notice
that this transformation can lower the actual depth of some loops, however their index is left
untouched.

Indexed loop unrolling

ik : while b do S7→

ik : while b do
(S ◦ (ik 7→ n ∗ ik);
if b then

(S[`1i /`i] ◦ (ik 7→ n ∗ ik + 1);
...
if b then
S[`ni /`i] ◦ (ik 7→ n ∗ ik + n− 1)) · · ·)

Again, the reindexing is as expected: each copy of the unrolled body has its indices remapped
so that when they are executed, the original iteration of the loop to which they correspond
can be recovered.

8

4.3 Semantics and compilation of indexed labels

In order to make sense of loop indices, one must keep track of their values in the state. A
constant indexing (metavariables C, . . .) is an indexing which employs only constant simple
expressions. The evaluation of an indexing I in a constant indexing C, noted I|C , is defined
by:

I ◦ (i0 7→ c0, . . . , ik−1 7→ ck−1) := α ◦ (i0 7→ c0) ◦ · · · ◦ (ik−1 7→ ck−1)

Here, we are using the definition of − ◦ − given in 4.1. We consider the above defined only if
the the resulting indexing is a constant one too8. The definition is extended to indexed labels
by α〈I〉|C := α〈I|C〉.

Constant indexings will be used to keep track of the exact iterations of the original code
that the emitted labels belong to. We thus define two basic actions to update constant
indexings: C[ik↑] increments the value of ik by one, and C[ik↓0] resets it to 0.

We are ready to update the definition of the operational semantics of indexed labelled Imp.
The emitted cost labels will now be ones indexed by constant indexings. We add a special
indexed loop construct for continuations that keeps track of active indexed loop indices:

K, . . . ::= · · · |ik : while b do S then K

The difference between the regular stack concatenation ik : while b do S · K and the new
constructor is that the latter indicates the loop is the active one in which we already are, while
the former is a loop that still needs to be started9. The find function is updated accordingly
with the case

find(`, ik : while b do S,K) := find(`, S, ik : while b do S then K)

The state will now be a 4-tuple (S,K, s, C) which adds a constant indexing to the triple of the
regular semantics. The small-step rules for all statements remain the same, without touching
the C parameter (in particular unindexed loops behave the same as usual), apart from the
ones regarding cost-labels and indexed loops. The remaining cases are:

(α : S,K, s, C)
α|C→ P (S,K, s, C)

(ik : while b do S,K,C)
ε→P

(S, ik : while b do S then K, s,C[ik↓0])

if (b, s) ⇓ v 6= 0,

(skip, K, s, C) otherwise

(skip, ik : while b do S then K,C)
ε→P

(S, ik : while b do S then K, s,C[ik↑])

if (b, s) ⇓ v 6= 0,

(skip, K, s, C) otherwise

Some explanations are in order:

• Emitting a label always instantiates it with the current indexing.

• Hitting an indexed loop the first time initializes the corresponding index to 0; continuing
the same loop increments the index as expected.

8For example (i0 7→ 2 ∗ i0, i1 7→ i1 + 1)|i0 7→2 is undefined, but (i0 7→ 2 ∗ i0, i1 7→ 0)|i0 7→2 = i0 7→ 4, i1 7→ 2, is
indeed a constant indexing, even if the domain of the original indexing is not covered by the constant one.

9In the presence of continue and break statements active loops need to be kept track of in any case.

9

• The find function ignores the current indexing: this is correct under the assumption that
all indexed loops are single entry, so that when we land inside an indexed loop with a
goto, we are sure that its current index is right.

• The starting state with store s for a program P is (P, halt, s, (i0 7→ 0, . . . , in−1 7→ 0)
where i0, . . . , in−1 cover all loop indices of P 10.

Compilation Further down the compilation chain the loop structure is usually partially
or completely lost. We cannot rely on it anymore to keep track of the original source code
iterations. We therefore add, alongside the emit instruction, two other sequential instructions
indreset k and indinc k whose sole effect is to reset to 0 (resp. increment by 1) the loop index
ik, as kept track of in a constant indexing accompanying the state.

The first step of compilation from ι`Imp consists of prefixing the translation of an indexed
loop ik : while b do S with indreset k and postfixing the translation of its body S with indinc k.
Later in the compilation chain we must propagate the instructions dealing with cost labels.

We would like to stress the fact that this machinery is only needed to give a suitable
semantics of observables on which preservation proofs can be done. By no means are the
added instructions and the constant indexing in the state meant to change the actual (let us
say denotational) semantics of the programs. In this regard the two new instruction have a
similar role as the emit one. A forgetful mapping of everything (syntax, states, operational
semantics rules) can be defined erasing all occurrences of cost labels and loop indices, and the
result will always be a regular version of the language considered.

Stating the preservation of semantics In fact, the statement of preservation of semantics
does not change at all, if not for considering traces of evaluated indexed cost labels rather
than traces of plain ones.

4.4 Dependent costs in the source code

The task of producing dependent costs from constant costs induced by indexed labels is quite
technical. Before presenting it here, we would like to point out that the annotations produced
by the procedure described in this Subsection, even if correct, can be enormous and unreadable.
In Section 5, where we detail the actual implementation, we will also sketch how we mitigated
this problem.

Having the result of compiling the indexed labelling Lι(P) of an Imp program P , we may
still suppose that a cost mapping can be computed, but from indexed labels to naturals. We
want to annotate the source code, so we need a way to express and compute the costs of cost
labels, i.e. group the costs of indexed labels to ones of their atoms. In order to do so we
introduce dependent costs. Let us suppose that for the sole purpose of annotation, we have
available in the language ternary expressions of the form

e ? f1 : f2,

and that we have access to common operators on integers such as equality, order and modulus.

10For a program which is the indexed labelling of an Imp one this corresponds to the maximum nesting of
single-entry loops. We can also avoid computing this value in advance if we define C[i↓0] to extend C’s domain
as needed, so that the starting constant indexing can be the empty one.

10

Simple conditions First, we need to shift from transformations of loop indices to conditions
on them. We identify a set of conditions on natural numbers which are able to express the
image of any composition of simple expressions. Simple conditions are of three possible forms:

• Equality ik = n for some natural n.

• Inequality ik ≥ n for some natural n.

• Modular equality together with inequality ik mod a = b ∧ ik ≥ n for naturals a, b, n.

The ‘always true’ simple condition is given by ik ≥ 0. We write ik mod a = b as a simple
condition for ik mod a = b ∧ ik ≥ 0.

Given a simple condition p and a constant indexing C we can easily define when p holds
for C (written p ◦C). A dependent cost expression is an expression built solely out of integer
constants and ternary expressions with simple conditions at their head. Given a dependent
cost expression e where all of the loop indices appearing in it are in the domain of a constant
indexing C, we can define the value e ◦ C ∈ N by:

n ◦ C := n, (p ? e : f) ◦ C :=

{
e ◦ C if p ◦ C,

f ◦ C otherwise.

From indexed costs to dependent ones Every simple expression e corresponds to a
simple condition p(e) which expresses the set of values that e can take. Following is the
definition of such a relation. We recall that in this development, loop indices are always
mapped to simple expressions over the same index. If it was not the case, the condition
obtained from an expression should be on the mapped index, not the indeterminate of the
simple expression. We leave all generalisations of what we present here for further work:

p(a ∗ ik + b) :=

ik = b if a = 0,

ik ≥ b if a = 1,

ik mod a = b′ ∧ ik ≥ b otherwise, where b′ = b mod a.

Now, suppose we are given a mapping κ from indexed labels to natural numbers. We will
transform it in a mapping (identified, via abuse of notation, with the same symbol κ) from
atoms to Imp expressions built with ternary expressions which depend solely on loop indices.
To that end we define an auxiliary function καL, parameterized by atoms and words of simple
expressions, and defined on sets of n-uples of simple expressions (with n constant across each
such set, i.e. each set is made of words all with the same length).

We will employ a bijection between words of simple expressions and indexings, given by:11

i0 7→ e0, . . . , ik−1 7→ ek−1 ∼= e0 · · · ek−1.

As usual, ε denotes the empty word/indexing, and juxtaposition is used to denote word
concatenation.

For every set s of n-uples of simple expressions, we are in one of the following three exclusive
cases:

11Lists of simple expressions are in fact how indexings are -represented in CerCo’s current implementation
of the compiler.

11

• S = ∅.

• S = {ε}.

• There is a simple expression e such that S can be decomposed in eS′ + S′′, with S′ 6= ∅
and none of the words in S′′ starting with e.

Here eS′ denotes prepending e to all elements of S′ and + is disjoint union. This classification
can serve as the basis of a definition by recursion on n+]S where n is the size of tuples in S
and]S is its cardinality. Indeed in the third case in S′ the size of tuples decreases strictly (and
cardinality does not increase) while for S′′ the size of tuples remains the same but cardinality
strictly decreases. The expression e of the third case will be chosen as minimal for some total
order12.

Following is the definition of the auxiliary function καL, which follows the recursion scheme
presented above:

καL(∅) := 0

καL({ε}) := κ(α〈L〉)
καL(eS′ + S′′) := p(e) ? καLe(S

′) : καL(S′′)

Finally, the wanted dependent cost mapping is defined by

κ(α) := καε ({L | α〈L〉 appears in the compiled code })

Indexed instrumentation The indexed instrumentation generalises the instrumentation
presented in 3. We described above how cost atoms can be mapped to dependent costs. The
instrumentation must also insert code dealing with the loop indices. As instrumentation is
done on the code produced by the labelling phase, all cost labels are indexed by identity
indexings. The relevant cases of the recursive definition (supposing c is the cost variable) are
then:

Iι(α〈Idk〉 : S) = c := c+ κ(α); Iι(S)

Iι(ik : while b do S) = ik := 0; while b do (Iι(S); ik := ik + 1)

4.5 A detailed example

Take the program in Figure 2. Its initial labelling will be:

α〈〉 : s := 0;
i := 0;
i0 : while i < n do

β〈i0〉 : p := 1;
j := 1;
i1 : while j ≤ i do

γ〈i0, i1〉 : p := j ∗ p
j := j + 1;

δ〈i0〉 : s := s+ p;
i := i+ 1;

ε〈〉 : skip

12The specific order used does not change the correctness of the procedure, but different orders can give more
or less readable results. A “good” order is the lexicographic one, with a ∗ ik + b ≤ a′ ∗ ik + b′ if a < a′ or a = a′

and b ≤ b′.

12

(a single skip after the δ label has been suppressed, and we are using the identification between
indexings and tuples of simple expressions explained in subsection 4.4). Supposing for example,
n = 3 the trace of the program will be

α〈〉β〈0〉 δ〈0〉β〈1〉 γ〈1, 0〉 δ〈1〉β〈2〉 γ〈2, 0〉 γ〈2, 1〉 δ〈2〉 ε〈〉

Now let as apply the transformations of Figure 2 with the additional information detailed in
subsection 4.2. The result is shown in Figure 3. One can check that the transformed code
leaves the same trace when executed.

Now let us compute the dependent cost of γ, supposing no other loop transformations are
done. Ordering its indexings we have the following list:

0, i1

2 ∗ i0 + 1, 0

2 ∗ i0 + 1, 1

2 ∗ i0 + 1, 2 ∗ i1 + 2

2 ∗ i0 + 1, 2 ∗ i1 + 3

2 ∗ i0 + 2, 2 ∗ i1
2 ∗ i0 + 2, 2 ∗ i1 + 1

(1)

The resulting dependent cost will then be

κι(γ) = (i0 = 0) ?
(i1 ≥ 0) ? a : 0 :
(i0 mod 2 = 1 ∧ i0 ≥ 1) ?

(i1 = 0) ?
b :
(i1 = 1) ?

c :
(i1 mod 2 = 0 ∧ i1 ≥ 2) ?

d :
(i1 mod 2 = 1 ∧ i1 ≥ 3) ? e : 0

:

(i0 mod 2 = 0 ∧ i0 ≥ 2) ?
(i1 mod 2 = 0 ∧ i1 ≥ 0) ?

f :
(i1 mod 2 = 1 ∧ i1 ≥ 1) ? g : 0

:

0

(2)

We will see later on page 15 how such an expression can be simplified.

5 Notes on the implementation and further work

Implementing the indexed label approach in CerCo’s untrusted Ocaml prototype does not
introduce many new challenges beyond what has already been presented for the toy language,
Imp with gotos. Clight, the C fragment source language of CerCo’s compilation chain [3], has
several more fetaures, but few demand changes in the indexed labelled approach.

13

Indexed loops vs. index update instructions In our presentation we have indexed loops
in ι`Imp, while we hinted that later languages in the compilation chain would have specific
index update instructions. In CerCo’s actual compilation chain from Clight to 8051 assembly,
indexed loops are only in Clight, while from Cminor onward all languages have the same three
cost-involving instructions: label emitting, index resetting and index incrementing.

Loop transformations in the front end We decided to implement the two loop transfor-
mations in the front end, namely in Clight. This decision is due to user readability concerns:
if costs are to be presented to the programmer, they should depend on structures written by
the programmer himself. If loop transformation were performed later it would be harder to
create a correspondence between loops in the control flow graph and actual loops written in
the source code. However, another solution would be to index loops in the source code and
then use these indices later in the compilation chain to pinpoint explicit loops of the source
code: loop indices can be used to preserve such information, just like cost labels.

Break and continue statements Clight’s loop flow control statements for breaking and
continuing a loop are equivalent to appropriate goto statements. The only difference is that we
are assured that they cannot cause loops to be multi-entry, and that when a transformation
such as loop peeling is complete, they need to be replaced by actual gotos (which happens
further down the compilation chain anyway).

Function calls Every internal function definition has its own space of loop indices. Exe-
cutable semantics must thus take into account saving and resetting the constant indexing of
current loops upon hitting a function call, and restoring it upon return of control. A pecu-
liarity is that this cannot be attached to actions that save and restore frames: namely in the
case of tail calls the constant indexing needs to be saved whereas the frame does not.

Cost-labelled expressions In labelled Clight, expressions also get cost labels, due to the
presence of ternary conditional expressions (and lazy logical operators, which get translated to
ternary expressions too). Adapting the indexed labelled approach to cost-labelled expressions
does not pose any particular problems.

Simplification of dependent costs As previously mentioned, the näıve application of the
procedure described in 4.4 produces unwieldy cost annotations. In our implementation several
transformations are used to simplify such complex dependent costs.

Disjunctions of simple conditions are closed under all logical operations, and it can be
computed whether such a disjunction implies a simple condition or its negation. This can
be used to eliminate useless branches of dependent costs, to merge branches that share the
same value, and possibly to simplify the third case of simple condition. Examples of the three
transformations are respectively:

• (_i_0 == 0)?x:(_i_0 >= 1)?y:z 7→ (_i_0 == 0)?x:y,

• c?x:(d?x:y) 7→ (c || d)?x:y,

• (_i_0 == 0)?x:(_i_0 % 2 == 0 && _i_0 >= 2)?y:z 7→
(_i_0 == 0)?x:(_i_0 % 2 == 0)?y:z.

14

The second transformation tends to accumulate disjunctions, to the detriment of readability.
A further transformation swaps two branches of the ternary expression if the negation of the
condition can be expressed with fewer clauses. For example:

(_i_0 % 3 == 0 || _i_0 % 3 == 1)?x:y 7→ (_i_0 % 3 == 2)?y:x.

Picking up again the example depicted in subsection 4.5, we can see that the cost in (2) can
be simplified to the following, using some of the transformation described above:

κι(γ) = (i0 = 0) ?
a :
(i0 mod 2 = 1) ?

(i1 = 0) ?
b :
(i1 = 1) ?

c :
(i1 mod 2 = 0) ?

d :
e

:

(i1 mod 2 = 0) ?
f :
g

One should keep in mind that the example was wilfully complicated, in practice the cost
expressions produced have rarely more clauses than the number of nested loops containing the
annotation.

Updates to the frama-C cost plugin Cerco’s frama-C [2] cost plugin has been updated
to take into account our new notion of dependent costs. The frama-c framework expands
ternary expressions to branch statements, introducing temporaries along the way. This makes
the task of analyzing ternary cost expressions rather daunting. It was deemed necessary to
provide an option in the compiler to use actual branch statements for cost annotations rather
than ternary expressions, so that at least frama-C’s use of temporaries in cost annotation
could be avoided. The cost analysis carried out by the plugin now takes into account such
dependent costs.

The only limitation (which actually simplifies the code) is that, within a dependent cost,
simple conditions with modulus on the same loop index should not be modulo different num-
bers. This corresponds to a reasonable limitation on the number of times loop unrolling may
be applied to the same loop: at most once.

Further work For the time being, indexed labels are only implemented in the untrusted
Ocaml compiler, while they are not present yet in the Matita code. Porting them should pose
no significant problem. Once ported, the task of proving properties about them in Matita can
begin.

Because most of the executable operational semantics of the languages across the frontend
and the backend are oblivious to cost labels, it should be expected that the bulk of the
semantic preservation proofs that still needs to be done will not get any harder because of

15

indexed labels. The only trickier point that we foresee would be in the translation of Clight to
Cminor, where we pass from structured indexed loops to atomic instructions on loop indices.

An invariant which should probably be proved and provably preserved along the compila-
tion chain is the non-overlap of indexings for the same atom. Then, supposing cost correctness
for the unindexed approach, the indexed one will just need to amend the proof that

∀C constant indexing.∀α〈I〉 appearing in the compiled code.κ(α) ◦ (I ◦ C) = κ(α〈I〉).

Here, C represents a snapshot of loop indices in the compiled code, while I ◦ C is the cor-
responding snapshot in the source code. Semantics preservation will ensure that when, with
snapshot C, we emit α〈I〉 (that is, we have α〈I ◦ C〉 in the trace), α must also be emitted in
the source code with indexing I ◦ C, so the cost κ(α) ◦ (I ◦ C) applies.

Aside from carrying over the proofs, we would like to extend the approach to more loop
transformations. Important examples are loop inversion (where a for loop is reversed, usually
to make iterations appear to be truly independent) or loop interchange (where two nested
loops are swapped, usually to have more loop invariants or to enhance strength reduction).
This introduces interesting changes to the approach, where we would have indexings such as:

i0 7→ n− i0 or i0 7→ i1, i1 7→ i0.

In particular dependency over actual variables of the code would enter the frame, as indexings
would depend on the number of iterations of a well-behaving guarded loop (the n in the first
example).

Finally, as stated in the introduction, the approach should allow some integration of tech-
niques for cache analysis, a possibility that for now has been put aside as the standard 8051
target architecture for the CerCo project lacks a cache. Two possible developments for this
line of work present themselves:

1. One could extend the development to some 8051 variants, of which some have been
produced with a cache.

2. One could make the compiler implement its own cache: this cannot apply to ram ac-
cesses of the standard 8051 architecture, as the difference in cost of accessing the two
types of ram is only one clock cycle, which makes any implementation of cache counter-
productive. So for this proposal, we could either artificially change the accessing cost of
ram of the model just for the sake of possible future adaptations to other architectures,
or otherwise model access to an external memory by means of the serial port.

References

[1] Absint angewandte informatik. http://www.absint.com/.

[2] Frama-c software analyzers. http://frama-c.com/.

[3] R. M. Amadio, N. Ayache, Y. Régis-Gianas, and R. Saillard. Certifying cost annotations in
compilers. Deliverable 2.1 of Project FP7-ICT-2009-C-243881 CerCo, Available at http:

//hal.archives-ouvertes.fr/hal-00524715.

[4] R. M. Amadio, N. Ayache, Y. Régis-Gianas, and R. Saillard. Prototype implementation.
Deliverable 2.2 of Project FP7-ICT-2009-C-243881 CerCo, Available at http://cerco.

cs.unibo.it/.

16

http://www.absint.com/
http://frama-c.com/
http://hal.archives-ouvertes.fr/hal-00524715
http://hal.archives-ouvertes.fr/hal-00524715
http://cerco.cs.unibo.it/
http://cerco.cs.unibo.it/

[5] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for real-
timesystems. Real-Time Syst., 17:131–181, December 1999.

[6] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Commun. ACM, 22:96–103, February 1979.

[7] R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

[8] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

17

Syntax
`, . . . (labels) x, y, . . . (identifiers) e, f, . . . (expression)
P, S, T, . . . ::= skip | s; t | if e then s else t | while e do s | x := e

| ` : s | goto `
(statements)

Semantics
K, . . . ::= halt | S ·K (continuations)

find(`, S,K) :=

⊥ if S = skip, goto `′ or x := e,
(T,K) if S = ` : T ,
find(`, T,K) otherwise, if S = `′ : T ,
find(`, T1, T2 ·K) if defined and S = T1;T2,
find(`, T1,K) if defined and S = if b then T1 else T2,
find(`, T2,K) otherwise, if S = T1;T2 or if b then T1 else T2,
find(`, T, S ·K) if S = while b do T .

(x := e,K, s) →P (skip,K, s[v/x]) if (e, s) ⇓ v

(S;T,K, s) →P (S, T ·K, s)

(if b then S else T,K, s)→P

{
(S,K, s) if (b, s) ⇓ v 6= 0
(T,K, s) if (b, s) ⇓ 0

(while b do S,K, s) →P

{
(S,while b do S ·K, s) if (b, s) ⇓ v 6= 0
(skip,K, s) if (b, s) ⇓ 0

(skip, S ·K, s) →P (S,K, s)

(` : S,K, s) →P (S,K, s)

(goto `,K, s) →P (find(`, P, halt), s)

Figure 1: The syntax and operational semantics of Imp.

18

s := 0;
i := 0;
while i < n do

p := 1;
j := 1;
while j ≤ i do

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;

7→

s := 0;
i := 0;
if i < n then

p := 1;
j := 1;
while j ≤ i do

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;
while i < n do

p := 1;
j := 1;
if j ≤ i then

p := j ∗ p
j := j + 1;
if j ≤ i then

p := j ∗ p
j := j + 1;
while j ≤ i do

p := j ∗ p
j := j + 1;
if j ≤ i then

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;
if i < n then

p := 1;
j := 1;
while j < i do

p := j ∗ p
j := j + 1;
if j < i then

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;

p
eeled

u
n
rolled

u
n
rolled

u
n
rolled

p
eeled

Figure 2: An example of loop transformations done on an Imp program. Parentheses are
omitted in favour of blocks by indentation.

19

α〈〉 : s := 0;
i := 0;
if i < n then

β〈0〉 : p := 1;
j := 1;
i1 : while j ≤ i do

γ〈0, i1〉 : p := j ∗ p
j := j + 1;

δ〈0〉 : s := s+ p;
i := i+ 1;
i0 : while i < n do

β〈2 ∗ i0 + 1〉 : p := 1;
j := 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 0〉 : p := j ∗ p
j := j + 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 1〉 : p := j ∗ p
j := j + 1;
i1 : while j ≤ i do

γ〈2 ∗ i0 + 1, 2 ∗ i1 + 2〉 : p := j ∗ p
j := j + 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 2 ∗ i1 + 3〉 : p := j ∗ p
j := j + 1;

δ〈2 ∗ i0 + 1〉 : s := s+ p;
i := i+ 1;
if i < n then

β〈2 ∗ i0 + 2〉 : p := 1;
j := 1;
i1 : while j < i do

γ〈2 ∗ i0 + 2, 2 ∗ i1〉 : p := j ∗ p
j := j + 1;
if j < i then

γ〈2 ∗ i0 + 2, 2 ∗ i1 + 1〉 : p := j ∗ p
j := j + 1;

δ〈2 ∗ i0 + 2〉 : s := s+ p;
i := i+ 1;

ε〈〉 : skip

Figure 3: The result of applying reindexing loop transformations on the program in Figure 2.

20

	Introduction
	Imp with goto
	Loop transformations

	Labelling: a quick sketch of the previous approach
	Indexed labels
	Indexing the cost labels
	Indexed labels and loop transformations
	Semantics and compilation of indexed labels
	Dependent costs in the source code
	A detailed example

	Notes on the implementation and further work

