
On the correctness of a branch displacement
algorithm?

Jaap Boender and Claudio Sacerdoti Coen

Dipartimento di Scienze dell’Informazione,
Università degli Studi di Bologna

Abstract The branch displacement problem is a well-known problem
in assembler design. It revolves around the feature, present in several
processor families, of having different instructions, of different sizes, for
jumps of different displacements. The problem, which is provably NP-
hard, is then to select the instructions such that one ends up with the
smallest possible program.
During our research with the CerCo project on formally verifying a C
compiler, we have implemented and proven correct an algorithm for this
problem. In this paper, we discuss the problem, possible solutions, our
specific solutions and the proofs.

Keywords: formal verification, assembler, branch displacement optim-
isation

1 Introduction

The problem of branch displacement optimisation, also known as jump encoding,
is a well-known problem in assembler design [4]. It is caused by the fact that in
many architecture sets, the encoding (and therefore size) of some instructions
depends on the distance to their operand (the instruction ’span’). The branch
displacement optimisation problem consists of encoding these span-dependent
instructions in such a way that the resulting program is as small as possible.

This problem is the subject of the present paper. After introducing the prob-
lem in more detail, we will discuss the solutions used by other compilers, present
the algorithm we use in the CerCo assembler, and discuss its verification, that
is the proofs of termination and correctness using the Matita proof assistant [1].

The research presented in this paper has been executed within the CerCo
project which aims at formally verifying a C compiler with cost annotations. The
target architecture for this project is the MCS-51, whose instruction set contains
span-dependent instructions. Furthermore, its maximum addressable memory
size is very small (64 Kb), which makes it important to generate programs that
are as small as possible.

? Research supported by the CerCo project, within the Future and Emerging Techno-
logies (FET) programme of the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number 243881

With this optimisation, however, comes increased complexity and hence in-
creased possibility for error. We must make sure that the branch instructions are
encoded correctly, otherwise the assembled program will behave unpredictably.

2 The branch displacement optimisation problem

In most modern instruction sets that have them, the only span-dependent in-
structions are branch instructions. Taking the ubiquitous x86-64 instruction set
as an example, we find that it contains eleven different forms of the unconditional
branch instruction, all with different ranges, instruction sizes and semantics (only
six are valid in 64-bit mode, for example). Some examples are shown in Figure 1.

Instruction Size (bytes) Displacement range

Short jump 2 -128 to 127 bytes
Relative near jump 5 −232 to 232 − 1 bytes
Absolute near jump 6 one segment (64-bit address)
Far jump 8 entire memory

Figure 1. List of x86 branch instructions

The chosen target architecture of the CerCo project is the Intel MCS-51,
which features three types of branch instructions (or jump instructions; the two
terms are used interchangeably), as shown in Figure 2.

Instruction Size Execution time Displacement range
(bytes) (cycles)

SJMP (‘short jump’) 2 2 -128 to 127 bytes
AJMP (‘absolute jump’) 2 2 one segment (11-bit address)
LJMP (‘long jump’) 3 3 entire memory

Figure 2. List of MCS-51 branch instructions

Conditional branch instructions are only available in short form, which means
that a conditional branch outside the short address range has to be encoded using
three branch instructions (for instructions whose logical negation is available, it
can be done with two branch instructions, but for some instructions this is not
available); the call instruction is only available in absolute and long forms.

Note that even though the MCS-51 architecture is much less advanced and
simpler than the x86-64 architecture, the basic types of branch instruction re-
main the same: a short jump with a limited range, an intra-segment jump and
a jump that can reach the entire available memory.

Generally, in code fed to the assembler as input, the only difference between
branch instructions is semantics, not span. This means that a distinction is made
between an unconditional branch and the several kinds of conditional branch,
but not between their short, absolute or long variants.

The algorithm used by the assembler to encode these branch instructions into
the different machine instructions is known as the branch displacement algorithm.
The optimisation problem consists of finding as small an encoding as possible,
thus minimising program length and execution time.

This problem is known to be NP-complete [8,11], which could make finding
an optimal solution very time-consuming.

The canonical solution, as shown by Szymanski [11] or more recently by
Dickson [2] for the x86 instruction set, is to use a fixed point algorithm that
starts with the shortest possible encoding (all branch instruction encoded as
short jumps, which is likely not a correct solution) and then iterates over the
program to re-encode those branch instructions whose target is outside their
range.

Adding absolute jumps

In both papers mentioned above, the encoding of a jump is only dependent on
the distance between the jump and its target: below a certain value a short jump
can be used; above this value the jump must be encoded as a long jump.

Here, termination of the smallest fixed point algorithm is easy to prove. All
branch instructions start out encoded as short jumps, which means that the
distance between any branch instruction and its target is as short as possible.
If, in this situation, there is a branch instruction b whose span is not within the
range for a short jump, we can be sure that we can never reach a situation where
the span of j is so small that it can be encoded as a short jump. This argument
continues to hold throughout the subsequent iterations of the algorithm: short
jumps can change into long jumps, but not vice versa, as spans only increase.
Hence, the algorithm either terminates early when a fixed point is reached or
when all short jumps have been changed into long jumps.

Also, we can be certain that we have reached an optimal solution: a short
jump is only changed into a long jump if it is absolutely necessary.

However, neither of these claims (termination nor optimality) hold when we
add the absolute jump, as with absolute jumps, the encoding of a branch in-
struction no longer depends only on the distance between the branch instruction
and its target: in order for an absolute jump to be possible, they need to be in
the same segment (for the MCS-51, this means that the first 5 bytes of their
addresses have to be equal). It is therefore entirely possible for two branch in-
structions with the same span to be encoded in different ways (absolute if the
branch instruction and its target are in the same segment, long if this is not the
case).

This invalidates our earlier termination argument: a branch instruction, once
encoded as a long jump, can be re-encoded during a later iteration as an absolute
jump. Consider the program shown in Figure 3. At the start of the first iteration,

jmp X
...

L0:
...

jmp L0

Figure 3. Example of a program where a long jump becomes absolute

both the branch to X and the branch to L0 are encoded as small jumps. Let us
assume that in this case, the placement of L0 and the branch to it are such that
L0 is just outside the segment that contains this branch. Let us also assume
that the distance between L0 and the branch to it are too large for the branch
instruction to be encoded as a short jump.

All this means that in the second iteration, the branch to L0 will be encoded
as a long jump. If we assume that the branch to X is encoded as a long jump as
well, the size of the branch instruction will increase and L0 will be ‘propelled’ into
the same segment as its branch instruction, because every subsequent instruction
will move one byte forward. Hence, in the third iteration, the branch to L0 can
be encoded as an absolute jump. At first glance, there is nothing that prevents
us from constructing a configuration where two branch instructions interact in
such a way as to iterate indefinitely between long and absolute encodings.

This situation mirrors the explanation by Szymanski [11] of why the branch
displacement optimisation problem is NP-complete. In this explanation, a condi-
tion for NP-completeness is the fact that programs be allowed to contain patho-
logical jumps. These are branch instructions that can normally not be encoded
as a short(er) jump, but gain this property when some other branch instructions
are encoded as a long(er) jump. This is exactly what happens in Figure 3. By
encoding the first branch instruction as a long jump, another branch instruction
switches from long to absolute (which is shorter).

In addition, our previous optimality argument no longer holds. Consider the
program shown in Figure 4. Suppose that the distance between L0 and L1 is such
that if jmp X is encoded as a short jump, there is a segment border just after L1.
Let us also assume that the three branches to L1 are all in the same segment,
but far enough away from L1 that they cannot be encoded as short jumps.

Then, if jmp X were to be encoded as a short jump, which is clearly possible,
all of the branches to L1 would have to be encoded as long jumps. However,
if jmp X were to be encoded as a long jump, and therefore increase in size, L1
would be ‘propelled’ across the segment border, so that the three branches to L1
could be encoded as absolute jumps. Depending on the relative sizes of long and
absolute jumps, this solution might actually be smaller than the one reached by
the smallest fixed point algorithm.

L0: jmp X

X:
...

L1:
...

jmp L1
...

jmp L1
...

jmp L1
...

Figure 4. Example of a program where the fixed-point algorithm is not optimal

3 Our algorithm

3.1 Design decisions

Given the NP-completeness of the problem, to arrive at an optimal solution
(using, for example, a constraint solver) will potentially take a great amount of
time.

The SDCC compiler [9], which has a backend targetting the MCS-51 instruc-
tion set, simply encodes every branch instruction as a long jump without taking
the distance into account. While certainly correct (the long jump can reach any
destination in memory) and a very fast solution to compute, it results in a less
than optimal solution.

On the other hand, the gcc compiler suite [3], while compiling C on the x86
architecture, uses a greatest fix point algorithm. In other words, it starts with
all branch instructions encoded as the largest jumps available, and then tries to
reduce the size of branch instructions as much as possible.

Such an algorithm has the advantage that any intermediate result it returns is
correct: the solution where every branch instruction is encoded as a large jump is
always possible, and the algorithm only reduces those branch instructions whose
destination address is in range for a shorter jump. The algorithm can thus be
stopped after a determined number of steps without sacrificing correctness.

The result, however, is not necessarily optimal. Even if the algorithm is run
until it terminates naturally, the fixed point reached is the greatest fixed point,
not the least fixed point. Furthermore, gcc (at least for the x86 architecture)
only uses short and long jumps. This makes the algorithm more efficient, as
shown in the previous section, but also results in a less optimal solution.

In the CerCo assembler, we opted at first for a least fixed point algorithm,
taking absolute jumps into account.

Here, we ran into a problem with proving termination, as explained in the
previous section: if we only take short and long jumps into account, the jump
encoding can only switch from short to long, but never in the other direction.
When we add absolute jumps, however, it is theoretically possible for a branch
instruction to switch from absolute to long and back, as previously explained.

Proving termination then becomes difficult, because there is nothing that
precludes a branch instruction from oscillating back and forth between absolute
and long jumps indefinitely.

In order to keep the algorithm in the same complexity class and more easily
prove termination, we decided to explicitly enforce the ‘branch instructions must
always grow longer’ requirement: if a branch instruction is encoded as a long
jump in one iteration, it will also be encoded as a long jump in all the following
iterations. This means that the encoding of any branch instruction can change
at most two times: once from short to absolute (or long), and once from absolute
to long.

There is one complicating factor. Suppose that a branch instruction is en-
coded in step n as an absolute jump, but in step n + 1 it is determined that
(because of changes elsewhere) it can now be encoded as a short jump. Due
to the requirement that the branch instructions must always grow longer, this
means that the branch encoding will be encoded as an absolute jump in step
n+ 1 as well.

This is not necessarily correct. A branch instruction that can be encoded as
a short jump cannot always also be encoded as an absolute jump, as a short
jump can bridge segments, whereas an absolute jump cannot. Therefore, in this
situation we have decided to encode the branch instruction as a long jump, which
is always correct.

The resulting algorithm, while not optimal, is at least as good as the ones
from SDCC and gcc, and potentially better. Its complexity remains the same
(there are at most 2n iterations, where n is the number of branch instructions
in the program).

3.2 The algorithm in detail

The branch displacement algorithm forms part of the translation from pseudo-
code to assembler. More specifically, it is used by the function that translates
pseudo-addresses (natural numbers indicating the position of the instruction in
the program) to actual addresses in memory.

Our original intention was to have two different functions, one function
policy : N → {short jump, absolute jump, long jump} to associate jumps to
their intended encoding, and a function σ : N → Word to associate pseudo-
addresses to machine addresses. σ would use policy to determine the size of
jump instructions.

This turned out to be suboptimal from the algorithmic point of view and
impossible to prove correct.

From the algorithmic point of view, in order to create the policy function,
we must necessarily have a translation from pseudo-addresses to machine ad-

dresses (i.e. a σ function): in order to judge the distance between a jump and
its destination, we must know their memory locations. Conversely, in order to
create the σ function, we need to have the policy function, otherwise we do not
know the sizes of the jump instructions in the program.

Much the same problem appears when we try to prove the algorithm correct:
the correctness of policy depends on the correctness of σ, and the correctness
of σ depends on the correctness of policy.

We solved this problem by integrating the policy and σ algorithms. We
now have a function σ : N → Word × bool which associates a pseudo-address
to a machine address. The boolean denotes a forced long jump; as noted in the
previous section, if during the fixed point computation an absolute jump changes
to be potentially re-encoded as a short jump, the result is actually a long jump.
It might therefore be the case that jumps are encoded as long jumps without
this actually being necessary, and this information needs to be passed to the
code generating function.

The assembler function encodes the jumps by checking the distance between
source and destination according to σ, so it could select an absolute jump in a
situation where there should be a long jump. The boolean is there to prevent
this from happening by indicating the locations where a long jump should be
encoded, even if a shorter jump is possible. This has no effect on correctness,
since a long jump is applicable in any situation.

function f(labels,old sigma,instr,ppc,acc)
〈added, pc, sigma〉 ← acc
if instr is a backward jump to j then

length← jump size(pc, sigma1(labels(j)))
else if instr is a forward jump to j then

length← jump size(pc, old sigma1(labels(j)) + added)
else

length← short jump

end if
old length← old sigma1(ppc)
new length← max(old length, length)
old size← old sigma2(ppc)
new size← instruction size(instr, new length)
new added← added+ (new size− old size)
new sigma1(ppc+ 1)← pc+ new size
new sigma2(ppc)← new length

return 〈new added, pc+ new size, new sigma〉
end function

Figure 5. The heart of the algorithm

The algorithm, shown in Figure 5, works by folding the function f over the
entire program, thus gradually constructing sigma. This constitutes one step in

the fixed point calculation; successive steps repeat the fold until a fixed point is
reached.

Parameters of the function f are:

– a function labels that associates a label to its pseudo-address;
– old sigma, the σ function returned by the previous iteration of the fixed

point calculation;
– instr, the instruction currently under consideration;
– ppc, the pseudo-address of instr;
– acc, the fold accumulator, which contains pc (the highest memory address

reached so far), added (the number of bytes added to the program size with
respect to the previous iteration), and of course sigma, the σ function under
construction.

The first two are parameters that remain the same through one iteration, the
final three are standard parameters for a fold function (including ppc, which is
simply the number of instructions of the program already processed).

The σ functions used by f are not of the same type as the final σ function:
they are of type σ : N→ N× {short jump, absolute jump, long jump}; a func-
tion that associates a pseudo-address with a memory address and a jump length.
We do this to be able to ease the comparison of jump lengths between iterations.
In the algorithm, we use the notation sigma1(x) to denote the memory address
corresponding to x, and sigma2(x) to denote the jump length corresponding to
x.

Note that the σ function used for label lookup varies depending on whether
the label is behind our current position or ahead of it. For backward branches,
where the label is behind our current position, we can use sigma for lookup,
since its memory address is already known. However, for forward branches, the
memory address of the address of the label is not yet known, so we must use
old sigma.

We cannot use old sigma without change: it might be the case that we have
already increased the size of some branch instructions before, making the pro-
gram longer and moving every instruction forward. We must compensate for this
by adding the size increase of the program to the label’s memory address ac-
cording to old sigma, so that branch instruction spans do not get compromised.

Note also that we add the pc to sigma at location ppc+ 1, whereas we add
the jump length at location ppc. We do this so that sigma(ppc) will always
return a pair with the start address of the instruction at ppc and the length of
its branch instruction (if any); the end address of the program can be found at
sigma(n+ 1), where n is the number of instructions in the program.

4 The proof

In this section, we present the correctness proof for the algorithm in more detail.
The main correctness statement is as follows (slightly simplified, here):

definition sigma_policy_specification :=

λprogram: pseudo_assembly_program.

λsigma: Word → Word.

λpolicy: Word → bool.

sigma (zero . . .) = zero . . . ∧
∀ppc: Word.∀ppc_ok.
let 〈preamble, instr_list〉 := program in

let pc := sigma ppc in

let instruction :=

\fst (fetch_pseudo_instruction instr_list ppc ppc_ok) in

let next_pc := \fst (sigma (add ? ppc (bitvector_of_nat ? 1))) in

(nat_of_bitvector . . . ppc ≤ |instr_list| →
next_pc = add ? pc (bitvector_of_nat . . .
(instruction_size . . . sigma policy ppc instruction)))

∧
((nat_of_bitvector . . . ppc < |instr_list| →
nat_of_bitvector . . . pc < nat_of_bitvector . . . next_pc)
∨ (nat_of_bitvector . . . ppc = |instr_list| → next_pc = (zero . . .))).

Informally, this means that when fetching a pseudo-instruction at ppc, the
translation by σ of ppc+ 1 is the same as σ(ppc) plus the size of the instruction
at ppc. That is, an instruction is placed consecutively after the previous one, and
there are no overlaps.

Instructions are also stocked in order: the memory address of the instruction
at ppc should be smaller than the memory address of the instruction at ppc+ 1.
There is one exeception to this rule: the instruction at the very end of the
program, whose successor address can be zero (this is the case where the program
size is exactly equal to the amount of memory).

Finally, we enforce that the program starts at address 0, i.e. σ(0) = 0.

Since our computation is a least fixed point computation, we must prove ter-
mination in order to prove correctness: if the algorithm is halted after a number
of steps without reaching a fixed point, the solution is not guaranteed to be
correct. More specifically, branch instructions might be encoded which do not
coincide with the span between their location and their destination.

Proof of termination rests on the fact that the encoding of branch instructions
can only grow larger, which means that we must reach a fixed point after at most
2n iterations, with n the number of branch instructions in the program. This
worst case is reached if at every iteration, we change the encoding of exactly one
branch instruction; since the encoding of any branch instructions can change
first from short to absolute and then from absolute to long, there can be at most
2n changes.

The proof has been carried out using the “Russell” style from [10]. We have
proven some invariants of the f function from the previous section; these invari-
ants are then used to prove properties that hold for every iteration of the fixed
point computation; and finally, we can prove some properties of the fixed point.

4.1 Fold invariants

These are the invariants that hold during the fold of f over the program, and
that will later on be used to prove the properties of the iteration.

Note that during the fixed point computation, the σ function is implemen-
ted as a trie for ease of access; computing σ(x) is achieved by looking up the
value of x in the trie. Actually, during the fold, the value we pass along is a pair
N × ppcpcmap. The first component is the number of bytes added to the pro-
gram so far with respect to the previous iteration, and the second component,
ppc pc map, is a pair consisting of the current size of the program and our σ
function.

definition out_of_program_none :=

λprefix:list labelled_instruction.λsigma:ppc_pc_map.
∀i.i < 2^16 → (i > |prefix| ↔
bvt_lookup_opt . . . (bitvector_of_nat ? i) (\snd sigma) = None ?).

This invariant states that any pseudo-address not yet examined is not present
in the lookup trie.

definition not_jump_default :=

λprefix:list labelled_instruction.λsigma:ppc_pc_map.
∀i.i < |prefix| →
¬ is_jump (\snd (nth i ? prefix 〈None ?, Comment []〉)) →
\snd (bvt_lookup . . . (bitvector_of_nat ? i) (\snd sigma)

〈0,short_jump〉) = short_jump.

This invariant states that when we try to look up the jump length of a
pseudo-address where there is no branch instruction, we will get the default
value, a short jump.

definition jump_increase :=

λprefix:list labelled_instruction.λop:ppc_pc_map.λp:ppc_pc_map.
∀i.i ≤ |prefix| →
let 〈opc,oj〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd op) 〈0,short_jump〉 in

let 〈pc,j〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd p) 〈0,short_jump〉 in

jmpleq oj j.

This invariant states that between iterations (with op being the previous
iteration, and p the current one), jump lengths either remain equal or increase.
It is needed for proving termination.

definition sigma_compact_unsafe :=

λprogram:list labelled_instruction.λlabels:label_map.λsigma:ppc_pc_map.
∀n.n < |program| →
match bvt_lookup_opt . . . (bitvector_of_nat ? n) (\snd sigma) with

[None ⇒ False

| Some x ⇒ let 〈pc,j〉 := x in

match bvt_lookup_opt . . . (bitvector_of_nat ? (S n)) (\snd sigma) with

[None ⇒ False

| Some x1 ⇒ let 〈pc1,j1〉 := x1 in

pc1 = pc + instruction_size_jmplen j

(\snd (nth n ? program 〈None ?, Comment []〉)))
]

].

This is a temporary formulation of the main property
(sigma policy specification); its main difference from the final version is
that it uses instruction size jmplen to compute the instruction size. This
function uses j to compute the span of branch instructions (i.e. it uses the σ
function under construction), instead of looking at the distance between source
and destination. This is because σ is still under construction; later on we will
prove that after the final iteration, sigma compact unsafe is equivalent to the
main property.

definition sigma_safe :=

λprefix:list labelled_instruction.λlabels:label_map.λadded:N.
λold_sigma:ppc_pc_map.λsigma:ppc_pc_map.
∀i.i < |prefix| → let 〈pc,j〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd sigma) 〈0,short_jump〉 in

let pc_plus_jmp_length := bitvector_of_nat ? (\fst (bvt_lookup . . .
(bitvector_of_nat ? (S i)) (\snd sigma) 〈0,short_jump〉)) in

let 〈label,instr〉 := nth i ? prefix 〈None ?, Comment []〉 in

∀dest.is_jump_to instr dest →
let paddr := lookup_def . . . labels dest 0 in

let addr := bitvector_of_nat ? (if leb i paddr (* forward jump *)

then \fst (bvt_lookup . . . (bitvector_of_nat ? paddr) (\snd old_sigma)

〈0,short_jump〉) + added

else \fst (bvt_lookup . . . (bitvector_of_nat ? paddr) (\snd sigma)

〈0,short_jump〉)) in

match j with

[short_jump ⇒ ¬is_call instr ∧
\fst (short_jump_cond pc_plus_jmp_length addr) = true

| absolute_jump ⇒ ¬is_relative_jump instr ∧
\fst (absolute_jump_cond pc_plus_jmp_length addr) = true ∧
\fst (short_jump_cond pc_plus_jmp_length addr) = false

| long_jump ⇒ \fst (short_jump_cond pc_plus_jmp_length addr) = false

∧ \fst (absolute_jump_cond pc_plus_jmp_length addr) = false

].

This is a more direct safety property: it states that branch instructions are
encoded properly, and that no wrong branch instructions are chosen.

Note that we compute the distance using the memory address of the instruc-
tion plus its size: this follows the behaviour of the MCS-51 microprocessor, which
increases the program counter directly after fetching, and only then executes the
branch instruction (by changing the program counter again).

\fst (bvt_lookup . . . (bitvector_of_nat ? 0) (\snd policy)

〈0,short_jump〉) = 0)

\fst policy = \fst (bvt_lookup . . .
(bitvector_of_nat ? (|prefix|)) (\snd policy) 〈0,short_jump〉)

These two properties give the values of σ for the start and end of the program;
σ(0) = 0 and σ(n), where n is the number of instructions up until now, is equal
to the maximum memory address so far.

(added = 0 → policy_pc_equal prefix old_sigma policy))

(policy_jump_equal prefix old_sigma policy → added = 0))

And finally, two properties that deal with what happens when the previous
iteration does not change with respect to the current one. added is a variable
that keeps track of the number of bytes we have added to the program size by
changing the encoding of branch instructions. If added is 0, the program has not
changed and vice versa.

We need to use two different formulations, because the fact that added is 0
does not guarantee that no branch instructions have changed. For instance, it is
possible that we have replaced a short jump with an absolute jump, which does
not change the size of the branch instruction.

Therefore policy pc equal states that old sigma1(x) = sigma1(x), whereas
policy jump equal states that old sigma2(x) = sigma2(x). This formulation is
sufficient to prove termination and compactness.

Proving these invariants is simple, usually by induction on the prefix length.

4.2 Iteration invariants

These are invariants that hold after the completion of an iteration. The main
difference between these invariants and the fold invariants is that after the com-
pletion of the fold, we check whether the program size does not supersede 64
Kb, the maximum memory size the MCS-51 can address.

The type of an iteration therefore becomes an option type: None in case the
program becomes larger than 64 Kb, or Some σ otherwise. We also no longer
use a natural number to pass along the number of bytes added to the program
size, but a boolean that indicates whether we have changed something during
the iteration or not.

If an iteration returns None, we have the following invariant:

definition nec_plus_ultra :=

λprogram:list labelled_instruction.λp:ppc_pc_map.
¬ (∀i.i < |program| →
is_jump (\snd (nth i ? program 〈None ?, Comment []〉)) →
\snd (bvt_lookup . . . (bitvector_of_nat 16 i) (\snd p) 〈0,short_jump〉) =

long_jump).

This invariant is applied to old sigma; if our program becomes too large for
memory, the previous iteration cannot have every branch instruction encoded as
a long jump. This is needed later in the proof of termination.

If the iteration returns Some σ, the invariants out of program none,
not jump default, jump increase, and the two invariants that deal with σ(0)
and σ(n) are retained without change.

Instead of using sigma compact unsafe, we can now use the proper invariant:

definition sigma_compact :=

λprogram:list labelled_instruction.λlabels:label_map.λsigma:ppc_pc_map.
∀n.n < |program| →
match bvt_lookup_opt . . . (bitvector_of_nat ? n) (\snd sigma) with

[None ⇒ False

| Some x ⇒ let 〈pc,j〉 := x in

match bvt_lookup_opt . . . (bitvector_of_nat ? (S n)) (\snd sigma) with

[None ⇒ False

| Some x1 ⇒ let 〈pc1,j1〉 := x1 in

pc1 = pc + instruction_size

(λid.bitvector_of_nat ? (lookup_def ?? labels id 0))

(λppc.bitvector_of_nat ?

(\fst (bvt_lookup . . . ppc (\snd sigma) 〈0,short_jump〉)))
(λppc.jmpeqb long_jump (\snd (bvt_lookup . . . ppc
(\snd sigma) 〈0,short_jump〉))) (bitvector_of_nat ? n)

(\snd (nth n ? program 〈None ?, Comment []〉))
]

].

This is almost the same invariant as sigma compact unsafe, but differs in
that it computes the sizes of branch instructions by looking at the distance
between position and destination using σ.

In actual use, the invariant is qualified: σ is compact if there have been no
changes (i.e. the boolean passed along is true). This is to reflect the fact that
we are doing a least fixed point computation: the result is only correct when we
have reached the fixed point.

There is another, trivial, invariant if the iteration returns Some σ:

\fst p < 2^16

The invariants that are taken directly from the fold invariants are trivial to
prove.

The proof of nec plus ultra works as follows: if we return None, then the
program size must be greater than 64 Kb. However, since the previous iteration

did not return None (because otherwise we would terminate immediately), the
program size in the previous iteration must have been smaller than 64 Kb.

Suppose that all the branch instructions in the previous iteration are encoded
as long jumps. This means that all branch instructions in this iteration are long
jumps as well, and therefore that both iterations are equal in the encoding of
their branch instructions. Per the invariant, this means that added = 0, and
therefore that all addresses in both iterations are equal. But if all addresses
are equal, the program sizes must be equal too, which means that the program
size in the current iteration must be smaller than 64 Kb. This contradicts the
earlier hypothesis, hence not all branch instructions in the previous iteration are
encoded as long jumps.

The proof of sigma compact follows from sigma compact unsafe and the
fact that we have reached a fixed point, i.e. the previous iteration and the current
iteration are the same. This means that the results of instruction size jmplen

and instruction size are the same.

4.3 Final properties

These are the invariants that hold after 2n iterations, where n is the pro-
gram size (we use the program size for convenience; we could also use the
number of branch instructions, but this is more complex). Here, we only need
out of program none, sigma compact and the fact that σ(0) = 0.

Termination can now be proved using the fact that there is a k ≤ 2n, with n
the length of the program, such that iteration k is equal to iteration k+1. There
are two possibilities: either there is a k < 2n such that this property holds, or
every iteration up to 2n is different. In the latter case, since the only changes
between the iterations can be from shorter jumps to longer jumps, in iteration 2n
every branch instruction must be encoded as a long jump. In this case, iteration
2n is equal to iteration 2n+ 1 and the fixpoint is reached.

5 Conclusion

In the previous sections we have discussed the branch displacement optimisation
problem, presented an optimised solution, and discussed the proof of termination
and correctness for this algorithm, as formalised in Matita.

The algorithm we have presented is fast and correct, but not optimal; a true
optimal solution would need techniques like constraint solvers. While outside the
scope of the present research, it would be interesting to see if enough heuristics
could be found to make such a solution practical for implementing in an exist-
ing compiler; this would be especially useful for embedded systems, where it is
important to have as small solution as possible.

In itself the algorithm is already useful, as it results in a smaller solution than
the simple ‘every branch instruction is long’ used up until now—and with only
64 Kb of memory, every byte counts. It also results in a smaller solution than

the greatest fixed point algorithm that gcc uses. It does this without sacrificing
speed or correctness.

This algorithm is part of a greater whole, the CerCo project, which aims to
completely formalise and verify a concrete cost preserving compiler for a large
subset of the C programming language. More information on the formalisation of
the assembler, of which the present work is a part, can be found in a companion
publication [7].

5.1 Related work

As far as we are aware, this is the first formal discussion of the branch displace-
ment optimisation algorithm.

The CompCert project is another verified compiler project. Their backend [5]
generates assembly code for (amongst others) subsets of the PowerPC and x86
(32-bit) architectures. At the assembly code stage, there is no distinction between
the span-dependent jump instructions, so a branch displacement optimisation
algorithm is not needed.

An offshoot of the CompCert project is the CompCertTSO project, who add
thread concurrency and synchronisation to the CompCert compiler [12]. This
compiler also generates assembly code and therefore does not include a branch
displacement algorithm.

Finally, there is also the Piton stack [6], which not only includes the formal
verification of a compiler, but also of the machine architecture targeted by that
compiler, a bespoke microprocessor called the FM9001. However, this architec-
ture does not have different jump sizes (branching is simulated by assigning
values to the program counter), so the branch displacement problem is irrelev-
ant.

5.2 Formal development

All Matita files related to this development can be found on the CerCo web-
site, http://cerco.cs.unibo.it. The specific part that contains the branch
displacement algorithm is in the ASM subdirectory, in the files PolicyFront.ma,
PolicyStep.ma and Policy.ma.

http://cerco.cs.unibo.it

References

1. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Automated Reasoning 39, 109–139 (2007)

2. Dickson, N.G.: A simple, linear-time algorithm for x86 jump encoding. CoRR
abs/0812.4973 (2008)

3. Gnu compiler collection 4.7.0. http://gcc.gnu.org/ (2012)
4. Hyde, R.: Branch displacement optimisation. http://groups.google.com/group/

alt.lang.asm/msg/d31192d442accad3 (2006)
5. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reas-

oning 43, 363–446 (2009), http://dx.doi.org/10.1007/s10817-009-9155-4,
10.1007/s10817-009-9155-4

6. Moore, J.S.: Piton: A mechanically verified assembly language, Automated Reas-
oning Series, vol. 3. Springer (1996)

7. Mulligan, D.P., Sacerdoti Coen, C.: On the correctness of an optimising assembler
for the Intel MCS-51 microprocessor (2012), submitted

8. Robertson, E.L.: Code generation and storage allocation for machines with span-
dependent instructions. ACM Trans. Program. Lang. Syst. 1(1), 71–83 (Jan 1979),
http://doi.acm.org/10.1145/357062.357067

9. Small device C compiler 3.1.0. http://sdcc.sourceforge.net/ (2011)
10. Sozeau, M.: Subset coercions in Coq. In: TYPES. pp. 237–252 (2006)
11. Szymanski, T.G.: Assembling code for machines with span-dependent instruc-

tions. Commun. ACM 21(4), 300–308 (Apr 1978), http://doi.acm.org/10.1145/
359460.359474

12. Ševčik, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. SIGPLAN Not. 46(1), 43–54 (Jan
2011), http://doi.acm.org/10.1145/1925844.1926393

http://gcc.gnu.org/
http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3
http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3
http://dx.doi.org/10.1007/s10817-009-9155-4
http://doi.acm.org/10.1145/357062.357067
http://sdcc.sourceforge.net/
http://doi.acm.org/10.1145/359460.359474
http://doi.acm.org/10.1145/359460.359474
http://doi.acm.org/10.1145/1925844.1926393

	On the correctness of a branch displacement algorithm

