
ar
X

iv
:1

11
0.

23
50

v1
 [

cs
.P

L
]

 1
1

O
ct

 2
01

1

Certifying and reasoning on

cost annotations of functional programs

Roberto M. Amadio1 and Yann Régis-Gianas1,2

1 Université Paris Diderot (UMR-CNRS 7126)
2 INRIA (Team πr2)

Abstract We present a so-called labelling method to insert cost anno-
tations in a higher-order functional program, to certify their correctness
with respect to a standard compilation chain to assembly code, and to
reason on them in a higher-order Hoare logic.

1 Introduction

In [1] we have discussed the problem of building a C compiler which can lift in
a provably correct way pieces of information on the execution cost of the object
code to cost annotations on the source code. To this end, we have introduced a
so called labelling approach and presented its application to a prototype com-
piler written in Ocaml from a large fragment of the C language to the assembly
languages of Mips and 8051, a 32 bits and 8 bits processor, respectively.

In the following, we are interested in extending the approach to (higher-
order) functional languages. On this issue, a common belief is well summarized
by the following epigram [9]: A Lisp programmer knows the value of everything,
but the cost of nothing. However, we shall show that, with some ingenuity, the
methodology developed for the C language can be lifted to functional languages.
Specifically, we shall focus on a rather standard compilation chain from a call-by-
value λ-calculus to a register transfer level (RTL) language. Similar compilation
chains have been explored from a formal viewpoint in [8] (with an emphasis on
typing but with no simulation proofs) and in [4] (for type-free languages but
with machine certified simulation proofs).

The compilation chain is described in the lower part of table 1. Starting
from a standard call-by-value λ-calculus with pairs, one performs first a CPS
translation, then a transformation into administrative form, followed by a closure
conversion, and a hoisting transformation. All languages considered are subsets
of the initial one though their evaluation mechanism is refined along the way. In
particular, one moves from an ordinary substitution to a specialized one where
variables can only be replaced by other variables. Notable differences with respect
to [4] is a different choice of the intermediate languages and the fact that we
rely on a small-step operational semantics. We also diverge from [4] in that our
proofs, following the usual mathematical tradition, are written to explain to a
human why a certain formula is valid rather than to provide a machine with a
compact witness of the validity of the formula.

http://arxiv.org/abs/1110.2350v1

λM λℓ
Ioo Ccps //

er

��

λℓ
cps

Cad ,,

er

��

λℓ
cps,aRkk

Ccc //

er

��

λℓ
cc,a

Ch //

er

��

λℓ
h,a

er

��
λ

L

II

Ccps //Ccps // λcps

Cad ,,
λcps,aRkk

Ccc // λcc,a

Ch // λh,a

Table1. The compilation chain with its labelling and instrumentation.

The final language of this compilation chain can be directly mapped to an
RTL language: functions correspond to assembly level routines and the functions’
bodies correspond to sequences of assignments on pseudo-registers ended by a
tail recursive call.

While the extensional properties of the compilation chain have been well stud-
ied, we are not aware of previous work focusing on more intensional properties
relating to the way the compilation preserves the complexity of the programs.
Specifically, in the following we will apply to this compilation chain the ‘labelling
approach’ to building certified cost annotations. In a nutshell the approach con-
sists in identifying, by means of labels, points in the source program whose cost
is constant and then determining the value of the constants by propagating the
labels along the compilation chain and analysing small pieces of object code with
respect to a target architecture.

Technically the approach is decomposed in several steps. First, for each lan-
guage considered in the compilation chain, we define an extended labelled lan-
guage and an extended operational semantics (upper part of Table 1). The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

Second, for each labelled language there is an obvious function er erasing all
labels and producing a program in the corresponding unlabelled language. The
compilation functions are extended from the unlabelled to the labelled language
so that they commute with the respective erasure functions. Moreover, the sim-
ulation properties of the compilation functions are lifted from the unlabelled to
the labelled languages and transition systems.

Third, assume a labelling L of the source language is a right inverse of the
respective erasure function. The evaluation of a labelled source program produces
both a value and a sequence of labels, say Λ, which intuitively stands for the
sequence of labels crossed during the program’s execution. The central question
we are interested in is whether there is a way of labelling the source programs
so that the sequence Λ is a sound and possibly precise representation of the
execution cost of the program.

To answer this question, we observe that the object code is some kind of
RTL code and that its control flow can be easily represented as a control flow
graph. The fact that we have to prove the soundness of the compilation function
means that we have plenty of information on the way the control flows in the

compiled code, in particular as far as procedure calls and returns are concerned.
These pieces of information allow to build a rather accurate representation of
the control flow of the compiled code at run time.

The idea is then to perform some simple checks on the control flow graph.
The main check consists in verifying that all ‘loops’ go through a labelled node. If
this is the case then we can associate a ‘cost’ with every label which overapprox-
imates the actual cost of running a sequence of instructions. An optional check
amounts to verify that all paths starting from a label have the same abstract
cost. If this check is successful then we can conclude that the cost annotations
are ‘precise’ in an abstract sense (and possibly concrete too depending on the
processor considered).

If the check described above succeeds every label has a cost which in general
can be taken as an element of a ‘cost’ monoid. Then an instrumentation of
the source labelled language is a monadic transformation I (left upper part of
Table 1) in the sense of [6] that replaces labels with the associated elements of
the cost monoid. Following this monadic transformation we are back into the
source language (possibly enriched with a ‘cost monoid’ such as integers with
addition). As a result, the source program is instrumented so as to monitor its
execution cost with respect to the associated object code. In the end, general
logics developed to reason about functional programs such as higher-order Hoare
logic [11] can be employed to reason about the concrete complexity of source
programs by proving properties on their instrumented versions.

We stress that previous work on building cost annotations for higher-order
functional programs we are aware of does not take formally into account the
compilation process. For instance, in an early work D. Sands [12] proposes an
instrumentation of call-by-value λ-calculus in order to describe its execution cost.
However the notion of cost adopted is essentially the number of function calls
in the source code. In a standard implementation such as the one considered in
this work, different function calls may have different costs and moreover there
are ‘hidden’ function calls which are not immediately apparent in the source
code. In a more recent work, [3] addresses the problem of determining the worst
case execution time of a a specialised functional language called Hume. The
compilation chain considered consists in compiling first Hume to the code of an
intermediate abstract machine, then to C, and finally to generate the assembly
code of the Resenas M32C/85 processor using standard C compilers. Then for
each instruction of the abstract machine, one computes an upper bound on
the worst-case execution time (WCET) of the instruction relying on a well-
known aiT tool [2] that uses abstract interpretation to determine the WCET of
sequences of binary instructions. While we share common motivations with this
work, we differ significantly in the technical approach. In particular, (i) [3] does
not address at all the proof of correctness of the cost annotations as we do, and
(ii) the granularity of the cost annotations is fixed in [3] (the instructions of the
Hume abstract machine) while it can vary in our approach.

In [1] we have showed that it is possible to produce a sound and precise
(in an abstract sense) labelling for a large class of C programs with respect

to a moderately optimising compiler. In the following we show that a similar
result can be obtained for a higher-order functional language with respect to the
standard compilation chain described above. Specifically we show that there is a
simple labelling of the source program that guarantees that the generated object
code is sound and precise. The labelling of the source program can be informally
described as follows: it associates a distinct label with every abstraction and
with every application which is not ‘immediately surrounded’ by an abstraction.

In this paper our analysis will stop at the level of an abstract RTL language,
however our previously quoted work [1] shows that the approach extends to the
back-end of a typical moderately optimising compiler including, e.g., dead-code
elimination and register allocation. Concerning the source language, preliminary
experiments suggest that the approach scales to a larger functional language such
as the one considered in [4] including sums, exceptions, and side effects. Finally,
we mention that the approach has also been implemented for a simpler compi-
lation chain that bypasses the CPS translation. In this case, the function calls
are not necessarily tail-recursive and the compiler generates a Cminor program.1

In the following, section 2 describes the certification of the cost-annotations
and section 3 a method to reason on them. Examples and proofs are available
in appendices A and B, respectively.

2 The compilation chain: commutation and simulation

This section describes the intermediate languages and the compilation functions
from an ordinary λ-calculus to a hoisted, administrative λ-calculus. For each
step we check that: (i) the compilation function commutes with the function
that erases labels and (ii) the object code simulates the source code.

2.1 Conventions

The reader is supposed to be acquainted with the λ-calculus and its evaluation
strategies and continuation passing style translations. In the following calculi,
all terms are manipulated up to α-renaming of bound names. We denote with ≡
syntactic identity up to α-renaming. Whenever a reduction rule is applied, it is
assumed that terms have been renamed so that all binders use distinct variables
and these variables are distinct from the free ones. Similar conventions are ap-
plied when performing a substitution, say [T/x]T ′, of a term T for a variable x in
a term T ′. We denote with fv(T) the set of variables occurring free in a term T .

Let C,C1, C2, . . . be one hole contexts and T a term. Then C[T] is the term
resulting from the replacement in the context C of the hole by the term T and
C1[C2] is the one hole context resulting from the replacement in the context C1

of the hole by the context C2.
For each calculus, we assume a syntactic category id of identifiers with generic

elements x, y, . . . and a syntactic category ℓ of labels with generic elements

1 Cminor is a type-free, memory aware fragment of C defined in [7].

Syntax

V ::= id || λid+.M || (V +) (values)
M ::= V || @(M,M+) || let id =M in M || (M+) || πi(M) || ℓ > M || M > ℓ (terms)
E ::= [] || @(V ∗, E,M∗) || let id = E in M || (V ∗, E,M∗) || πi(E) || E > ℓ (eval. cxts.)

Reduction Rules

E[@(λx1 . . . xn.M, V1, . . . , Vn)] → E[[V1/x1, . . . , Vn/xn]M]
E[let x = V in M] → E[[V/x]M]
E[πi(V1, . . . , Vn)] → E[Vi] 1 ≤ i ≤ n

E[ℓ > M]
ℓ
−→ E[M]

E[V > ℓ]
ℓ
−→ E[V]

Label erasure

er(ℓ > M) = er(M > ℓ) = er(M) .

Table2. An ordinary call-by-value λ-calculus: λℓ

ℓ, ℓ1, . . . For each calculus, we specify the syntactic categories and the reduc-
tion rules. We let α range over labels and the empty word. We write M

α
−→ N if

M rewrites to N with a transition labelled by α. We abbreviate M
ǫ
−→ N with

M → N . We also define M
α
⇒ N as M

∗

→ N if α = ǫ and as M
∗

→
α
−→

∗

→ N
otherwise.

We shall write X+ (resp. X∗) for a non-empty (possibly empty) finite se-
quence X1, . . . , Xn of symbols. By extension, λx+.M stands for λx1 . . . λxn.M ,
[V +/x+]M stands for [V1/x1](· · · [Vn/xn]M · · ·), and let (x = V)+ in M stands
for let x1 = V1 in · · · let xn = Vn in M .

2.2 The source language

Table 2 introduces a type-free, call-by-value λ-calculus. The calculus includes
let-definitions and polyadic abstraction and pairing with the related application
and projection operators. Any term M can be pre-labelled by writing ℓ > M
or post-labelled by writing M > ℓ. In the pre-labelling, the label ℓ is emitted
immediately while in the post-labelling it is emitted after M has reduced to a
value. It is tempting to reduce the post-labelling to the pre-labelling by writing
M > ℓ as @(λx.ℓ > x,M), however the second notation introduces an additional
abstraction and a related reduction step which is not actually present in the
original code. Table 2 also introduces an erasure function er from the λℓ-calculus
to the λ-calculus. This function simply traverses the term and erases all pre and
post labellings. Similar definitions arise in the following calculi of the compilation
chain and are omitted.

2.3 Compilation to CPS form

Table 3 introduces a fragment of the λℓ-calculus described in Table 2 and a
related CPS translation. We recall that in a CPS translation each function takes
its evaluation context as an additional parameter. Then the evaluation context
is always trivial. Notice that the reduction rules are essentially those of the
λℓ-calculus modulo the fact that we drop the rule to reduce V > ℓ since post-
labelling does not occur in CPS terms and the fact that we optimize the rule
for the projection to guarantee that CPS terms are closed under reduction. For
instance, the term let x = π1(V1, V2) in M reduces directly to [V1/x]M rather
than going through the intermediate term let x = V1 inM which does not belong
to the CPS terms.

We study next the properties enjoyed by the CPS translation. In general, the
commutation of the compilation function with the erasure function only holds
up to call-by-value η-conversion, namely λx.@(V, x) =η V if x /∈ fv(V). This is
due to the fact that post-labelling introduces an η-expansion of the continuation
if and only if the continuation is a variable. To cope with this problem, we
introduce next the notion of well-labelled term. We will see later (section 3.1)
that terms generated by the initial labelling are well-labelled.

Definition 1 (well-labelling). We define two predicates Wi, i = 0, 1 on the
terms of the λℓ-calculus as the least sets such that W1 is contained in W0 and
the following conditions hold:

x ∈ W1

M ∈ W0

M > ℓ ∈ W0

M ∈W1

λx+.M ∈ W1

M ∈ Wi i ∈ {0, 1}
ℓ > M ∈Wi

N ∈W0,M ∈ Wi i ∈ {0, 1}
let x = N in M ∈ Wi

Mi ∈W0 i = 1, . . . , n

@(M1, . . . ,Mn) ∈W1

Mi ∈W0 i = 1, . . . , n

(M1, . . . ,Mn) ∈W1

M ∈W0

πi(M) ∈W1

.

The intuition is that we want to avoid the situation where a post-labelling
receives as continuation the continuation variable generated by the translation
of a λ-abstraction.

Proposition 1 (CPS commutation). Let M ∈ W0 be a term of the λℓ-
calculus (Table 2). Then: er(Ccps(M)) ≡ Ccps(er (M)).

The proof of the CPS simulation is non-trivial but rather standard since [10].
The general idea is that the CPS translation pre-computes many ‘administrative’
reductions so that the translation of a term, say E[@(λx.M, V)] is a term of the
shape @(ψ(λx.M), ψ(V),KE) for a suitable continuation KE depending on the
evaluation context E.

Proposition 2 (CPS simulation). Let M be a term of the λℓ-calculus. If

M
α
−→ N then Ccps(M)

α
⇒ Ccps(N).

Syntax CPS terms

V ::= id || λid+.M || (V +) (values)
M ::= @(V, V +) || let id = πi(V) in M || ℓ > M (CPS terms)
K ::= id || λid .M (continuations)

Reduction rules

@(λx1, . . . , xn.M, V1, . . . , Vn) → [V1/x1, . . . , Vn/xn]M
let x = πi(V1, . . . , Vn) in M → [Vi/x]M 1 ≤ i ≤ n

ℓ > M
ℓ
−→ M

CPS translation

ψ(x) = x
ψ(λx+.M) = λx+, k.(M : k)
ψ(V1, . . . , Vn) = (ψ(V1), . . . , ψ(Vn))

V : k = @(k, ψ(V))
V : (λx.M) = [ψ(V)/x]M
@(M0, . . . ,Mn) : K = M0 : λx0. . . . (Mn : λxn.@(x0, . . . , xn,K))
let x =M1 in M2 : K = M1 : λx.(M2 : K)
(M1, . . . ,Mn) : K = M1 : λx1. . . . (Mn : λxn.(x1, . . . , xn) : K)
πi(M) : K = M : λx.let y = πi(x) in y : K
(ℓ > M) : K = ℓ > (M : K)
(M > ℓ) : K = M : (λx.ℓ > (x : K))

Ccps(M) = M : λx.@(halt , x), halt fresh

Table3. CPS λ-calculus (λℓcps) and CPS translation

2.4 Transformation in administrative CPS form

Table 4 introduces an administrative λ-calculus in CPS form: λℓcps,a. In the or-
dinary λ-calculus, the application of a λ-abstraction to an argument (which
is value) may produce the duplication of the argument as in: @(λx.M, V) →
[V/x]M . In the administrative λ-calculus, all values are named and when we ap-
ply the name of a λ-abstraction to the name of a value we create a new copy of
the body of the function and replace its formal parameter name with the name
of the argument as in:

let y = V in let f = λx.M in @(f, y) → let y = V in let f = λx.M in [y/x]M .

We also remark that in the administrative λ-calculus the evaluation contexts are
a sequence of let definitions associating values to names. Thus, apart for the fact
that the values are not necessarily closed, the evaluation contexts are similar to
the environments of abstract machines for functional languages.

Table 5 defines the compilation into administrative form along with a read-
back translation. The latter is useful to state the simulation property. Indeed,

Syntax

V ::= λid+.M || (id+) (values)
B ::= V || πi(id) (let-bindable terms)
M ::= @(id , id+) || let id = B in M || ℓ > M (CPS terms)
E ::= [] || let id = V in E (evaluation contexts)

Reduction Rules

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1, . . . , yn.M
E[let z = πi(x) in M] → E[[yi/z]M]] if E(x) = (y1, . . . , yn), 1 ≤ i ≤ n

E[ℓ > M]
ℓ
−→ E[M]

where: E(x) =

V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []], x 6= y
undefined otherwise

Table4. An administrative CPS λ-calculus: λℓcps,a

it is not true that if M → M ′ in λℓcps then Cad(M)
∗

→ Cad(M
′) in λℓcps,a. For

instance, consider M ≡ (λx.xx)I where I ≡ (λy.y). Then M → II but Cad (M)
does not reduce to Cad(II) but rather to a term where the ‘sharing’ of the du-
plicated value I is explicitly represented.

Proposition 3 (AD commutation). Let M be a λ-term in CPS form. Then:

(1) R(Cad (M)) ≡M .

(2) er(Cad (M)) ≡ Cad(er (M)).

Proposition 4 (AD simulation). Let N be a λ-term in CPS administrative

form. If R(N) ≡M and M
α
−→M ′ then N

α
−→ N ′ and R(N ′) ≡M ′.

2.5 Closure conversion

The next step is called closure conversion, it consists in providing each functional
value with an additional parameter that accounts for the names free in the body
of the function. Following this transformation which is described in Table 6, all
functional values are closed. In our opinion, this is the only compilation step
where the proofs are rather straightforward.

Proposition 5 (CC commutation). Let M be a CPS term in administrative
form. Then er (Ccc(M)) ≡ Ccc(er (M)).

Proposition 6 (CC simulation). Let M be a CPS term in administrative

form. If M
α
−→M ′ then Ccc(M)

α
⇒ Ccc(M

′).

Transformation in administrative form (from λℓ
cps to λℓ

cps,a)

Cad(@(x0, . . . , xn)) = @(x0, . . . , xn)
Cad(@(x∗, V, V ∗)) = Ead (V, y)[Cad(@(x∗, y, V ∗))] V 6= id , y fresh
Cad(let x = πi(y) in M) = let x = πi(y) in Cad(M)
Cad(let x = πi(V) in M) = Ead (y, V)[let x = πi(y) in Cad(M)] V 6= id , y fresh
Cad(ℓ > M) = ℓ > Cad(M)

Ead(λx
+.M, y) = let y = λx+.Cad (M) in []

Ead((x
+), y) = let y = (x+) in []

Ead((x
∗, V, V ∗), y) = Ead (V, z)[Ead((x

∗, z, V ∗), y)] V 6= id , z fresh

Readback translation (from λℓ
cps,a to λℓ

cps)

R(λx+.M) = λx+.R(M)
R(x+) = (x+)
R(@(x, x1, . . . , xn)) = @(x, x1, . . . , xn)
R(let x = πi(y) in M) = let x = πi(y) in R(M)
R(let x = V in M) = [R(V)/x]R(M)
R(ℓ > M) = ℓ > R(M)

Table5. Transformations in administrative CPS form and readback

2.6 Hoisting

The last compilation step consists in moving all functions definitions at top
level. In Table 7, we formalise this compilation step as the iteration of a set
of program transformations that commute with the erasure function and the
reduction relation. Denote with λz+.T a function that does not contain function
definitions. The transformations consist in hoisting (moving up) the definition of
a function λz+.T with respect to either a definition of a pair or a projection, or
another including function, or a labelling. Note that the hoisting transformations
do not preserve the property that all functions are closed. Therefore the hoisting
transformations are defined on the terms of the λℓcps,a-calculus. As a first step,
we analyse the hoisting transformations.

Proposition 7 (on hoisting transformations). The iteration of the hoist-
ing transformation on a term in λℓcc,a (all function are closed) terminates and
produces a term satisfying the syntactic restrictions specified in table 7.

Next we check that the hoisting transformations commute with the erasure
function.

Proposition 8 (hoisting commutation). Let M be a term of the λℓcps,a-
calculus.

(1) If M ❀ N then er(M) ❀ er(N) or er(M) ≡ er(N).

(2) If M 6❀ · then er(M) 6❀ ·.

(3) er(Ch(M)) ≡ Ch(er (M)).

Syntactic restrictions on λℓ
cps,a after closure conversion

All functional values are closed.

Closure Conversion

Ccc(@(x, y+)) = let z = π1(x) in @(z, x, y+)

Ccc(let x = B in M) =
let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(N) in
let x = (y, z1, . . . , zk) in
Ccc(M) (if B = λx+.N, fv(B) = {z1, . . . , zk})

Ccc(let x = B in M) = let x = B in Ccc(M) (if B not a function)

Ccc(ℓ > M) = ℓ > Ccc(M)

Table6. Closure conversion on administrative CPS terms

The proof of the simulation property requires some work because to close the
diagram we need to collapse repeated definitions. We proceed as follows. First
we introduce a relation Sh that collapses repeated definitions and show that
it is a simulation. Second, we show that the hoisting transformations induce a

‘simulation up to Sh’. Namely if M
ℓ
−→M ′ and M ❀ N then there is a N ′ such

that N
ℓ
−→ N ′ and M ′ (❀∗ ◦Sh) N

′. Third, we iterate the previous property to
derive the following one.

Proposition 9 (hoisting simulation). There is a simulation relation Th on
the terms of the λℓcps,a-calculus such that for all terms M of the λℓcc,a-calculus
we have M Th Ch(M).

2.7 Composed commutation and simulation properties

Let C be the composition of the compilation steps we have considered:

C = Ch ◦ Ccc ◦ Cad ◦ Ccps .

We also define a relation RC between terms in λℓ and terms in λℓh as:

MRCP if ∃N Ccps(M) ≡ R(N) and Ccc(N) Th P

Note that for all M , M RC C(M).

Theorem 1 (commutation and simulation). Let M ∈ W0 be a term of the
λℓ-calculus. Then:

(1) er(C(M)) ≡ C(er(M)).

(2) If M RC N and M
α
−→M ′ then N

α
⇒ N ′ and M ′ RC N ′.

Syntactic restrictions on λℓ
cps,a after hoisting

All function definitions are at top level.

C ::= (id+) || πi(id) (restricted let-bindable terms)
T ::= @(id , id+) || let id = C in T || ℓ > T (restricted terms)
P ::= T || let id = λid+.T in P (programs)

Specification of the hoisting transformation

Ch(M) = N if M ❀ · · · ❀ N 6❀, where:

D ::= [] || let id = B in D || let id = λid+.D in M || ℓ > D (hoisting contexts)

(h1) D[let x = C in let y = λz+.T in M] ❀
D[let y = λz+.T in let x = C in M] if x /∈ fv(λz+.T)

(h2) D[let x = λw+.let y = λz+.T in M in N] ❀
D[let y = λz+.T in let x = λw+.M in N] if {w+} ∩ fv(λz+.T) = ∅

(h3) D[ℓ > let y = λz+.T in M] ❀
D[let y = λz+.T in ℓ > M]

Table7. Hoisting transformation

3 Reasoning on the cost annotations

We describe an initial labelling of the source code leading to a sound and precise
labelling of the object code and an instrumentation of the labelled source pro-
gram which produces a source program monitoring its own execution cost. Then,
we explain how to obtain static guarantees on this execution cost by means of a
Hoare logic for purely functional programs.

3.1 Initial labelling

We define a labelling function L of the source code (terms of the λ-calculus)
which guarantees that the associated RTL code satisfies the conditions neces-
sary for associating a cost with each label. We set L(M) = L0(M), where the
functions Li are specified in Table 8.

Proposition 10 (labelling properties). Let M be a term of the λ-calculus
and let P ≡ C(M) be its compilation.

(1) The function L is a labelling and produces well-labelled terms, namely:

er(Li(M)) ≡M and Li(M) ∈Wi for i = 0, 1.

(2) We have: P ≡ er(C(L(M))).

L(M) = L0(M) where:

Li(x) = x
Li(λid

+.M) = λid+.ℓ > L1(M) ℓ fresh
Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn))
Li(πi(M)) = πi(L0(M))

Li(@(M,M+)) =

{

@(L0(M), (L0(M))+) > ℓ i = 0, ℓ fresh
@(L0(M), (L0(M))+) i = 1

Li(let x =M in N) = let x = L0(M) in Li(N)

Table8. A sound and precise labelling of the source code

(3) Labels occur exactly once in the body of each function definition and nowhere
else, namely, with reference to Table 7, P is generated by the following grammar:

P ::= T || let id = λid+.Tlab in P
Tlab ::= ℓ > T || let id = C in Tlab
T ::= @(id , id+) || let id = C in T

The associated RTL program is composed of a set of routines which in turn
is composed of a sequence of assignments on pseudo-registers and a terminal call
to another routine. For such programs the back end of the moderately optimis-
ing compiler described in [1] produces assembly code which satisfies the checks
outlined in the introduction.

3.2 Instrumentation

Given a cost monoid M with identity 1, we assume the analysis of the RTL code
associates with each label ℓ an element mℓ of the cost monoid. This element is
an upper bound on the cost of running the code starting from a control point
labelled by ℓ and leading either to a control point without successors or to
another labelled control point. Table 9 describes a monadic transformation which
has been extensively analysed in [6] which instruments a program (in our case
λℓ) with the cost of executing its instructions. We are then back to a standard
λ-calculus (without labels) which includes a basic data type to represent the cost
monoid.

3.3 Higher-order Hoare Logic

Many proof systems can be used to obtain static guarantees on the evaluation
of a purely functional program. In our setting, such systems can also be used
to obtain static guarantees on the execution cost of a functional program by
reasoning on its instrumentation.

We illustrate this point using an Hoare logic dedicated to call-by-value purely
functional programs [11]. Given a well-typed program annotated by logic asser-
tions, this system computes a set of proof obligations, whose validity ensures the

[[x]] = (1, x)
[[λx+.M]] = (1, λx+.[[M]])
[[@(M0, . . . ,Mn)]] = let (m0, x0) = [[M0]] · · · (mn, xn) = [[Mn]],

(mn+1, xn+1) = @(x0, . . . , xn) in
(mn+1 ·mn · · ·m0, xn+1)

[[(M1, . . . ,Mn)]] = let (m1, x1) = [[M1]] · · · (mn, xn) = [[Mn]] in
(mn · · ·m1, (x1, . . . , xn))

[[πi(M)]] = let (m,x) = [[M]] in (m,πi(x))
[[let x =M1 in M2]] = let (m1, x) = [[M1]] in (m2, x2) = [[M2]] in

(m2 ·m1, x2)
[[ℓ > M]] = let (m,x) = [[M]] in (m ·mℓ, x)
[[M > ℓ]] = let (m,x) = [[M]] in (mℓ ·m,x)

Table9. Instrumentation of labelled λ-calculus.

correctness of the logic assertions with respect to the evaluation of the functional
program.

Logic assertions are written in a typed higher-order logic whose syntax is
given in Table 10. From now on, we assume that our source language is also
typed. The metavariable τ ranges over simple types, whose syntax is τ ::= ι |
| τ × τ || τ → τ where ι are the basic types including a data type cm for the
values of the cost monoid. Types are lifted to the logical level through a logical
reflection ⌈•⌉ defined in Table 10.

We write “let x : τ/F =M inM” to annotate a let definition by a postcondi-
tion F of type ⌈τ⌉ → prop. We write “λ(x1 : τ1)/F1 : (x2 : τ2)/F2. M” to ascribe
to a λ-abstraction a precondition F1 of type ⌈τ1⌉ → prop and a postcondition F2

of type ⌈τ1⌉ × ⌈τ2⌉ → prop. Computational values are lifted to the logical level
using the reflection function defined in Table 10. The key idea of this definition
is to reflect a computational function as a pair of predicates consisting in its pre-
condition and its postcondition. Given a computational function f , a formula can
refer to the precondition (resp. the postcondition) of f using the predicate pre f
(resp. post f). Thus, pre (resp. post) is a synonymous for π1 (resp. π2).

To improve the usability of our tool, we define in Table 10 a surface language
by extending λ with several practical facilities. First, terms are explicitly typed.
Therefore, the labelling L must be extended to convey type annotations in an ex-
plicitly typed version of λℓ. The instrumentation I defined in Table 9 is extended
to types by replacing each type annotation τ by its monadic interpretation [[τ]]
defined by [[τ]] = cm× τ, ι = ι, τ1 × τ2 = ([[τ1]]× [[τ2]]) and τ1 → τ2 = τ1 → [[τ2]].

Second, since the instrumented version of a source program would be cum-
bersome to reason about because of the explicit threading of the cost value, we
keep the program in its initial form while allowing logic assertions to implicitly
refer to the instrumented version of the program. Thus, in the surface language,
in the term “let x : τ/F = M in M”, F has type ⌈[[τ]]⌉ → prop, that is to say a
predicate over pairs of which the first component is the execution cost.

Syntax

F ::= True || False || x || F ∧ F || F = F || (F, F) (formulae)
|| π1 || π2 || λ(x : θ).F || F F || F ⇒ F || ∀(x : θ).F

θ ::= prop || ι || θ × θ || θ → θ (types)

V ::= id || λ(id : τ)+/F : (id : τ)/F.M || (V +) (values)
M ::= V || @(M,M+) || let id : τ/F =M in M || (M+) || πi(M) (terms)

Logical reflection of types

⌈ι⌉ = ι
⌈τ1 × . . .× τn⌉ = ⌈τ1⌉ × . . . ⌈τn⌉

⌈τ1 → τ2⌉ = (⌈τ1⌉ → prop)× (⌈τ1⌉ × ⌈τ2⌉ → prop)

Logical reflection of values

⌈id⌉ = id
⌈(V1, . . . , Vn)⌉ = (⌈V1⌉, . . . , ⌈Vn⌉)

⌈λ(x1 : τ1)/F1 : (x2 : τ2)/F2. M⌉ = (F1, F2)

Table10. The surface language.

Third, we allow labels to be written in source terms as a practical way of
giving names to the labels introduced by the labelling L. By that means, the
constant cost assigned to a label ℓ can be symbolically used in specifications by
writing costof(ℓ).

Finally, as a convenience, we write “x : τ/F” for “x : τ/λ(cost : cm, x :
⌈[[τ]]⌉).F”. This improves the conciseness of specifications by automatically al-
lowing reference to the cost variable in logic assertions without having to intro-
duce it explicitly.

3.4 Prototype implementation

We implemented a prototype compiler [13] in OCaml (∼ 3.5Kloc). This compiler
accepts a program P written in the surface language extended with fixpoint and
algebraic datatypes. Specifications are written in the Coq proof assistant [5]. A
logic keyword is used to include logical definitions written in Coq to the source
program.

Type checking is performed on P and, upon success, it produces a type
annotated program Pt. Then, the labelled program Pℓ = L(Pt) is generated.
Following the same treatment of branching as in our previous work on imperative
programs [1], the labelling introduces a label at the beginning of each pattern
matching branch.

By erasure of specifications and type annotations, we obtain a program Pλ

of λ (Table 2). Using the compilation chain presented earlier, Pλ is compiled into
a program Ph of λh,a (Table 7) . The annotating compiler uses the cost model
that consists in counting for each label ℓ the number of primitive operations that

belong to execution paths starting from ℓ (and ending in another label or in an
instruction without successor).

Finally, the instrumented version of Pℓ as well as the actual cost of each label
is given as input to a verification condition generator to produce a set of proof
obligations. These proof obligations are either proved automatically using first
order theorem provers or manually in Coq.

3.5 Example

Let us consider an higher-order function pexists that looks for an integer x
in a list l such that x validates a predicate p. In addition to the functional
specification, we want to prove that the cost of this function is linear in the
length n of the list l. The corresponding program written in the surface language
can be found in Table 11.

A prelude declares the type and logical definitions used by the specifications.
On lines 1 and 2, two type definitions introduce data constructors for lists and
booleans. Between lines 4 and 5, a Coq definition introduces a predicate bound
over the reflection of computational functions from nat to nat×bool that ensures
that the cost of a computational function p is uniformly bounded by a constant k.

On line 9, the precondition of function pexists requires the function p to be
total. Between lines 10 and 11, the postcondition first states a functional specifi-
cation for pexists: the boolean result witnesses the existence of an element x of
the input list l that is related to BTrue by the postcondition of p. The second
part of the postcondition characterizes the cost of pexists in case of a negative
result: assuming that the cost of p is bounded by a constant k, the cost of pexists
is proportional to k.n.

The verification condition generator produces 53 proof obligations out of this
annotated program; 46 of these proof obligations are automatically discharged
and 7 of them are manually proved in Coq.

4 Conclusion

We have shown that the so-called ’labelling’ approach can be used to obtain
certified execution costs on functional programs. In a realistic implementation
of a functional programming language though, the runtime environment usually
includes a garbage collector. The execution cost of such an automatic memory
deallocation algorithm is a priori proportional to the size of the heap, which is
not a sufficiently precise bound for practical use. An accurate static tracking of
memory allocation, following region based or linear logic approaches, would be
necessary to get relevant worst-case execution costs for memory deallocation.

Acknowledgements We are indebted to our Master students Guillaume Claret
and David Giron for their implementation effort which provided valuable feed-
back. This work was supported by the Information and Communication Tech-
nologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo.

01 type list = Nil | Cons (nat, list)
02 type bool = BTrue | BFalse
03 logic {
04 Definition bound (p : nat −→ (nat × bool)) (k : nat) : Prop : =
05 ∀ x m : nat, ∀ r : bool, post p x (m, r) ⇒ m ≤ k.
06 Definition k0 : = costof(ℓm) + costof(ℓnil).
07 Definition k1 : = costof(ℓm) + costof(ℓp) + costof(ℓc) + costof(ℓf) + costof(ℓr).
08 }
09 let rec pexists (p : nat → bool, l : list) { ∀ x, pre p x } : bool {
10 ((result = BTrue) ⇔ (∃ x c : nat, mem x l ∧ post p x (c, BTrue))) ∧
11 (∀ k : nat, bound p k ∧ (result = BFalse) ⇒ cost ≤ k0 + (k + k1) × length (l))
12 } = ℓm> match l with
13 | Nil → ℓnil> BFalse
14 | Cons (x, xs) → ℓc> match p (x) > ℓp with

15 | BTrue → BTrue
16 | BFalse → ℓf> (pexists (p, xs) > ℓr)

Table11. An higher-order function and its specification.

References

1. R.M. Amadio, N. Ayache, Y. Régis-Gianas, R. Saillard. Certifying cost
annotations in compilers. Université Paris Diderot, Research Report,
http://hal.archives-ouvertes.fr/hal-00524715/fr/ , 2010.

2. AbsInt Angewandte Informatik. http://www.absint.com/.
3. A. Bonenfant, C. Ferdinand, K. Hammond, R. Heckmann. Worst-case execution

times for a purely functional language. In Proc. IFL, Springer LNCS 4449:235-252,
2006.

4. A. Chlipala. A verified compiler for an impure functional language. In Proc.
ACM-POPL:93-106, 2010.

5. The Coq Development Team. The Coq Proof Assistant. INRIA-Rocquencourt,
December 2001. http://coq.inria.fr.

6. D. Gurr. Semantic frameworks for complexity. PhD thesis, University of Edin-
burgh, 1991.

7. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-
115, 2009.

8. J. Morrisett, D. Walker, K. Crary, N. Glew. From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3): 527-568, 1999.

9. A. Perlis. Epigrams on programming. SIGPLAN Notices Vol. 17(9):7-13, 1982.
10. G. Plotkin. Call-by-name, Call-by-value and the lambda-Calculus. Theor. Comput.

Sci. 1(2):125-159, 1975.
11. Y. Régis-Gianas, F. Pottier. A Hoare logic for call-by-value functional programs.

In Proc. Mathematics of Program Construction, pp 305-335, 2008.
12. D. Sands. Complexity analysis for a lazy higher-order language. In Proc. ESOP,

Springer LNCS 432:361-376, 1990.
13. Y. Régis-Gianas. An annotating compiler for MiniML.

http://www.pps.jussieu.fr/~yrg/fun-cca.

http://hal.archives-ouvertes.fr/hal-00524715/fr/
http://www.absint.com/
http://coq.inria.fr
http://www.pps.jussieu.fr/~yrg/fun-cca

A Examples

This section collects some examples.

Example 1 (labelling and commutation). Let M ≡ λx.xx > ℓ. Then M /∈ W0

because the rule for abstraction requires xx > ℓ ∈ W1 while we can only show
xx > ℓ ∈ W0. Notice that we have:

er(Ccps(M)) ≡ @(halt , λx, k.@(x, x, λx.@(k, x)))
Ccps(er(M)) ≡ @(halt , λx, k.@(x, x, k)) .

So for M the commutation of the cps-compilation and the erasure function only
holds up to η.

Example 2 (CPS). Let M ≡ @(λx.@(x,@(x, x)), I), where I ≡ λx.x. Then

Ccps(M) ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H))

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). The term M is simulated by
Ccps(M) as follows:

M → @(I,@(I, I)) → @(I, I) → I
Ccps(M) → @(I ′, I ′, λy.@(I ′, y,H)) →+ @(I ′, I ′, H) →+ @(halt , I ′) .

Example 3 (administrative form). SupposeN ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H))
where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x) (this is the term resulting from
the CPS translation in example 2). The corresponding term in administrative
form is:

let z1 = λx, k.let z2 = λy.@(x, y, k) in @(x, x, z2) in
let z3 = I ′ in
let z4 = H in
@(z1, z3, z4) .

Example 4 (closure conversion). Let M ≡ Cad(Ccps(λx.y)), namely

M ≡ let z1 = λx, k.@(k, y) in @(halt , z1) .

Then Ccc(M) is the following term:

let z2 = λz, x, k.let y = π2(z) in let z = π1(k) in @(z, k, y) in
let z1 = (z2, y) in
let z = π1(halt) in @(z, halt , z1) .

Example 5 (hosting transformations and transitions). LetM ≡ let x1 = λy1.N in@(x1, z)
where N ≡ let x2 = λy2.T2 in T1 and y1 /∈ fv(λy2.T2). Then we either reduce
and then hoist:

M → let x1 = λy1.N in [z/y1]N
≡ let x1 = λy1.N in let x2 = λy2.T2 in [z/y1]T1
❀ let x2 = λy2.T2 in let x1 = λy1.T1 in let x2 = λy2.T2 in [z/y1]T1 6❀

or hoist and then reduce:

M ❀ let x2 = λy2.T2 in let x1 = λy1.T1 in @(x1, z)
→ let x2 = λy2.T2 in let x1 = λy1.T1 in [z/y1]T1 6❀

In the first case, we end up duplicating the definition of x2.

Example 6 (labelling application). Let M ≡ λx.@(x,@(x, x)). Then L(M) ≡
λx.ℓ0 > @(x,@(x, x) > ℓ1). Notice that only the inner application is post-
labelled.

B Proofs

This section collects the proofs of the results we have stated.

B.1 Proof of proposition 1 [CPS commutation]

The proof takes the following steps:

1. We remark that if V is a value in λℓ and K a continuation in λℓcps then so
are er(V) and er(K). The proof is a direct induction on the structure of V
and K, respectively.

2. For all values V and terms M of the λℓ-calculus, we check that:

er([V/x]M) ≡ [er(V)/x]er(M) .

The proof proceeds by induction on the structure of M .
3. We notice that for all continuations K such that K is an abstraction, λx.(x :
K) ≡ K.

4. For all terms M and continuations K such that either M ∈ W0 and K is an
abstraction or M ∈W1 the following holds:

er(M : K) ≡ er(M) : er(K) .

We proceed by induction on M .
x We expand the definition of x : K depending on whether K is a variable

or a function and we rely on step 2.
λx+.M We have λx+.M ∈ W1 and M ∈ W1. We analyse λx+.M : K

depending on whether K is a variable or a function and we apply the
inductive hypothesis on M and step 2. Notice that it is essential that
M ∈W1 to apply the inductive hypothesis.

@(M0, . . . ,Mn) We know M0, . . . ,Mn ∈ W0. We apply the inductive hy-
pothesis on Mn, . . . ,M0 to conclude that:

er(@(M0, . . . ,Mn)) : er(K)
≡ er(M0) : λx0. . . . er(Mn) : λxn.@(x0, . . . , xn, er(K))
≡ er(M0) : λx0. . . . er(Mn : λxn.@(x0, . . . , xn,K))
≡ · · ·
≡ er(M0 : λx0. . . .Mn : λxn.@(x0, . . . , xn,K))
≡ er(@(M0, . . . ,MN) : K) .

ℓ > M We know that if ℓ > M ∈ Wi then M ∈ Wi and we apply the
inductive hypothesis on M .

M > ℓ By definition, we must haveM > ℓ ∈W0. Hence K is a function and
M ∈W0. Then we apply the inductive hypothesis on M and step 3.

(M1, . . . ,Mn) We know that Mi ∈ W0 for i = 1, . . . , n. First we notice that:

er(λxn.(x1, . . . , xn) : K) ≡ λxn.(x1, . . . , xn) : er(K) .

Then we apply the inductive hypothesis onMn, . . . ,M0 to conclude that:

er ((M1, . . . ,Mn)) : er(K)
≡ er(M1) : λx1 . . . er(Mn) : λxn.(x1, . . . , xn) : er(K)
≡ er(M1) : λx1 . . . er(Mn) : er(λxn.(x1, . . . , xn) : K)
≡ er(M1) : λx1 . . . er(Mn : λxn.(x1, . . . , xn) : K)
≡ · · ·
≡ er(M1 : λx1 . . .Mn : λxn.(x1, . . . , xn) : K)
≡ er((M1, . . . ,Mn) : K) .

πi(M) We know M ∈W0. We observe that er(y : K) ≡ y : er (K). Then we
apply the inductive hypothesis on M to conclude that:

er(πi(M)) : er(K)
≡ πi(er(M)) : er(K)
≡ er(M) : λx.let y = πi(x) in y : er(K)
≡ er(M) : er(λx.let y = πi(x) in y : K)
≡ er(M : λx.let y = πi(x) in y : K)
≡ er(πi(M) : K) .

let x = N in M If let x = N inM ∈Wi then we knowN ∈ W0 andM ∈ Wi.
We apply the inductive hypothesis on N and M to conclude that:

er (let x = N in M : K)
≡ er(N : λx.(M : K))
≡ er(N) : λx.er (M : K)
≡ er(N) : λx.er (M) : er(K)
≡ er(let x = N in M) : er(K) .

5. Then we prove the assertion for M ∈W0 as follows:

er(Ccps(M)) ≡ er(M : λx.@(halt , x)) (by definition)
≡ er(M) : λx.@(halt , x) (by point 4)
≡ Ccps(er(M)) (by definition).

⊓⊔

B.2 Proof of proposition 2 [CPS simulation]

The proof takes the following steps.

1. We show that for all values V , terms M , and continuations K 6= x:

[V/x]M : [ψ(V)/x]K ≡ [ψ(V)/x](M : K) .

We proceed by induction on M .

variable By case analysis: M ≡ x or M ≡ y 6= x.
λz+.M By case analysis on K which is either a variable or a function. We

develop the second case with K = λy.N . We observe:

[V/x](λz+.M) : [ψ(V)/x]K
≡ [λz+, k.([V/x]M : k)/y][ψ(V)/x]N
≡ [λz+, k.[ψ(V)/x](M : k)/y][ψ(V)/x]N
≡ [ψ(V)/x][λz+, k.(M : k)/y]N
≡ [ψ(V)/x]((λz+.M) : K) .

@(M0, . . . ,Mn) We apply the inductive hypothesis on M0, . . . ,Mn as fol-
lows:

[ψ(V)/x](@(M0, . . . ,Mn) : K)
≡ [ψ(V)/x](M0 : λx0 . . .Mn : λxn.@(x0, . . . , xn,K))
· · ·
≡ [V/x]M0 : λx0 . . . [ψ(V)/x](Mn : λxn.@(x0, . . . , xn,K))
≡ [V/x]M0 : λx0 . . . [V/x]Mn : λxn.@(x0, . . . , xn, [ψ(V)/x]K)
≡ [V/x]@(M0, . . . ,Mn) : [ψ(V)/x]K .

Note that in this case the substitution [ψ(V)/x] may operate on the
continuation. The remaining cases (pairing, projection, let, pre and post
labelling) follow a similar pattern and are omitted.

2. The evaluation contexts for the λℓ-calculus described in table 2 can also be
specified ‘bottom up’ as follows:

E ::= [] || E[@(V ∗, [],M∗)] || E[let id = [] in M] || E[(V ∗, [],M∗)] ||
E[πi([])] || E[[] > ℓ] .

Following this specification, we associate a continuation KE with an evalu-
tion context as follows:

K[] = λx.@(halt , x)
KE[@(V ∗,[],M∗)] = λx.M∗ : λy∗.@(ψ(V)∗, x, y∗,KE)
KE[let x=[] in N] = λx.N : KE

KE[(V ∗,[],M∗)] = λx.M∗ : λy∗.(ψ(V)∗, x, y∗) : KE

KE[πi([]) = λx.let y = πi(x) in y : KE

KE[[]>ℓ] = λx.ℓ > x : KE

where M∗ : λx∗.N stands for M0 : λx0 . . .Mn : λxn.N with n ≥ 0.
3. For all terms M and evaluation contexts E,E′ we prove by induction on the

evaluation context E that the following holds:

E[M] : KE′ ≡M : KE′[E] .

For instance we detail the case the context has the shape E[@(V ∗, [],M∗).

E[@(V ∗, [M],M∗) : KE′

≡ @(V ∗, [M],M∗) : KE′[E] (by inductive hypothesis)
≡M : λx.M∗ : λx∗.@(ψ(V)∗, x, x∗,KE′[E])
≡M : KE′[E[@(V ∗,[],M∗)]] .

4. For all terms M , continuations K,K ′, and variable x /∈ fv(M) we prove by
induction on M and case analysis that the following holds:

[K/x](M : K ′)

{

→M : K ′ if K abstraction,M value,K ′ = x
≡ (M : [K/x]K ′) otherwise.

5. Finally, we prove the assertion by proceeding by case analysis on the reduc-
tion rule.
– E[@(λx+.M, V +)] → E[[V +/x+]M]. We have:

E[@(λx+.M, V +)] : K[]

≡ @(λx+.M, V +) : KE

≡ @(λx+, k.M : k, ψ(V)+,KE)
→ [KE/k, ψ(V)+/x+](M : k)
≡ [KE/k]([V/x]M : k)
∗

→ [V/x]M : KE

≡ E[[V/x]M] : K[] .

– E[let x = V in M] → E[[V/x]M]. We have:

E[let x = V in M] : K[]

≡ let x = V in M : KE

≡ V : λx.(M : KE)
≡ [ψ(V)/x](M : KE)
≡ [V/x]M : KE

≡ E[[V/x]M] : K[] .

– E[πi(V)] → E[Vi], where V ≡ (V1, . . . , Vn) and 1 ≤ i ≤ n. We have:

E[πi(V)] : K[]

≡ πi(V) : KE

≡ V : λx.let y = πi(x) in y : KE

≡ let y = πi(ψ(V1), . . . , ψ(Vn)) in y : KE

→ [ψ(Vi)/y](y : KE)
≡ Vi : KE

≡ E[Vi] : K[] .

– E[ℓ > M]
ℓ
−→ E[M]. We have:

E[ℓ > M] : K[]

≡ ℓ > M : KE

≡ ℓ > (M : KE)
ℓ
−→ (M : KE)
≡ E[M] : K[] .

– E[V > ℓ]
ℓ
−→ E[V]. We have:

E[V > ℓ] : K[]

≡ V > ℓ : KE

≡ V : λx.ℓ > x : KE

≡ ℓ > (V : KE)
ℓ
−→ V : KE

≡ E[V] : K[] .
⊓⊔

B.3 Proof of proposition 3 [AD commutation]

(1) We show that for every P which is either a term or a value of the λℓcps-
calculus the following properties hold:

A If P is a term then R(Cad (P)) ≡ P .
B If P is a value then for any term N , R(Ead (P, x)[N]) ≡ [P/x]R(N).

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

R(Cad (@(x, x+))) ≡ R(@(x, x+)) ≡ @(x, x+) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

R(Cad (@(x∗, V, V ∗)))
≡ R(Ead (V, y)[Cad (@(x∗, y, V ∗))])
≡ [V/y]R(Cad (@(x∗, y, V ∗))) (by ind. hyp. on B)
≡ [V/y]@(x∗, y, V ∗) (by ind. hyp. on A)
≡ @(x∗, V, V ∗) .

let x = πi(z) in M Again in case A. We have:

R(Cad (let x = πi(z) in M))
≡ R(let x = πi(z) in Cad(M))
≡ let x = πi(z) in R(Cad (M))
≡ let x = πi(z) in M (by ind. hyp. on A) .

let x = πi(V) in M,V 6= id Again in case A. We have:

R(Cad (let x = πi(V) in M))
≡ R(Ead (V, y)[let x = πi(y) in Cad(M)])
≡ [V/y]R(let x = πi(y) in Cad (M)) (by ind. hyp. on B)
≡ [V/y]let x = πi(y) in R(Cad (M))
≡ [V/y]let x = πi(y) in M (by ind. hyp. on A)
≡ let x = πi(V) in M .

ℓ > M Last case for A. We have:

R(Cad (ℓ > M))
≡ R(ℓ > Cad (M))
≡ ℓ > R(Cad (M))
≡ ℓ > M (by ind. hyp. on A) .

λy+.M We now turn to case B. We have:

R(Ead (λy
+.M, x)[N])

≡ R(let x = λy+.Cad (M) in N)
≡ [R(λy+.Cad(M))/x]R(N)
≡ [λy+.R(Cad (M))/x]R(N)
≡ [λy+.M/x]R(N) (by ind. hyp. on A) .

(y+) Again in case B. We have:

R(Ead ((y
+), x)[N])

≡ R(let x = (y+) in N)
≡ [(y+)/x]R(N) .

(y∗, V, V ∗), V 6= id Last case for B. We have:

R(Ead ((y
∗, V, V ∗), x)[N])

≡ R(Ead (V, z)[Ead((y
∗, z, V ∗), x)[N]])

≡ [V/z]R(Ead ((y
∗, z, V ∗), x)[N]) (by ind. hyp. on B)

≡ [V/z]([(y∗, z, V ∗)/x]R(N)) (by ind. hyp. on B)
≡ [(y∗, V, V ∗)/x]R(N) .

(2) The proof is similar to the previous one. We show that for every P which is
either a term or a value of the λℓcps-calculus the following properties hold:

A If P is a term then er(Cad(P)) ≡ Cad(er (P)).
B If P is a value then for any term N , er(Ead (P, x)[N]) ≡ Ead (er(P), x)[er (N)].

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

er(Cad (@(x, x+))) ≡ er (@(x, x+)) ≡ @(x, x+) ≡ Cad(er(@(x, x+))) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

er(Cad (@(x∗, V, V ∗)))
≡ er(Ead (V, y)[Cad(@(x∗, y, V ∗))])
≡ Ead(er (V), y)[er(Cad (@(x∗, y, V ∗)))] (by ind. hyp. on B)
≡ Ead(er (V), y)[Cad(er (@(x∗, y, V ∗)))] (by ind. hyp. on A)
≡ Cad(er(@(x∗, V, V ∗))) .

let x = πi(z) in M Again in case A. We have:

er (Cad(let x = πi(z) in M))
≡ er(let x = πi(z) in Cad(M))
≡ let x = πi(z) in er (Cad(M))
≡ let x = πi(z) in Cad (er(M)) (by ind. hyp. on A)
≡ Cad(er (let x = πi(z) in M)) .

let x = πi(V) in M,V 6= id Again in case A. We have:

er(Cad (let x = πi(V) in M))
≡ er(Ead (V, z)[let x = πi(z) in Cad(M)])
≡ Ead(er (V), z)[let x = πi(z) in er(Cad (M))] (by ind. hyp. on B)
≡ Ead(er (V), z)[let x = πi(z) in Cad (er(M))] (by ind. hyp. on A)
≡ Cad(er (let x = πi(V) in M)) .

ℓ > M Last case for A. We have:

er(Cad (ℓ > M))
≡ er(ℓ > Cad (M))
≡ er(Cad(M))
≡ Cad(er(M)) (by ind. hyp. on A)
≡ Cad(er(ℓ > M)) .

λy+.M We now turn to case B. We have:

er(Ead (λy
+.M, x)[N])

≡ er(let x = λy+.Cad (M) in N)
≡ let x = λy+.er(Cad (M)) in er(N)
≡ let x = λy+.Cad(er (M)) in er(N) (by ind. hyp. on A)
≡ Ead(er (λy

+.M), x)[er (N)] .

(y+) Again in case B. We have:

er(Ead ((y
+), x)[N])

≡ er (let x = (y+) in N)
≡ let x = (y+) in er (N)
≡ Ead (er((y

+)), x)[er (N)] .

(y∗, V, V ∗), V 6= id Last case for B. We have:

er(Ead ((y
∗, V, V ∗), x)[N])

≡ er(Ead (V, z)[Ead((y
∗, z, V ∗), x)[N]])

≡ Ead(er (V), x)[er (Ead ((y
∗, z, V ∗), x)[N])] (by ind. hyp. on B)

≡ Ead(er (V), x)[Ead (er ((y
∗, z, V ∗)), x)[er (N)]] (by ind. hyp. on B)

≡ Ead(er ((y
∗, V, V ∗)), x)[er (N)] .

⊓⊔

B.4 Proof of proposition 4 [AD simulation]

First we fix some notation. We associate a substitution σE with an evaluation
context E of the λℓcps,a-calculus as follows:

σ[] = Id σlet x=V in E = [R(V)/x] ◦ σE .

Then we prove the property by case analysis.

– If R(N) ≡ @(λy+.M, V +) → [V +/y+]M then N ≡ E[@(x, x+)], σE(x) ≡
λy+.M , and σE(x

+) ≡ V +.
Moreover, E ≡ E1[let x = λy+.M ′ in E2] and σE1

(λy+.M ′) ≡ λy+.M .
Therefore,N → E[[x+/y+]M ′] ≡ N ′ and we check thatR(N ′) ≡ σE([x

+/y+]M ′) ≡
[V +/y+]M .

– If R(N) ≡ let x = πi((V1, . . . , Vn)) in M → [Vi/x]M then N ≡ E[let x =
πi(y) in N

′′], σE(y) ≡ (V1, . . . , Vn), and σE(N
′′) ≡M .

Moreover,E ≡ E1[let y = (z1, . . . , zn) inE2] and σE1
(z1, . . . , zn) ≡ (V1, . . . , Vn).

Therefore,N → E[[zi/x]N
′′] ≡ N ′ and we check thatR(N ′) ≡ σE([zi/x]N

′′) ≡
[Vi/x]M .

– If R(N) ≡ ℓ > M
ℓ
−→ M then N ≡ E[ℓ > N ′′] and σE(N

′′) ≡ M . We

conclude by observing that N
ℓ
−→ E[N ′′]. ⊓⊔

B.5 Proof of proposition 5 [CC commutation]

This is a simple induction on the structure of the term M .

@(x, y+) We have:
er(Ccc(@(x, y+)))
≡ er(let z = π1(x) in @(z, x, y+))
≡ let z = π1(x) in @(z, x, y+)
≡ Ccc(@(x, y+))
≡ er(Ccc(@(x, y+))) .

let x = B in M , B not a function We have:

er(Ccc(let x = B in M))
≡ er (let x = B in Ccc(M))
≡ let x = B in er(Ccc(M))
≡ let x = B in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = B in M)) .

let x = λx+.N in M, fv(λx+.N) = {z1, . . . , zk} We have:

er(Ccc(let x = λx+.N in M))
≡ er (let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(N) in

let x = (y, z1, . . . , zk) in Ccc(M))
≡ let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in er(Ccc(N)) in

let x = (y, z1, . . . , zk) in er (Ccc(M))
≡ let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(er (N)) in

let x = (y, z1, . . . , zk) in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = λx+.N in M)) .

ℓ > M We have:
er(Ccc(ℓ > M))
≡ er(ℓ > Ccc(M))
≡ er(Ccc(M))
≡ Ccc(er (M)) (by ind. hyp.)
≡ Ccc(er (ℓ > M)) .

⊓⊔

B.6 Proof of proposition 6 [CC simulation]

As a first step we check that the closure conversion function commutes with
name substitution:

Ccc([x/y]M) ≡ [x/y]Ccc(M) .

This is a direct induction on the structure of the term M . Then we extend the
closure conversion function to contexts as follows:

Ccc([]) = []
Ccc(let x = (y+) in E) = let x = (y+) in Ccc(E)
Ccc(let x = λx+.M in E) = let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(M) in

let x = (y, z1, . . . , zk) in Ccc(E)
where: fv(λx+.M) = {z1, . . . , zk} .

We note that for any evaluation context E, Ccc(E) is again an evaluation context,
and moreover for any term M we have:

Ccc(E[M]) ≡ Ccc(E)[Ccc(M)] .

Finally we prove the simulation property by case analysis of the reduction rule
being applied.

– Suppose M ≡ E[@(x, y+)] → E[[y+/x+]M] where E(x) = λx+.M . Then:

Ccc(E[@(x, y)]) ≡ Ccc(E)[let z = π1(z) in @(z, x, y+)]

with Ccc(E)(x) = (y, z1, . . . , zk) and
Ccc(E)(y) = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(M). Therefore:

Ccc(E)[let z = π1(z) in @(z, x, y+)]
→ Ccc(E)[@(y, x, y+)]
→ Ccc(E)[let z1 = π2(x), . . . , zk = πk+1(x) in [y+/x+]Ccc(M)]
∗

→ Ccc(E)[[y+/x+]Ccc(M)]
≡ Ccc(E)[Ccc([y

+/x+]M)] (by substitution commutation)
≡ Ccc(E[[y+/x+]M]) .

– SupposeM ≡ E[let x = πi(y) inM] → E[[zi/x]M] whereE(y) = (z1, . . . , zk),
1 ≤ i ≤ k. Then:

Ccc(E[let x = πi(y) in M]) ≡ Ccc(E)[let x = πi(y) in Ccc(M)]

with Ccc(E)(y) = (z1, . . . , zk). Therefore:

Ccc(E)[let x = πi(y) in Ccc(M)]
→ Ccc(E)[[zi/x]Ccc(M)]
≡ Ccc(E)[Ccc([zi/x]M)] (by substitution commutation)
≡ Ccc(E[[zi/x]M]) .

– Suppose M ≡ E[ℓ > M]
ℓ
−→ E[M]. Then:

Ccc(E[ℓ > M])
≡ Ccc(E)[Ccc(ℓ > M)]
≡ Ccc(E)[ℓ > Ccc(M)]
ℓ
−→ Ccc(E)[Ccc(M)]
≡ Ccc(E[M]) .

⊓⊔

B.7 Proof of proposition 7 [on hoisting transformations]

As a preliminary remark, note that the hoisting contexts D can be defined in an
equivalent way as follows:

D ::= [] || D[let x = B in []] || D[let x = λy+.[] in M] || D[ℓ > []]

If D is a hoisting context and x is a variable we define D(x) as follows:

D(x) =

λz+.T if D = D′[let x = λz+.T in []]
D′(x) o.w. if D = D′[let y = B in []], x 6= y
D′(x) o.w. if D = D′[let y = λy+.[] in M], x /∈ {y+}
undefined o.w.

The intuition is that D(x) checks whether D binds x to a simple function λz+.T .
If this is the case it returns the simple function as a result, otherwise the result
is undefined.

Let I be the set of terms of the λℓcps,a such that ifM ≡ D[let x = λy+.T in N]
and z ∈ fv(λy+.T) then D(z) = λz+.T ′. Thus a name free in a simple function
must be bound to another simple function. We prove the following properties:

1. The hoisting transformations terminate.
2. The hoisting transformations are confluent (hence the result of the hoisting

transformations is unique).
3. If a term M of the λℓcps,a-calculus contains a function definition then M ≡
D[let x = λy+.T in N] for some D,T,N .

4. All terms in λℓcc,a belong to the set I (trivially).
5. The set I is an invariant of the hoisting transformations, i.e., if M ∈ I and
M ❀ N then N ∈ I.

6. If a term satisfying the invariant above is not a program then a hoisting
transformation applies.

(1) To prove the termination of the hoisting transformations we introduce a size
function from terms to positive natural numbers as follows:

|@(x, x+)| = 1
|let x = λy+.M in N | = 2 · |M |+ |N |
|let x = C in N | = 2 · |N |
|ℓ > N | = 2 · |N | .

Then we check that if M ❀ N then |M | > |N |. Note that the hoisting context
D induces a function which is strictly monotone on natural numbers. Thus it
is enough to check that the size of the redex term is larger than the size of the
reduced term.

(h1)

|let x = C in let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in let x = C in M | .

(h2)

|let x = λw+.let y = λz+.T in M in N |
= 2 · (2 · |T |+ |M |) + |N |
> 2 · |T |+ 2 · |M |+ |N |
= |let y = λz+.T in let x = λw+.M in N | .

(h3)

|ℓ > let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in ℓ > M | .

(2) Since the hoisting transformation is terminating, by Newman’s lemma it
is enough to prove local confluence. There are 9 = 3 · 3 cases to consider. In
each case one checks that the two redexes cannot superpose. Moreover, since
the hoisting transformations neither duplicate nor erase terms, one can close the
diagrams in one step.

For instance, suppose the term D[let x = λw+.let y = λz+.T in M in N]
contains a distinct redex ∆ of the same type (a function definition containing a
simple function definition). Then the root of this redex can be in the subterms
M or N or in the context D. Moreover if it is in D, then either it is disjoint
from the first redex or it contains it strictly. Indeed, the second let of the second
redex cannot be the first let of the first redex since the latter is not defining a
simple function.

(3) By induction on M . Let F be an abbreviation for let x = λy+.T in N

@(x, x+) The property holds trivially.

let y = C in M Then M must contain a function definition. Then by inductive
hypothesis, M ≡ D′[F]. We conclude by taking D ≡ let y = C in D.

let y = λx+.M ′ in M If M is a restricted term then we take D ≡ []. Otherwise,
M ′ must contain a function definition and by inductive hypothesis, M ′ ≡
D′[F]. Then we take D ≡ let y = λx+.D′ in M .

ℓ > M Then M contains a function definition and by inductive hypothesisM ≡
D′[F]. We conclude by taking D ≡ ℓ > D′.

(4) In the terms of the λℓcc,a calculus all functions are closed and therefore the
condition is vacuously satisfied.

(5) We proceed by case analysis on the hoisting transformations.

(6) We proceed by induction on the structure of the term M .

@(x, y+) This is a program.
let x = B in M ′ There are two cases:

– If M ′ is not a program then by inductive hypothesis a hoisting transfor-
mation applies and the same transformation can be applied to M .

– If M ′ is a program then it has a function definition on top (otherwise
M is a program). Because M belongs to I the side condition of (h1) is
satisfied.

let x = λy+.M ′ in M ′′ Again there are two cases:

– If M ′ or M ′′ are not programs then by inductive hypothesis a hoisting
transformation applies and the same transformation can be applied to
M .

– Otherwise, M ′ is a program with a function definition on top (otherwise
M is a program). Because M belongs to I the side condition of (h2) is
satisfied.

ℓ > M ′ Again there are two cases:

– If M ′ is not a program then by inductive hypothesis a hoisting transfor-
mation applies and the same transformation can be applied to M .

– If M ′ is a program then it has a function definition on top (otherwiseM
is a program) and (h3) applies to M . ⊓⊔

B.8 Proof of proposition 8 [hoisting commutation]

As a preliminary step, extend the erasure function to the hoisting contexts in
the obvious way and notice that (i) if D is a hoisting context then er (D) is a
hoisting context too, and (ii) er (D[M]) ≡ er(D)[er (M)].

(1) We proceed by case analysis on the hoisting transformation applied to M .
The case where er (M) ≡ er (N) arises in (h3):

D[ℓ > let x = λy+.T in M] ❀ D[let x = λy+.T in ℓ > M]
er(D[ℓ > let x = λy+.T in M]) ≡ er(D[let x = λy+.T in ℓ > M])

(2) We show that er(M) ❀ entails thatM ❀. Since er(M) has no labels, either
(h1) or (h2) apply. Then M is a term that is derived from er (M) by inserting
(possibly empty) sequences of pre-labelling before each subterm. We check that
either the hoisting transformation applied to er(M) can be applied to M too or
(h3) applies.

(3) If Ch(M) ≡ N then by definition we have M ❀
∗ N 6❀. By (1) er(M) ❀∗

er(N), and by (2) er(N) 6❀. Hence Ch(er(M)) ≡ er(N) ≡ er (Ch(M)). ⊓⊔

B.9 Proof of proposition 9 [hoisting simulation]

Definition 2. A (strong) simulation on the terms of the λℓcps,a-calculus is a

binary relation R such that if M R N and M
α
−→ M ′ then there is N ′ such that

N
α
−→ N ′ and M ′ R N ′.

Definition 3. A (pre-)congruence on the terms of the λℓcps,a-calculus is an equiv-
alence relation (a pre-order) which is preserved by the operators of the calculus.

Definition 4. Let ≃ be the smallest congruence on terms of the λℓcps,a-calculus
which is induced by structural equivalence and the following commutation of let-
definitions:

let x1 = V1 in let x2 = V2 in M ≃ let x2 = V2 in let x1 = V1 in M

where: x1 6= x2, x1 /∈ fv(V2), x2 /∈ fv(V1).

The relation ≃ is preserved by name substitution and it is a simulation.

Definition 5. Let � the smallest pre-congruence on terms of the λℓcps,a-calculus
which is induced by structural equivalence and the following collapse of let-
definitions:

let x = V in let x = V in M ≃ let x = V in M

where: x /∈ fv(V).

The relation � is preserved by name substitution and it is a simulation.

Definition 6. Let Sh be the relation ≃ ◦ �.

Note that Sh is a simulation too. Then we can state the main lemma.

Lemma 1. Let M be a term of the λℓcps,a-calculus. If M
α
−→ M ′ and M ❀ N

then there is N ′ such that N
α
−→ N ′ and M ′ (❀∗) ◦ Sh N

′.

Proof. As a preliminary remark we notice that the hoisting transformations
are preserved by name substitution. Namely if M ❀ N then [y+/x+]M ❀

[y+/x+]N .
There are three reduction rules and three hoisting transformations hence

there are 9 cases to consider and for each case we have to analyse how the two
redexes can superpose.

As usual a term can be regarded as a tree and an occurrence in the tree is
identified by a path π which is a sequence of natural numbers.

– The reduction rule is

E[@(x, y+)] → E[[y+/z+]M]

where E(x) = λz+.M . We suppose that π is the path which corresponds to
the let-definition of the variable x and π′ is that path that determines the
redex of the hoisting transformation.

(h1) There are two critical cases.
1. The let-definition that defines a function of the hoisting transforma-

tion coincides with the let-definition of x. In this case M is actually
a restricted term T . The diagram is closed in one step.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

(h2) Again there are two critical situations.
1. The top level let-definition of the hoisting transformation coincides

with the let-definition of the variable x in the reduction. This is the
case illustrated by the example 5. If we reduce first then we have
to apply the hoisting transformation twice (again using preservation
under name substitution). After this we have to commute the let-
definitions and finally collapse two identical ones.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

(h3) There are two critical cases.
1. The function let-definition in the hoisting transformation coincides

with the let-definition of the variable x in the reduction. We close
the diagram in one step.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

– The reduction rule is

E[let x = πi(y) in M] → E[[zi/x]M]

where E(y) = (z1, . . . zn) and 1 ≤ i ≤ n.

(h1) There are two critical cases.
1. The first let-definition in the hoisting transformation coincides with

the let-definition of the tuple in the reduction. We close the diagram
in one step

2. The first let-definition in the hoisting transformation coincides with
the projection in the reduction. If we reduce first then there is no
need to apply a hoisting transformation to close the diagram because
the projection disappears.

(h2) The only critical case arises when the redex for the hoisting transfor-
mation is contained in M . We close the diagram in one step using the
fact that the transformations are preserved by name substitution.

(h3) Same argument as in the previous case.

– The reduction rule is

E[ℓ > M]
ℓ
−→ E[M]

The hoisting transformations can be either in E or in M . In both cases we
close the diagram in one step. ⊓⊔

We conclude by proving by diagram chasing the following proposition. We
rely on the previous lemma and the fact that Sh is a simulation.

Proposition 11. The relation Th = ((❀∗) ◦ Sh)
∗ is a simulation and for all

terms of the λℓcc,a-calculus, M Th Ch(M).

B.10 Proof of theorem 1 [commutation and simulation]

By composition of the commutation and simulation properties of the four com-
pilation steps.

B.11 Proof of proposition 10 [labelling properties]

(1) Both properties are proven by induction on M . The first is immediate. We
spell out the second.

x Then Li(x) = x ∈W1 ⊆W0.

λx+.M Then Li(λx
+.M) = λx+.ℓ > L1(M) and by inductive hypothesis L1(M) ∈

W1.

Hence, ℓ > L1(M) ∈W1 and λx+.ℓ > L1(M) ∈ W1.

(M1, . . . ,Mn) Then Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn)) and by induc-
tive hypothesis L0(Mj) ∈ W0 for j = 1, . . . , n.

Hence, (L0(M1), . . . ,L0(Mn)) ∈W1 ⊆W0.

πj(M) Same argument as for the pairing.

let x =M in N Then Li(let x = M in N) = let x = L0(M) in Li(N) and
by inductive hypothesis L0(M) ∈ W0 and Li(N) ∈ W1. Hence let x =
L0(M) in Li(N) ∈ Wi.

@(M1, . . . ,Mn) and i = 0 Then L0(@(M1, . . . ,Mn)) = @(L0(M1), . . . ,L0(Mn)) >
ℓ and by inductive hypothesis L0(Mj) ∈W0 for j = 1, . . . , n. Hence @(L0(M1), . . . ,L0(Mn)) >
ℓ ∈W0.

@(M1, . . . ,Mn) and i = 1 Same argument as in the previous case to conclude
that
@(L1(M1), . . . ,L1(Mn)) ∈W1.

(2) By (1) we know that er(L(M)) ≡M and L(M) ∈W0. Then:

P ≡ C(M)
≡ C(er(L(M)))
≡ er (C(L(M))) (by 1(1)) .

(3) The main point is to show that the CPS compilation of a labelled term
is a term where a pre-labelling appears exactly after each λ-abstraction. The
following compilation steps (administrative, closure conversion, hoisting) neither
destroy nor introduce new λ-abstractions while maintaining the invariant that
the body of each function definition contains exactly one pre-labelling.

As a preliminary step, we define a restricted syntax for the λℓcps-calculus
where labels occur exactly after each λ-abstraction.

V ::= id || λid+.ℓ > M || (V +) (restricted values)
M ::= @(V, V +) || let id = πi(V) in M (restricted CPS terms)
K ::= id || λid .M (restricted continuations)

Let us call this language λℓcps,r (r for restricted). First we remark that if V
is a restricted value and M is a restricted CPS term then [V/x]M is again a
restricted CPS term. Then we show the following property.

For all terms M of the λ-calculus and all continuations K of the λℓcps,r-

calculus the term Li(M) : K is again a term of the λℓcps,r-calculus pro-
vided that i = 0 if K is a function and i = 1 if K is a variable.

Notice that the initial continuation K0 = λx.@(halt , x) is a functional con-
tinuation in the restricted calculus and recall that by definition Ccps(L(M)) =
L0(M) : K0. We proceed by induction on M and case analysis assuming that if
i = 0 then K = λy.N .

x, i = 0 We have: L0(x) : K = x : K = [x/y]N .
x, i = 1 We have: L0(x) : k = x : k = @(k, x).
λx+.M , i = 0 We have:

L0(λx
+.M) : K = λx+.ℓ > L1(M) : K = [λx+, k.ℓ > L1(M) : k/y]N

and we apply the inductive hypothesis on L1(M) : k and closure under value
substitution.

λx+.M , i = 1 We have:

L1(λx
+.M) : k = λx+.ℓ > L1(M) : k = @(k, λx+, k.ℓ > L1(M) : k)

and we apply the inductive hypothesis on L1(M) : k.
@(M1, . . . ,Mn), i = 0 We have:

Li(@(M1, . . . ,Mn)) : K
≡ @(L0(M1), . . . ,L0(Mn)) > ℓ : K
≡ @(L0(M1), . . . ,L0(Mn)) : K

′

≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K
′)

whereK ′ = λy.ℓ > N . Then we apply the inductive hypothesis onMn, . . . ,M1

with the suitable functional continuations.
@(M1, . . . ,Mn), i = 1 We have:

Li(@(M1, . . . ,Mn)) : K
≡ @(L0(M1), . . . ,L0(Mn)) : K
≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K) .

Again we apply the inductive hypothesis on Mn, . . . ,M1 with the suitable
functional continuations.

(M1, . . . ,Mn) We have:

Li((M1, . . . ,Mn)) : K
≡ (L0(M1), . . . ,L0(Mn)) : K
≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K) .

We apply the inductive hypothesis on Mn, . . . ,M1 with the suitable func-
tional continuations.

πj(M) We have:
Li(πj(M)) : K
≡ πj(L0(M)) : K
≡ L0(M) : λx.let y = πj(x) in y : K .

We apply the inductive hypothesis on M with a functional continuation.
let x = N in M We have:

Li(let x = N in M) : K
≡ let x = L0(N) in Li(M) : K
≡ L0(N) : λx.Li(M) : K .

We apply the inductive hypothesis on M and then on N with a functional
continuation. ⊓⊔

	Certifying and reasoning on cost annotations of functional programs

