
FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

Table of contents

II PART B 2

1 Concept and objectives, progress beyond state-of-the-art, S/T methodology and work plan 3
1.1 Concept and project objective(s) . 3
1.2 Progress beyond state of the art . 4

1.2.1 The CerCo approach . 5
1.2.2 User interaction flow . 6
1.2.3 Certification: tools and techniques . 10

1.3 S/T methodology and associated work plan . 12
1.3.1 Overall strategy and general description . 12
1.3.2 Timing of work: packages and their components . 18
1.3.3 Work package list/overview . 20
1.3.4 Deliverable list . 20
1.3.5 Work package descriptions . 20
1.3.6 Efforts for the full duration of the project . 20
1.3.7 List of milestones and planning of reviews . 20

2 Implementation 21
2.1 Management structure and procedures . 21

2.1.1 Management structure . 21
2.1.2 Management procedures . 23

2.2 Beneficiaries . 24
2.2.1 UNIBO . 24
2.2.2 UPD . 25
2.2.3 UEDIN . 26

2.3 Consortium as a whole . 27
2.3.1 Sub-contracting . 27
2.3.2 Funding for beneficiaries from third countries . 27
2.3.3 Additional beneficiaries/Competitive calls . 28
2.3.4 Third parties . 28

2.4 Resources to be committed . 28

3 Potential impact 31
3.1 Strategic impact . 31

3.1.1 Contribution at the European level towards the expected impacts listed in the work programme 31
3.1.2 European dimension . 32
3.1.3 Related national and international research activities . 32

3.2 Plan for the use and dissemination of foreground . 33
3.2.1 Dissemination and Innovation Activities . 33
3.2.2 Exploitation of the results . 34
3.2.3 Management of Intellectual Property Rights (IPR) . 35
3.2.4 Contributions to standards . 35
3.2.5 Contributions to policy developments . 35
3.2.6 Risk assessment and related communication strategy . 35

4 Ethical issues 36

Annex I - Part B: page 1 of 38

Part II

PART B

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

1 Concept and objectives, progress beyond state-of-the-art, S/T method-
ology and work plan

1.1 Concept and project objective(s)

The project aims at the construction of a formally verified complexity preserving compiler from a large subset of C
to some typical micro-controller assembly, of the kind traditionally used in embedded systems.

The work comprises the definition of cost models for the input and target languages, and the machine-checked
proof of preservation of complexity (concrete, not asymptotic) along compilation. In particular, the compiler will
also return tight and certified cost annotations for the source program (expressed in terms of clock-cycles) for
program slices with O(1) complexity. It is then up to the user, possibly assisted by automatic tools, to use this
(trusted) information to state and to prove precise complexity assertions on the program. To this aim, he can
exploit the tools provided by the ongoing research on techniques for invariants generation and cost inference for
imperative programs, with two additional benefits: the guarantee that the inferred intensional properties will carry
over to assembly code; and the adoption of a cost model that is absolutely precise, being induced from the generated
assembly language.

CerCo
Compiler

Complexity

Obligations

Complexity
Proofs

Interactive/automated provers

user

Assembly

C source
program

C source
+

cost
annotations

C source +
cost annotations +

complexity assertions

CerCo

Caduceus−like deductive platforms

Figure 1: Data Flow

The main focus of the current project is on the certified, cost annotating compiler. As for the way cost
annotations are used, we shall develop a proof-of-concept prototype, by interfacing to already existing tools, to
show how this information can be exploited in a useful manner. We will develop abstract interpretation techniques
to infer automatically complexity bounds and, in particular, we will test these techniques on the C code generated
by the compilers of synchronous languages, such as Lustre or Esterel.

Annex I - Part B: page 3 of 38

The major breakthrough of the project is the possibility to give a tight performance estimate for the executable
code (for computing platforms such as microcontrollers, not relying on operating systems), a task that is currently
regarded as highly visionary in the compiler community. The essential paradigm shift consists in creating the
(certified) infrastructure allowing to draw conclusions on the target code, while comfortably reasoning on the
source. The compiler will be open source, and all proofs will be public domain.

1.2 Progress beyond state of the art

Automatic verification of properties of software components has reached a level of maturity allowing complete
correctness proofs of entire compilers; that is of the semantic equivalence between the generated assembly code and
its source program. For instance, in the framework of the Verifix Project a compiler from a subset of Common
Lisp to Transputer code was formally checked in PVS (see [Dold and Vialard]). [Strecker] and [Klein and Nipkow]
certified bytecode compilers from a subset of Java to a subset of the Java Virtual Machine in Isabelle. In the same
system, [Leinenbach et al.] formally verified a compiler from a subset of C to a DLX assembly code. [Chlipala]
recently wrote in Coq a certified compiler from the simply-typed lambda calculus to assembly language, making
an extensive use of dependent types. Perhaps, the most advanced project is Compcert, headed by Leroy, based on
the use of Coq both for programming the compiler and proving its correctness. In particular, both the back-end
([Leroy]) and the front-end ([Leroy and Tristan]) of an optimising compiler from a subset of C to PowerPC assembly
have been certified in this way.

However, very little is known about the preservation of intensional properties of programs, and in particular
about their (concrete) complexity. The theoretical study of the complexity impact of program transformations
between different computational models has so far been confined to very foundational devices. Here we propose to
address a concrete case of compilation from a typical high-level language to assembly. It is worth remarking that
it is unlikely to have constant-time transformations between foundational models: for instance coding a multitape
Turing machine into a single tape one could introduce a polynomial slow-down. Thus, complexity is architecture
dependent, and the claim that you may pass from one language to another, preserving the performance of your
algorithms, must be taken with the due caution. In particular, as surprising as it may be, very little is known about
the complexity behaviour of a compiled code with respect to its source; as a matter of fact, most industries producing
robots or devices with strong temporal constraints (such as, e.g. photoelectric safety barriers) still program such
devices in assembly.

The tacit assumption that the complexity of algorithms is preserved along compilation, while plausible under
the suitable assumptions, is not supported by any practical or theoretical study. For instance, a single register is
usually used to point to activation records, implicitly delimiting their number; you may take more registers to this
purpose, but unless you fix a priori their number (hence fixing the size of the stack), you cannot expect to access
data in activation records in constant time. In particular, the memory model assumed by Leroy assumes an infinite
memory, where allocation requests always succeed, that clearly conflicts with the reality of embedded software,
where one has to work within precise (often relatively small) memory bounds. If working in restricted space on one
side allows us to properly weight memory access as a unit cost, on the other side it introduces a subtle interplay
between space complexity, time complexity and correctness that will be one of the crucial issues of the project.

Even admitting (as we hope to prove) that in a confined universe we may actually preserve complexity, the main
interest of the project is in producing a (certified) computational cost (in terms of clock cycles) for all instruction
slices of the source program with O(1) complexity, thus providing precise values for all constants appearing in
the cost function for the source. This opens the possibility of computing time constraints for executable code by
reasoning directly on the high level input language. In particular, we are not aiming to help analyse the complexity
(or termination) of programs (that has to be guessed by the user, as he guesses invariants in axiomatic semantics),
but we shall build the necessary infrastructure to reflect a high-level, abstract complexity analysis of the source on
a concrete instantiation of its target code.

Such instantiation depends on the target architecture: for instance some microcontrollers lack the multiplication
instruction as a primitive operation, preventing to count such an operation with a fixed cost. Moreover, if we are
interested in a really tight complexity measure, we cannot expect to have a uniform cost for input instructions
since, due to register allocation and optimisations, their actual cost depends on their surrounding context. In other

http://www.info.uni-karlsruhe.de/publications.php/id=213
http://pauillac.inria.fr/~xleroy/compcert/

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

words, we have to face the non compositional nature (in terms of the source structure) of most compiler techniques
and optimizations.

The Compcert project represents the current baseline for any future work on compiler certification, comprising
the one we plan to do. We will improve on Compcert in two directions: by assuming a formal model where resources
(memory) are constrained; and by preserving complexity of O(1) operations, also tracing the way they are mapped
to assembly to reflect actual computational costs on the source code. Both improvements greatly increase the
exploitation potentials, in particular in the domain of embedded systems and real time computation.

1.2.1 The CerCo approach

The complexity of a program only depends on its control-flow structure, and in particular on its cycles (procedures
calls are just a special case of cycles). Proving that a compiler preserves complexity amounts to proving that it
preserves (up to local modifications, like loop unrolling, in-line expansion, etc.) the control-flow structure of the
source1 and, less trivially, that all other instructions are compiled into assembly code whose execution takes a
bounded number of clock-cycles (i.e. with O(1) complexity). The interest of the project lies in the possibility to
compute these costs directly on the target code then refer them back to the source program, allowing the possibility
to make precise and trusted temporal assertions about execution from reasoning on the source code.

As already mentioned, the main problem in the backward translation of costs from target code to source code
is the fact that, apart from the overall control flow structure, all remaining structure of the input is usually
irremediably lost during compilation: optimizations can move instructions around, change the order of jumps, and
in general perform operations that are far from compositional w.r.t. the high level syntactic structure of the input
program. So there is no hope to compute costs on an instruction-by-instruction basis of the source language, since
the actual cost of the executable is not compositional in these figures. We have to find another, eventually coarser,
level of granularity where the source can be sensibly annotated by target costs.

We regard a C program as a collection of mutually defined procedures. The flow inside each procedure is
determined by branching instructions like if-then-else; “while” loops can be regarded as a special kind of tail
recursive procedures. The resulting flow can thus be represented as a directed acyclic graph (DAG). We call a path
of the directed acyclic graph an execution path.

void quicksort(int t[], int l, int r) {
if (l < r) {
int v = t[l];
int m = l;
int i = l + 1;
while (i <= r) {
if (t[i] < v) { m++; swap(t, i, m); }
i++;

}
swap(t, l, m);
quicksort(t, l, m - 1);
quicksort(t, m + 1, r);

}
}

Figure 2: Quicksort

As a simple example, consider the quicksort program of Fig. 2. This algorithm performs in-place sorting of input
array t whose bounds are l and r; initially l is expected to be zero, while r is the length of the array minus one.

1This requires, in turn, the preservation of semantics: the right conditions must be tested, and procedures must be called with the
correct parameters.

Annex I - Part B: page 5 of 38

CompilerC source + cost annotations

CerCo

C source

Checker
Proof

Complexity proof

CerCo

+ complexity assertions
C source + cost annotations

Complexity obligations
Deductive
Platform

Complexity proof

Certified reaction time bound
Checker

Proof

Generator

Proof

+ complexity assertions

C source + cost annotations

Complexity obligations

Synthesizer

Invariant

C source + cost annotations

Deductive

Platform

Synchronous
program

C source

CerCo

Compiler

Sync.Lang

Compiler

Figure 3: Interaction and automation diagrams

The outermost conditional terminates when the bounds of the array are illegal. (Sorting an empty array will end
the recursive behaviour of the algorithm.) The variable v is the so called pivot: a selected element of the array that
will be compared with all other elements. Bigger elements will be moved (by the swap function) to the end of the
array (the upper part), while smaller elements are placed at the beginning of the array (the lower part). Then the
pivot is placed between the lower and the upper part of the array, in position m, its position in the resulting sorted
array; all elements before the pivot are smaller and all elements following it are bigger. The algorithm completes
the sorting with recursive calls on the lower and on the upper parts of the array.

In the body of the quick_sort procedure there are only two execution paths, corresponding to the two cases
l < r and l ≥ r. The latter is a trivial path, immediately leading to termination. The former leads to the while
loop (that is regarded as a procedure call), the call to swap, and the two recursive calls. Similarly, the body of the
while loop is composed by two paths, corresponding to the two conditions i ≤ r and i > r.

All operations performed along any of these paths takes some constant time c. The complexity magnitude of the
program only depends on the loops and recursive calls met along its execution paths, but not on their associated
constants. On the other hand, if we want to give tight performance bounds to the execution time, we have to
compute the real constants on the executable.

The compiler must be able to return a set of pairs (pi, ci), where each pi is an execution path, and ci is its actual
cost2. It is then up to the user to guess (and to prove, assisted by interactive tools) the complexity of the program:
the compiler only provides the infrastructure required to map a complexity analysis on the source into a faithful
analog on the target. This approach looks compatible with most local optimizations. Moreover, since we work on
a cycle-by-cycle (procedure-by-procedure) basis, the approach should scale up well.

1.2.2 User interaction flow

The left part of Fig. 3 shows the interaction diagram for the final user of the system (the right part is a planned
case study for a possible automation of the process and will be discussed later). The interaction is done in several
steps. We illustrate them using the quicksort program above.

1. The user writes her code in C (see Fig. 2) and compiles it with our CerCo (Certified Complexity) compiler.

2. The CerCo compiler outputs both the object code and an annotated copy of the C source (Fig. 4). Each
loop and function body is annotated with the cost of one iteration, along all its possible execution paths. The
cost is expressed as a function of the state of the program, which comprises the value of every variable. (In
the example, we use a textual annotation for simplicity, but we expect to produce a more structured output.)

2A more flexible result would consist in returning pairs (pi, ai) where ai is the sequence of assembly instructions corresponding to
pi; this would allow to take space into consideration, as well as time.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

void quick_rec(int t[], int l, int r) {
/* Cost annotation for quick_rec body (1 cycle only)

@ if (l<r) time += 21;
@ if (l>=r) time += 6; */

if (l < r) {
int v = t[l];
int m = l;
int i = l + 1;
while (i <= r) {
/* Cost annotation for while (1 cycle only)

@ if (t[i] < v) time += 4; else time += 5; */
if (t[i] < v) { m++; swap(t, i, m); }
i++;

}
swap(t, l, m);
quick_rec(t, l, m - 1);
quick_rec(t, m + 1, r);

}
}

Figure 4: Cost annotated C code (generated by the compiler)

The leftmost column of Fig. 5 shows the original source code. Colours are used to relate source code statements
with their respective (human readable) assembly instructions, reported in the central column. That assembly
was produced by gcc3 with a moderate level of optimizations for an Intel 386 family microprocessor. We used
l, r, t, v and m to mention locations (registers and/or stack frame temporaries) in which the corresponding
C variables are placed, while r1, . . . , r9 are other register or temporaries that have no direct mapping to C.
The calling convention puts the first three parameters in r1, r2 and r3, and it is up to the callee to eventually
store them in local temporaries. Assignment is denoted with <-, addition and multiplication with + and *;
the jump instruction is followed by the target address, and when the jump is conditional a C like expression
follows (but its evaluation is performed early by the cmp instruction, that sets a CPU flag recording the result
of the comparison). The only tricky expression is “*(r8 + r7 * 4)”, that exploits an advanced addressing
mechanism corresponding to array indexing (4 is the size of an array cell in bytes, r7 is the index and r8 is
the address at which the array starts). It amounts to the C statement “t[l]” that computes the pivot.

The rightmost column shows two possible execution paths, with a precise estimation of their cost (here 6 and
21 CPU cycles plus the cost of function calls) and the algebraic conditions characterizing these paths.

More precisely

• The CerCo compiler avoids intra-procedural optimisations and loop optimisations that may change the
number of iterations performed in a non trivial way.

• Some intra-procedural or loop optimisations (like the while to repeat pre-hoisting optimisation applied
by gcc in Fig. 5) can be allowed, provided that the compiler records them precisely.

• Once the assembly code is produced, the assembly-level control flow graph is analysed in order to compute
the cost of execution paths. Fig. 5 shows two of them in the rightmost column; the analysis of the while
loop has been omitted, but is similar.

3. The user computes (by hand or semi-automatically) the complexity invariants of each cycle and (recursive)
function, and he adds them to the C code as special comments4 (Fig. 6). The quicksort complexity invariant

3GNU compiler collection, version 4.2
4Again, more interactive forms of annotations can be considered.

Annex I - Part B: page 7 of 38

C source

void quicksort(t,l,r) {

if (l < r) {

int i = l + 1;

int m = l;

int v = t[l];

while (i <= r) {

if (t[i] < v) {

m++;

swap(t, i, m); }

i++;}

swap(t, l, m);

quicksort(t, l, m - 1);

quicksort(t, m + 1, r);

}

Pseudo-Assembly code

24: r <- r3

29: l <- r2

34: cmp l r

36: t <- r1

3a: jump c4 if l >= r

40: i <- l + 1

44: r8 <- t

48: r7 <- l

4b: m <- l

while loop

4e: cmp i r

53: v <- *(r8 + r7 * 4)

57: jump 97 if i > r

59: r7 <- i

5c: r9 <- r8 + r7 * 4

60: jump 6e

62: i <- i + 0x1

65: r9 <- r9 + 0x4

69: cmp i r

6c: jump 92 if i > r

6e: cmp v *r9

72: jump 62 if v <= r9

74: r1 <- t

78: m <- m + 0x1

7c: r2 <- i

7e: r3 <- r12d

81: i <- i + 0x1

84: r9 <- r9 + 0x4

88: call swap

8d: cmp i r

90: jump 6e if i <= r

92: r6 <- m + 0x1

97: r1 <- t

9b: r3 <- m

9e: r2 <- l

a1: call swap

a6: r1 <- t

aa: r3 <- m - 0x1

af: r2 <- l

b2: call quicksort

bc: l <- r6

bf: call quicksort

c4: ret

Execution Paths

l >= r →

24: r <- r3

29: l <- r2

34: cmp l r

36: t <- r1

3a: jump c4 if l >= r

c4: ret

total: 6 clock cycles

l < r →

24: r <- r3

29: l <- r2

34: cmp l r

36: t <- r1

3a: jump c4 if l >= r

40: i <- l + 1

44: r8 <- t

48: r7 <- l

4b: m <- l

while loop

97: r1 <- t

9b: r3 <- m

9e: r2 <- l

a1: call swap

swap

a6: r1 <- t

aa: r3 <- m - 0x1

af: r2 <- l

b2: call quicksort

quicksort

bc: l <- r6

bf: call quicksort

quicksort

c4: ret

total: 21 clock cycles + function calls

Figure 5: Automatic inference of cost annotations from assembly code

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

/* User provided invariant for the quicksort function.
@ ensures (time <= \old(time) + max(0,((1+r)-l))*(max(0,(r-l))*5+21) + 6) */

void quick_rec(int t[], int l, int r) {
/* Cost annotation for quick_rec body (1 cycle only)

@ if (l<r) time += 21;
@ if (l>=r) time += 6; */

if (l < r) {
int v = t[l];
int m = l;
int i = l + 1;
/* @ label L

User provided invariant for the while loop. To perform i iterations
we need at most (i-l)*5 clock cycles.
@ invariant time <= \at(time,L) + (i-l) * 5 &&
Additional invariants of the loop
@ l <= m && l+1 <= i && m <= r && i <= r+1 && m < i && l < r */

while (i <= r) {
/* Cost annotation for while (1 cycle only)

@ if (t[i] < v) time += 4; else time += 5; */
if (t[i] < v) { m++; swap(t, i, m); }
i++;

}
swap(t, l, m);
quick_rec(t, l, m - 1);
quick_rec(t, m + 1, r);

}
}

Figure 6: Invariants annotated C code. The invariants are user provided.

First complexity obligation: case where l < r. The number of clock cycles spent in one
iteration of the recursive function must be greater or equal than the sum of the number of
clock cycles spent in the function body, in the while loop and in the two recursive calls:

∀i, l,m, r. l < r ∧ l + 1 ≤ r ∧ r < i ≤ r + 1 ∧m ≤ r ∧ l + 1 ≤ i ∧ l ≤ m⇒
(i− l) ∗ 5 + 1+
max(0, 1 + r − (m+ 1)) ∗ (max(0, r − (m+ 1)) ∗ 5 + 21) + 6+
max(0, 1 + (m− 1)− l) ∗ (max(0,m− 1− l) ∗ 5 + 21)+
6
≤ max(0, 1 + r − l) ∗ (max(0, r − l) ∗ 5 + 21) + 6

Second complexity obligation: case l ≤ r. The number of clock cycles spent in one iteration
must be greater than the number of clock cycles required when the if statement fails.

l ≤ r ⇒ 6 ≤ max(0, 1 + r − l) ∗ (max(0, r − l) ∗ 5 + 21) + 6

A few others complexity obligations are automatically generated but, being trivial, are
automatically proved by the system.

Figure 7: Complexity obligations (automatically generated). The user should prove every complexity obligation.

Annex I - Part B: page 9 of 38

states the maximum number of clock cycles required by its execution on an array delimited by l and r. Since
the procedure can be called with wrong indices (r < l) the formula has to take into account that the r−l could
be negative using the max function to raise that difference to zero when needed. The literature suggests that
this quicksort implementation (where the pivot v is chosen deterministically) has a quadratic complexity in
the worst case. Cleaning up the formula from multiplicative and additive constants one obtains the expected
asymptotic complexity (r − l)2.

The coefficients are those returned by the cost-annotating compiler. Similarly, the user has to give a complexity
invariant for the inner while loop.

4. The user and compiler annotated C code is fed into an already existing tool (in this example, Caduceus,
[Filliâtre and Marché]) that produces one complexity obligation for each execution path (Fig. 7).

5. The user should prove all complexity obligations. The proofs are the certificate that the user provided
complexity invariant is correct. In many cases, the obligations can be proved automatically using a general
purpose automatic theorem prover or an ad-hoc procedure. For instance, to prove the complexity obligations
of Fig. 7, we must show that a system of inequations holds, which may be done automatically. When an
automatic proof is not possible, the user can resort to an interactive proof.

The right part of Fig. 3 describes a planned case study for the automation of the complexity proof. We start with
a synchronous program which is compiled to C code. The CerCo compiler then produces suitable cost annotations
which are used by an invariant synthesizer to build complexity assertions on the C code. The synthesizer can take
advantage of the high level control flow information contained in the source synchronous program. The deductive
platform (Caduceus) generates complexity obligations which are passed to an ad-hoc proof generator to produce a
machine-checked proof from which we can extract a certified bound on the reaction time of the original synchronous
program. The proof generator can also take advantage of the high level information coming from the original source
program, and user interaction can be used to drive the generator in critical cases.

1.2.3 Certification: tools and techniques

In order to trust the process described in the previous section, we need to trust the CerCo compiler. I.e. we need
to fulfil the following requirements:

1. the compiled assembly program respects the semantics of the C program

2. we need to know that the number of iterations performed by the C and assembly programs are the same, i.e.
to prove that the compiler preserves the complexity

3. we need to prove that the cost annotations generated by the compiler really correspond to the number of
clock cycles spent by the hardware

For this reason, we plan to5:

1. develop an untrusted CerCo compiler prototype in high level programming language;

2. provide an executable formal specification of the target microprocessor;

3. provide an executable formal specification of the C language;

4. develop an executable version of the CerCo compiler in a language suitable to formal correctness proofs;

5. give a machine checkable proof that the latter implementation satisfies all the requirements mentioned above.

5See next section for a more articulated description of the methodology

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

The untrusted compiler will be written in the OCaml programming language, developed and distributed by
INRIA, France’s national research institute for computer science. OCaml is a general-purpose programming lan-
guage, especially suited for symbolic manipulation of tree-like data structures, of the kind typically used during
compilation. It is a simple and efficient language, designed for program safety and reliability and particularly suited
for rapid prototyping.

For the certification of the compiler we plan to use the Matita Interactive Theorem Prover, developed at the
Computer Science Department of the University of Bologna. Matita is based on the Calculus of Inductive Construc-
tions, the same foundational paradigm as INRIA’s Coq system, and it is partially compatible with it. It adopts a
tactic based editing mode. Proof objects (XML-encoded) are produced for storage and exchange. Its graphical in-
terface, inspired by CtCoq and Proof General, supports high quality bidimensional rendering of proofs and formulae,
transformed on-the-fly to MathML markup. In spite of its young age it has already been used for complex formaliza-
tions, including non trivial results in Number Theory and problems from the Poplmark challenge [POPLmark]. An
executable specification for all models of Freescale 8bit ALUs (Families HC05/HC08/RS08/HCS08) and memories
(RAM, ROM, Flash) has also already been formalised in Matita.

For the management of cost annotations and proof obligation synthesis we plan to interface with the Caduceus
verification tool for C programs, developed by the Computer Science Laboratory of the University of Paris sud.
Caduceus is built on top of Why, a general-purpose verification condition generator, exploiting Dijkstra’s weakest
precondition calculus. The Why tool allows the declaration of logical models (types, functions, predicates and
axioms) that can be used in programs and annotations; moreover, it can be interfaced to a wide set of existing
provers for verification of the resulting conditions. In particular, we will rely on Alt-Ergo, which includes a decision
procedure for linear arithmetic.

We plan to support almost every ANSI C construct (functions, pointers, arrays and structures) and data-types
(integers of various sizes) except function pointers, explicit jumps (goto) and pointer aliasing or casting. These
features do not seem to pose major additional challenges to the technology we plan to develop, but could be time
expensive to implement, formalize and prove correct. Moreover, they are not currently supported by Caduceus,
posing additional problems for the development of the proof-of-concept prototype of the whole application. We could
also support floating point numbers, but the kind of micro-controller we are targeting (8 and 16 bits processors)
do not usually provide instructions to efficiently process them. Moreover floating point numbers are seldom used
in embedded software for that very reason, making them a feature of ANSI C of limited interest in our scenario.

We stress that the proposed approach handles costa annotations for C programs as a special case of standard
annotations for imperative programs whose management we plan to automatize with tools such as Caduceus. As
explained above, the choice of the tool does have an impact on the fragment of ANSI C constructs we will handle,
and future advances in this domain could enlarge the fragment of ANSI C under consideration. On the other hand,
tools like Caduceus pose no limitation on the invariants, which can be freely described in a computational and very
expressive logic. Hence, every technique to automatically infer invariants and cost annotations can be exploited
(and often automatized) in Caduceus.

Annex I - Part B: page 11 of 38

http://caml.inria.fr/
http://matita.cs.unibo.it
http://caduceus.lri.fr/
http://alt-ergo.lri.fr

1.3 S/T methodology and associated work plan

1.3.1 Overall strategy and general description

The objectives detailed in Section 1.2 will be pursued by the CerCo Consortium through the actuation of a workplan
described in this section, consisting of a total of 6 Work-Packages (WPs) spanning a temporal frame of 36 months.
Several Consortium partners participate in each WP, according to their specific expertise, know-how and business
interests.

WPs are independent, yet tightly related. Their execution, to be successful, calls for a significant amount of
interaction, information exchange and coordination. Each WP is led by one of the Consortium partners, whose
role is to coordinate the work inside the WP and interfacing and communicating with the other WPs. Each WP is
further broken down into Tasks, each of them is responsible for a specific portion of the work.

Work packages In this section, we provide a brief overview of WP activities, outlining the required inputs and
expected outputs, as well as the foreseen interactions among WPs. The description of the work to be carried
out within each WP, split over the different Tasks, and including information on the specific involvement and
contribution of each Consortium partner along the 36-months lifetime of the project will be presented in a later
section (Tables 1.3.5). A Pert showing the dependencies between the tasks is provided in Fig. 8.

WP1: Project Management

WP2: Compiler Prototype (untrusted)

• Task T2.1 Architectural design

• Task T2.2 Intermediate languages and data structures

• Task T2.3 Implementation

• Task T2.4 Integration, validation and testing

WP3: Verified Compiler - front end

• Task T3.1 Formal semantics of C

• Task T3.2 Functional encoding in the Calculus of Inductive Construction

• Task T3.3 Formal semantics of intermediate languages

• Task T3.4 Correctness proofs

WP4: Verified Compiler - back end

• Task T4.1 Formal semantics of machine code

• Task T4.2 Functional encoding in the Calculus of Inductive Construction

• Task T4.3 Formal semantics of intermediate languages

• Task T4.4 Correctness proofs

WP5: Interfaces and interactive components

• Task T5.1 Management of complexity assertions

• Task T5.2 Automation of complexity proofs

• Task T5.3 Case studies

WP6: Dissemination and exploitation

• Task T6.1 User validation and exploitability

• Task T6.2 Contribution to portfolio and concertation activities at FET-Open level

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

T
as

k
 3

.1

o
f

C

F
o

rm
al

 S
em

an
ti

cs

T
as

k
 4

.1

F
o

rm
al

 S
em

an
ti

cs
 o

f

M
ac

h
in

e
C

o
d

e

 T
as

k
 2

.1

A
rc

h
it

ec
tu

ra
l

D
es

ig
n

T
as

k
 2

.2

In
te

rm
ed

ia
te

 l
an

g
u

ag
es

an
d

 d
at

a
st

ru
ct

u
re

s

M
1

T
as

k
 2

.3

P
ro

to
ty

p
e

Im
p

le
m

en
ta

ti
o

n
M

2
M

3

T
as

k
 3

.2

F
u

n
ct

io
n

al
 E

n
co

d
in

g
 i

n

C
IC

T
as

k
 4

.2

F
u

n
ct

io
n

al
 E

n
co

d
in

g
 i

n

C
IC

T
as

k
 3

.3

F
o

rm
al

 S
em

an
ti

cs
 o

f

In
te

rm
ed

ia
te

 L
an

g
u

ag
es

In
te

rm
ed

ia
te

 L
an

g
u

ag
es

F
o

rm
al

 S
em

an
ti

cs
 o

f

T
as

k
 4

.3

T
as

k
 3

.4

C
o

rr
ec

tn
es

s
P

ro
o

fs

C
o

rr
ec

tn
es

s
P

ro
o

fs

T
as

k
 4

.4

an
d

 T
es

ti
n

g

In
te

g
ra

ti
o

n
,

V
al

id
at

io
n

T
as

k
 2

.4
T

as
k

 6
.1

U
se

r
v

al
id

at
io

n

M
an

ag
em

en
t

o
f

C
o

m
p

le
x

it
y

 A
ss

er
ti

o
n

s

T
as

k
 5

.1

W
P
6

W
P
2

W
P
5

W
P
4

W
P
3

T
as

k
 5

.2
A

u
to

m
at

io
n

 o
f

C
o

m
p

le
x

it
y

 P
ro

o
fs

T
as

k
 5

.3

C
as

e
S

tu
d

y
:

an
al

y
si

s
o

f

sy
n

ch
ro

n
o

u
s

co
d

e

Figure 8: Pert Diagram

Annex I - Part B: page 13 of 38

The work is organized in four main technical Workpackages WP2-WP5, plus two WPs devoted to Project Manage-
ment (WP1) and Dissemination and exploitation activities (WP6).

Work Package WP1 collects the main management activities. The aim of WP1 is to efficiently support technical
and administrative activities and to facilitate good communication and co-operation among the partners, in order
to ensure the successful fulfilment of all project objectives and the achievement of deliverables. As better explained
in Section 2.1 Implementation, the Project Coordinator and the Project Manager will be responsible for the project
management and coordination activities which include: supervision of project progresses and events, coordination
between the work packages, consistency check of the contributions from project partners, check content and timing
of project deliverables, monitoring of the project financial situation. The Project Coordinator will be supported by
WP leaders, which will coordinate the working activities of WPs and will organise WP deliverables.

Work Package WP2 aims at building a functional prototype of the cost annotating compiler (milestone M1).
The compiler will be untrusted, meaning that no proof will be given that the machine code and the cost annotations
returned by the compiler are correct; it will be written in a high-level, comfortable programming language particu-
larly tailored to compiler construction, such as OCaml. This untrusted prototype compiler is the first milestone of
the project, since it will embody the main architectural design of the final compiler, the format of cost annotations,
and the way of computing them. At the same time, it will allow to start experimenting with the management
of cost annotations, the declaration of complexity assertions, the generation of complexity obligations and their
interactive solution (tasks covered by WP5).

All partners will contribute expertise to Task T2.1 where major design choices will be taken and where the
format of cost annotations will be thoroughly discussed. A selection of optimizations compatible with complexity
preservation will also be identified in that task.

UPD will be in charge of the actual implementation of the untrusted compiler (Task T2.3). UPD and UEDIN
will preliminary agree in Task T2.2 on the intermediate languages and data structures for the front-end, in order to
make them easily encodable in CIC (Task T3.3). Similarly UPD and UNIBO will reach an agreement on languages
and data structures for the back-end.

Task T2.4 will be performed by UPD, driven by the feedback collected from UEDIN and UNIBO in Tasks T3.2,
T3.3, T4.2 and T4.3.

Work packages WP3 and WP4 are entirely devoted to the correctness proof of the compiler. Due to the
dimension of the work, this has been split in two major WPs, reflecting the natural decomposition of a compiler
into a front-end (WP3) and a back-end (WP4). The first step of the correctness proof consists in rewriting the
compiler into the internal language of a proof assistant - the Matita Interactive Theorem Prover, in our case - i.e.
in a simplified language more suited than OCaml to formal reasoning (Tasks T3.2 and T4.2). These two tasks will
be respectively performed by UEDIN and UNIBO with the collaboration of UPD who wrote the untrusted compiler
and is responsible, in Task T2.4, of keeping it in sync with the certified one. The complexity of the tasks relies in
the fact that the language of Matita (the Calculus of Inductive Constructions) although quite expressive from a
logical point of view, is very rudimentary from a programming perspective.

The formalization of the source and target language semantics in Tasks T3.1 (UEDIN) and T4.1 (UNIBO) will
be performed during the fist year, in parallel with Task T2.3 (UPD), anticipating the certification of the compiler.

At the end of the second year we plan to have a full prototype of the system (M2), already written in a language
suited to be formally checked for correctness, but still lacking (complete) proofs (part of the formalization will be
already completed during the second year, as part of Tasks T3.3, T3.4, T4.3 and T4.4). Having such a prototype
will allow to start, during the third year, an intensive dissemination activity and the user validation phase.

Starting from month 18, Tasks T3.4 and T4.4 are devoted to the correctness proof and will be respectively
performed by UEDIN and UNIBO with frequent interactions with UPD to clarify the program logic and related
invariants. The outcome of the two tasks will be the main contribution to the final, trusted, prototype of CerCo
(M3).

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

Work Package WP5 will develop a proof of concept prototype of a system to draw complexity assertions on
the execution time of a C program. The system will exploit the output of the CerCo compiler and will be based on
existing tools (like Caduceus) for the management of cost annotations and the synthesis of proof obligations (Task
T5.1). The task will be leaded by UPD with contributions from UEDIN which has expertise as users of interactive
theorem provers. In an additional task T5.2 UPD will focus on the automation of proofs of complexity obligations
with contributions from UNIBO which has expertise in implementation of proof automation.

The synthesis of the annotating invariants will benefit from previous and ongoing research at UPD on the
production of complexity bounds. A first approach that has been experimented on first-order functional programs
amounts to combine a traditional termination proof with a numerical interpretation of the functions (called quasi-
interpretations) that allows to bound the size of the computed data. A second approach which is currently under
development at UPD addresses the complexity of higher-order functional programs with side-effects using the ideas
of (elementary/light) linear logic. In this case, complexity bounds are extracted from the typing of the program.
Of course, in both cases abstraction entails a loss of precision of the analysis and one challenge is to find classes of
programs for which automatic analyses do provide practically useful bounds (cf. case study in task T5.3).

This final task T5.3 will be leaded by UPD and will concern the application of the techniques developed in
task T5.2 (automation of proofs) to the C code generated by available compilers for synchronous languages such as
Lustre or Esterel. This is a relevant class of C programs for which it is indeed important to get concrete complexity
bounds. As a matter of fact, synchronous languages are built around a notion of instant (or phase) and in concrete
applications one has to check that the duration of an instant is less than the time between two input events. A
preliminary analysis reveals that the structure of the generated C code is rather simple. Then the planned case
study aims at automating the process of producing and verifying the invariants which are needed to bound the
duration of an instant for the generated C code.

Work Package WP6 is to manage the knowledge generated by the project and IPRs and to bring the technological
advances to the scientific community and potential users and is further detailed in Section 3.2. In addition to the
standard scientific papers and reports, we will also create software (the certified CerCo compiler itself and the
proof-of-concept exploitation system developed in WP5) and test it on a significant case study that we expect to
be immediately interesting also to private parties. All our software will be developed under an open license. The
Consortium Agreement will contain the policy, rights and obligations on this matter. All partners will contribute
to this work package that will be leaded by UNIBO.

Task T6.1, performed during the last year, will asses the technologies developed in the project in order to ensure
fulfilment of actual requirement of the targeted exploitation communities and it will be based on the Untrusted
CerCo Compiler (M2).

Self assessment and validation As explained in Section 1.1, the first outcome of the project is the CerCo
cost-preserving compiler, first implemented in OCaml (Tasks T2.1, T2.2, T2.3 of WP2) and then in CIC (Tasks
T2.4 of WP2, T3.2 of WP3 and T4.2 of WP4). The compiler will be fully certified for cost-preservation in WP3
and WP4, which are the main instrument for validation of WP2. In particular, in WP3 and WP4, we expect to
detect bugs in the cost-preserving compiler or algorithms whose proof of correctness is too complex to be formalized;
feedback will be immediately provided to WP2 in order to fix the bug or change the algorithms before propagating
the changes back to WP3 and WP4. In particular, UNIBO and UEDIN will be responsible for the proofs and for
bug detection, while UPD will be for bug fixing.

The deliverables provided in WP3 and WP4 are mostly self-validating, since they are formal proofs that are
checked for correctness by the Matita interactive theorem prover. An additional validation of the methodology
adopted in the proofs will be achieved by submitting them to international journals and by presenting them to
international peer-reviewed conferences.

The second outcome of the project is the cost-annoting feature of the CerCo compiler. The concrete exploitability
of the cost-annotations is investigated in the Tasks T5.1, T5.2, T5.3, T6.1. In particular, Tasks T5.1 and T5.2 are
aimed at providing a first layer of techniques and tools to extend cost-annotations to exact computational complexity
proofs for realistic programs and constitute the main self assessment exercise for cost-annotations. Difficulties faced
in the exploitation of the cost annotations must be reflected on the data structures and algorithms used to compute

Annex I - Part B: page 15 of 38

them in the compiler (WP2) and are likely to require modifications to the optimizations implemented in the compiler
(WP2) and proved correct (in WP3 and WP4). Thus, once again, validation feedback needs to be threaded to every
Work Package and intra-WP collaboration triggers bi-lateral collaborations between partners.

Tasks T5.3 and T6.1 are aimed at validating (in the particular scenario of synchronous languages for T5.3) also
the techniques exploited in T5.1 and T5.2, in particular by identifying methodological weaknesses and potential
solutions to improve exploitability in the long term. Task 6.1 will also target potential communities of users
both in academia and in industry in order to disseminate the project results and collect timely feedback used for
self-assessment.

Risk analysis and contingency plan A project like CerCo can encounter a number of adverse situations.
We define a risk as a product between an adverse event and its consequences on the projects achievements of its
objectives. A correct procedure to minimise the overall risk will be taken into account in order to minimise the
possible occurrence of adverse events in the construction of the project.

Technical Risks

Risk Probability Remedial actions
Intra-procedural optimizations
and optimizations altering in
non trivial way the control flow
of the program.

Low/Medium Optimization are important but not crucial for the func-
tional behaviour of the compiler: we may be ready to
pay the improved semantic and complexity reliability
with a small loss in performance. Hence, particularly
problematic optimizations can be skipped.

During certification a bug in
the untrusted compiler code is
spotted.

High The untrusted compiler will also be extensively tested
by traditional techniques, minimizing the risk. More-
over, the certification starts six months before delivery
of the untrusted CerCo compiler to spot most errors
before user validation. Essential parts of the compiler
will be certified first. Man-power can be shifted from
certification of non crucial parts to bug-fixing and re-
certification of the minimal functional core.

A show-stopper issue is faced
during certification, undermin-
ing the goal of a fully certified
compiler. E.g. the formal se-
mantics of the source language
turns out to be unfaithful and
proofs must be redone from
scratch.

Low With the delivery of the second milestone, at month 24,
we already provide a fully functional CerCo compiler,
that can be tested with conventional techniques. Man-
power previously assigned to certification is shifted to
testing.

Matita turns out to be inade-
quate for the task.

Low/Medium We will switch to the Coq proof assistant. Matita is
based on the same logic of the Coq proof assistant and it
is not difficult to manually port scripts from one system
to the other one. Moreover, the two systems can directly
share definitions and proof objects encoded in an XML
dialect for the Calculus of Inductive Constructions.

Lack of portability of the com-
piler to different architectures

Low Preservation of cost models could be very sensitive to
the target architecture and thus the compiler could be
unsuited to support different back-ends. Since we plan
to deliver just a single back-end during the project, this
will not affect the schedule. Generative programming
techniques (as used in gcc) can be considered to improve
portability.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

Sensitivity of the cost annota-
tions to the target architecture

High Cost annotations are sensitive to the target architecture
and they affect the user provided cost invariants and
the proof obligations. Thus even deploying an appli-
cation on similar devices could require major work to
update the invariants and redo the proofs. The problem
is made less severe by increasing the level of automation,
e.g. integrating invariant generators and automatic the-
orem provers. These topics will be addressed during the
project time-frame only in the use-cases and thus they
do not affect the schedule. Further research will be re-
quired in the long term to improve robustness of costs
invariants.

Lack of methodology to help
the user in identifying the cost
invariants

Medium Guessing cost invariants tight enough for the user sce-
nario can be very difficult. Invariant generation tech-
niques can be exploited and further research will be
needed after the end of the project. In the project time
frame we will focus our case-studies on the compilation
of high level synchronous programs. For this restricted
domain, we expect to be able to automatically generate
cost invariants without any major user intervention. If
this expectation turns out to be wrong, we plan to de-
vise a new set of case-studies or to shift man-power to
improve the management of cost invariants.

Consortium Risks

Risk Probability Remedial actions
Not to be able to intervene
with correction just in time

Low To ask to WP leader to prepare periodically reports
based on specific forms defined at the beginning of the
project

Researchers might leave Low/Medium All work to be regularly documented and stored
Divergence among partners on
project running

Low Consortium agreement rules every conflict situation.
The research of consensus is the first objective. How-
ever, after a reasonable amount of time has been allowed
to illustration and defence of conflicting positions, in or-
der to avoid deadlock in project operational progress,
the approval of a two-third majority of Partners will be
considered conclusive.

Bad consortium communica-
tion

Medium Improve team building among members; improve com-
munication facilities; increase face-to-face or telephone
communications when possible

Annex I - Part B: page 17 of 38

Management Risks

Risk Probability Remedial actions
Overestimate work load Medium Study, implement and certify more compiler optimiza-

tions. Alternatively, put more effort on WP5 to im-
prove the proof of concept prototype of exploitation of
the cost annotations or perform more case studies on
more expressive synchronous languages, such as Lucid-
Synchrone.

Underestimate work load in
implementation

Low Manpower can be reassigned from certification to imple-
mentation, certifying only core parts of the compiler.

Underestimate work load in
certification

Medium Certify only core parts of the compiler.

Unrealistic Time Schedule for
milestone M1

Low Tasks T3.3, T4.3 and partially T4.2 can be started be-
fore completion of deliverable D2.2 and perform in par-
allel with the late task.

Unrealistic Time Schedule for
milestone M2

Low This is likely to happen only if T5.1 is late, since other
tasks contributing to M2 are to be completed six months
in advance. In that case, task T5.2 and T5.3 will be
suppressed reassigning man-power to the late task and
to task T6.1 that has to be shortened to achieve in time
milestone M3.

Inaccurate budget allocation Medium Identify necessary re-allocations among partners.

1.3.2 Timing of work: packages and their components

We show the timing of work in the Figure 9.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

G
A

N
T

T
 D

IA
G

R
A

M
M

E

C
er

C
O

P
ar

tn
er

s
pe

rs
on

/m
on

th
s

D
u

ra
ti

o
n

/M
ile

st
o

n
es

/D
el

iv
er

ab
le

s

C
O

N
T

R
A

C
T

 N
. 2

25
97

0
1s

t
p

er
io

d

2n
d

 p
er

io
d

3r
d

 p
er

io
d

W
o

rk
p

ac
ka

g
e

d
es

cr
ip

ti
o

n
s

an
d

 T
as

ks

UNIBO

UPD

UEDIN

Total m/m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

W
o

rk
p

ac
ka

g
e

1:
 P

ro
je

ct
 M

an
ag

em
en

t
9

1
1

11
D

D
D

W
o

rk
p

ac
ka

g
e

2:
 C

o
m

p
ile

r
P

ro
to

ty
p

e
(u

n
tr

u
st

ed
)

7
30

8
45

T
.2

.1
: A

rc
hi

te
ct

ur
al

 d
es

ig
n

3
4

3
10

D

T
.2

.2
: I

nt
er

m
ed

ia
te

 la
ng

ua
ge

s
an

d
da

ta
 s

tr
uc

tu
re

s
1

3
1

5
D

T
.2

.3
: I

m
pl

em
en

ta
tio

n
1

17
2

20
M

1

T
.2

.4
: I

nt
eg

ra
tio

n,
 v

al
id

at
io

n
an

d
te

st
in

g
2

6
2

10

W
o

rk
p

ac
ka

g
e

3:
 V

er
if

ie
d

 C
o

m
p

ile
r

–
fr

o
n

t
en

d

3
3

51
57

T
.3

.1
: F

or
m

al
 s

em
an

tic
s

of
 C

0
0

6
6

D
M

3

T
.3

.2
: F

un
ct

io
na

l e
nc

od
in

g
in

 th
e

C
al

cu
lu

s
of

 In
du

ct
iv

e
C

on
st

ru
ct

io
ns

1
1

9
11

D
M

2

T
.3

.3
: F

or
m

al
 s

em
an

tic
s

of
 in

te
rm

ed
ia

te
 la

ng
ua

ge
s

0
0

5
5

D
M

3

T
.3

.4
. C

or
re

ct
ne

ss
 p

ro
of

s
2

2
31

35
M

3

W
o

rk
p

ac
ka

g
e

4:
 V

er
if

ie
d

 C
o

m
p

ile
r

–
b

ac
k

en
d

45

6
2

53

T
.4

.1
: F

or
m

al
 s

em
an

tic
s

of
 m

ac
hi

ne
 c

od
e

6
0

0
6

D
M

3

T
.4

.2
: F

un
ct

io
na

l e
nc

od
in

g
in

 th
e

C
al

cu
lu

s
of

 In
du

ct
iv

e
C

on
st

ru
ct

io
ns

8
2

0
10

D
M

2

T
.4

.3
: F

or
m

al
 s

em
an

tic
s

of
 in

te
rm

ed
ia

te
 la

ng
ua

ge
s

4
0

0
4

D
M

3

T
.4

.4
: C

or
re

ct
ne

ss
 p

ro
of

s
27

4
2

33
M

3

W
o

rk
p

ac
ka

g
e

5:
 In

te
rf

ac
es

 a
n

d
 In

te
ra

ct
iv

e
C

o
m

p
o

n
en

ts
9

24
4

37

T
.5

.1
: M

an
ag

em
en

t o
f c

om
pl

ex
ity

 a
ss

er
tio

ns
1

4
1

6
M

2

T
.5

.2
: A

ut
om

at
io

n
of

 c
om

pl
ex

ity
 p

ro
of

s
4

3
0

7
M

3

T
.5

.3
: C

as
e

st
ud

ie
s

4
17

3
24

M
3

W
o

rk
p

ac
ka

g
e

6:
 D

is
se

m
in

at
io

n
 a

n
d

 E
xp

lo
it

at
io

n
6

2
3

11

T
.6

.1
: U

se
r

va
lid

at
io

n
an

d
ex

pl
oi

ta
bi

lit
y

1
1

2
4

D
D

T
.6

.2
: C

on
tr

ib
ut

io
n

to
 p

or
tfo

lio
 a

nd
 c

on
ce

rt
at

io
n

ac
tiv

iti
es

...
5

1
1

7

D
D

D
D

79
66

69
21

4

12
m

24
m

36
m

R
ep

o
rt

in
g

 p
er

io
d

s

M
 =

 M
ile

st
o

n
es

 (
im

p
lie

s
D

)

D
 =

 D
el

iv
er

ab
le

s

Figure 9: Gantt diagram

Annex I - Part B: page 19 of 38

1.3.3 Work package list/overview

See Workplan Table WT1: List of work packages.

1.3.4 Deliverable list

The project is organized to provide a completely measurable and verifiable assessment of the state of advancement
of the work, through a detailed list of intermediate deliverables. Most of the technical deliverables are executable
prototypes, permitting an easy verification of their functionality. Some of them are also formal proofs developed in
Matita, hence granted to be correct in themselves and proving the corresponding prototype to be bug free. Finally,
all deliverables that are prototypes will come together with a report that provides the amount of information that
is necessary to understand the design decisions and techniques used in the prototype in order to foster application
of the same techniques to similar scenarios.

For details, see Workplan Table WT2: List of Deliverables.

1.3.5 Work package descriptions

See Workplan Table WT3: Work package description.

1.3.6 Efforts for the full duration of the project

See Workplan Table WT6: Project Effort by Beneficiary and Work Package
and Workplan Table WT7: Project Effort by Activity type per Beneficiary.

1.3.7 List of milestones and planning of reviews

We have one milestone every 12 months. After the first year we plan to have a functional prototype of a cost
annotating compiler, written in OCaml. At the end of the second year, a mature version of the compiler will have
been encoded in CIC together with an executable specification (interpreter) of the source, intermediate and target
language. At the end of the project we will deliver a completely certified version of the cost annotating compiler,
together with a proof of concept implementation of a system that exploits the cost annotations to verify the actual
complexity of compiled programs.

See Workplan Table WT4: List of milestones and Workplan Table WT5: Tentative schedule of Project Reviews.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

2 Implementation

2.1 Management structure and procedures

The Consortium is aware that management activities are extremely important for the successful realisation of the
project as well as for a transparent accountability of the European contribution. The following section details
the management structure foreseen for the CerCo project, the distribution of responsibilities, communication flow,
decision making procedures and conflict management.

2.1.1 Management structure

The organisation structure of the Consortium will include the following components: Project Coordinator, Project
Manager, Advisory Board. They will be assisted by WP leaders. A general schema is presented in Figure 10.

Figure 10: Project management interactions

Project Coordinator The project will be coordinated by the University of Bologna, Italy.
The Coordinator will be Dr. Claudio Sacerdoti Coen of the Department of Computer Science who will be
the ultimate responsible for the overall coordination of the Project, especially but not limited to the scientific
point of view. Dr. Claudio Sacerdoti Coen already acted as WP leader in Project IST-2001-33562 Mowgli,
he coordinates the Strategic Project DAMA (Dimostrazione Assistita per la Matematica e l’Apprendimento)
of the University of Bologna, and he participated to several European, National and local projects.

The Coordinator shall:

• act as an intermediary between the Contractors and the European Commission in order to keep constantly
informed both the EC about any aspect that may affect the work progress and the Consortium on EC
indications;

• receive the financial contribution from the Commission and ensure timely budget allocation to the Con-
tractors consistently with the program of activities and the decisions taken by the appropriate Bodies;

• supervise the scientific, technical, financial and administrative progress of the Project;

• receive from the partners any proposal for modification/re-planning of the activities agreed;

Annex I - Part B: page 21 of 38

• submit to the Commission reports, Project Deliverables and financial statements prepared and duly
certified by the Contractors;

• keep accurate records identifying the budget share allocated to each Contractor and inform the EC of
the distribution of funds and the date of transfer to the partners on an annual basis;

• organize and ensure appropriate communication among the partners;

• chair the meetings of the Advisory Board;

The coordinator will be supported by the Project Management Team and, for matters of general relevance,
by the Advisory Board.

Project Manager The Project Manager will be appointed within the Project Management Team of the EU
Research Dept. of the University of Bologna, that will ensure high quality management for the project.
The European Research Department at UNIBO is dedicated to legal, financial and administrative support
of European research projects and was set up in 1994. Since then, the European Research Department has
gained a considerable experience in the management of international and European projects and has been
recently strengthened in terms of skills and human resources. At present the Project Management Team
at the European Research Department at UNIBO is managing about 40 projects funded within FP6 and
more than 70 projects funded within FP7. For most of the projects coordinated by UNIBO (about 15), the
Project Management Team is responsible for the overall project management activities, including day-by-day
management, monitoring of activities, reporting and financial management. For the remaining projects, which
involve UNIBO as a partner, the Team is dealing mainly with financial and administrative management. The
Project Management Team is also involved in management activities within other European Commission
Programme projects, such as Culture2000, Life, Interreg and Daphne.

The PM will be working in close cooperation with the Coordinator and will be in charge of the following
tasks:

• assist the coordinator in the day-by-day management of the project, organize the procedures for internal
communication within the consortium, as well as for the collection of reports and deliverables

• assist the Coordinator in the financial management of the project, collect financial statements from the
partners,

• support the organization, preparation and follow up of periodical meetings,

• support the partners with reference to procedures requested by the European Commission.

Advisory Board The Advisory Board (AB) consists of one representative of each partner and is chaired by the
Coordinator. It is responsible for discussing the general RTD direction of the project and for ensuring the
completion of the work plan within the scheduled time frame. The AB will meet at least 4 times during the
project (a kick off meeting and further general meetings at month 12, 24 and 36).

In particular, Advisory Board shall be responsible for:

• decisions concerning the work plan and its major changes;

• allocation of the budget to the work plan and any financial and budget-related matters;

• decisions with regard to any amendment of the terms of the EC contract and Consortium Agreement
which should prove necessary;

• decisions concerning possible premature completion/termination of the project

• settling any disputes arising from project implementation

• IPR-related matters

• press releases and joint publications by the partners with regard to the project.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

All decisions will be taken by consent; in case a voting is necessary, each representative shall have one vote
and may appoint a substitute to attend and vote at any meeting of the AB.

As far as the work plan implementation is concerned, the AB will be operatively supported by Work Package
Leaders appointed within the WP leading institutions.

The following tasks are in charge of the WP Leaders:

• coordination and monitoring of the progress of the tasks foreseen in the respective WP;

• organization, collection and quality control of the foreseen deliverables;

• coordination with the other WP Leaders and the Coordinator in order to ensure exchange of information.

• information of the Coordinator and of the other partners of any event within the WP that may affect the
foreseen scheduling of the work

2.1.2 Management procedures

Meetings
The AB will meet at least 4 times during the project duration (36 months). Meetings shall be convened by the

Coordinator with at least 30 calendar days prior notice, accompanied by an agenda. The agenda shall be deemed
to be accepted unless one of the members notifies the coordinator and the other members in writing of additional
points to the agenda, at the latest two working days before the date of the meeting. During the meeting, scientific
presentation of the results obtained will be held by the consortium members. Minutes of the meetings shall be
published on the web site within 30 calendar days after the date of the meeting. The minutes shall be considered
as accepted by the other members if, within fifteen calendar days from publication, no member has objected in a
traceable form to the Coordinator. Each meeting will deliver, further to the minutes, copies of associated scientific
lectures. Copy of the presentations will be also available in the Web page.

Communication
The communication among partners is very important, since it not only allows the smooth realization of the

project activities, but furthermore encourages exchange and research creativity. Further to project meeting, e-mail
and telephone (conference calls) will be the preferred communication tool among partners. An Internet website
will be set up at the project start to facilitate exchange of information among partners and to enable partners to
upload and download project relevant data and information in an easy way. The project web-site will include a
section with access restricted to project partners.

Monitoring
The project plan is structured in work packages grouping activities and tasks and following the logical phases

of the project. Each work package will have specific deliverables and a verifiable end-point which represents an
important milestone in the overall project. This structure will enable adequate and effective monitoring by the
project partners and by the Commission. Possible problems and relative corrective measures will be early detected
and will be brought to the attention of the AB.

Decision making and conflict resolution
In general, it is expected that possible conflicting views will be solved bilaterally within the WP or task where

they may emerge. In the exceptional case when conflicts cannot be solved, the AB may be called to solve the
conflict. The AB will make a final binding decision, if necessary, by voting. All pending conflicts will be solved
within reasonable time frames and the AB shall make a decision within 20 working days.

A Consortium Agreement,detailing responsibilities of partners, financial provisions and other contractual pro-
visions (including conflict resolution) will be agreed upon and signed by all partners during the first months of the
project.

Annex I - Part B: page 23 of 38

2.2 Beneficiaries

2.2.1 UNIBO

The Department of Computer Science of the University of Bologna covers a wide range of research areas in the field
of Information and Communication Technologies, with particular emphasis on distributed and real time system, and
theory and implementation of programming languages. The HELM team, active since year 2000 and coordinated
by Prof. Asperti, is focused on the study and implementation of tools and techniques for the automation of formal
reasoning, and the certification of software properties, resulting in the recent release of the Matita interactive
theorem prover.

Role in the project and main tasks

UNIBO is the Project coordinator, hence responsible for the Project Management activities of WP1. It is also
responsible for WP4, namely the development of the certified back-end of the CerCo compiler and WP6 dissemina-
tion and exploitation. It will also actively participate to the design and implementation of the untrusted prototype
compiler (WP2) and the management of complexity assertions and automation of complexity proofs (WP5).

Relevant previous experience (Formalization and Management of Knowledge)

• European projects: EU Project IST-2001-33562 MoWGLI (coordinator: Prof. Andrea Asperti; WP leader:
Dr. Claudio Sacerdoti Coen), EU Project IST-2001-37057 MKM-NET (member), TMR-Network LINEAR
(member)

• Recent national and local projects: PRIN 2002-06 McTafi (national, member), DAMA (Strategic Project
of Universiy of Bologna; coordinator: Dr. Claudio Sacerdoti Coen), “Formalization of Formal Topology by
means of the interactive theorem prover Matita” (Strategic Project of the University of Padova; member)

Staff members involved (UNIBO)

Claudio Sacerdoti Coen Researcher University of Bologna
Andrea Asperti Professor University of Bologna
Research fellow (24 months) to be hired with project fundings
PostDoc (24 months) to be hired with project fundings

Key person

Claudio Sacerdoti Coen was born in 1976. He got a Ph.D. in Computer Science by the University of Bologna
in 2004. After a Post-Doc at INRIA-Futurs (FR), he became a Ricercatore (permanent researcher) in Computer
Science at the University of Bologna, where he has been teaching Operating Systems and Logic. His main research
interests are the development of interactive theorem provers, their application to the formalization of mathematics,
and knowledge management of formal mathematics. He is the author of over 30 peer-reviewed publications in
mathematical knowledge management, type theory and automated reasoning. Recent publications relevant to the
project comprise:

1. A.Asperti, W.Ricciotti, C.Sacerdoti Coen, E.Tassi. A compact kernel for the calculus of inductive construc-
tions. In Special Issue on Interactive Proving and Proof Checking of the Academy Journal of Engineering
Sciences (Sadhana) of the Indian Academy of Sciences. SADHANA. vol. 34(1), pp. 71–144, 2009.

2. A.Asperti, C.Sacerdoti Coen, E.Tassi, S.Zacchiroli. User Interaction with the Matita Proof Assistant. Journal
of Automated Reasoning, Special Issue on User Interfaces for Theorem Proving, 39(2), pp.109–139, 2007.

3. C.Sacerdoti Coen. Declarative Representation of Proof Terms. In Special Issue on Programming Languages
for Mechanized Mathematical Systems, Journal of Automated Reasoning, to appear in 2009.

http://matita.cs.unibo.it/

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

2.2.2 UPD

The University Paris Diderot is the major pluri-disciplinary University in France. The University gathers 26,000
students, 1,800 researchers and academic staff and 125 research teams covering a wide range of fields. The laboratory
PPS (Proofs, Programs, and Systems) is a joint laboratory of University Paris Diderot and the CNRS (Centre
National de la Recherche Scientifique) whose research spans from mathematical foundations to open source software
development. The main scientific themes of the laboratory are: (1) Mathematical structures of programming, in
particular game semantics, linear logic, and algebraic methods, (2) Proof and rewriting theory, in particular type
theory, extraction of programs from proofs via realisability interpretations, explicit substitutions, and formal proof
developments in Coq (3) Concurrency and modelling, in particular models of concurrent programming, probabilistic
systems, and molecular biology modelling. (4) Software tools, in particular web languages and programming and
environments for open source software development and distribution.

Role in the project and main tasks

The UPD site will lead the Work Package 2 on the development of an (unverified) prototype compiler. This activity
should be completed during the first 18 months of the project. Starting from month 12, it will take up coordination
of Work Package 5 (management of complexity assertions and automation of complexity proofs).

Relevant previous experience (resource analysis)

• EU Project IST-2001-33149 on Mobile Resource Guarantees (2003) (member).

• Control of Resources and Interference in Synchronous Systems (2003-2006), French national ANR programme
on Security and Informatics (coordinator).

• Parallelism and Security (2006-2009). French ANR programme on Security and Informatics (member).

Staff members involved (UPD)

Roberto Amadio Professor University Paris Diderot
Yann Régis-Gianas Lecturer/Assistant professor University Paris Diderot
PostDoc (12 months) to be hired during year 1
PhD Student (36 months) to be hired

Key person at UPD

Roberto Amadio is Professor at the University of Paris Diderot. Previously he has held positions as Professor
at the University of Aix-Marseille 1 and as Research Fellow of CNRS in Nancy and Nice. He holds a PhD from
the University of Pisa and an Habilitation from the University of Nancy. He is the author of a monograph on
Domains and Lambda-Calculi and of over 50 publications on domain theory, semantics of λ-calculus and type
theory, process calculi, models of migration, protocol analysis and verification, mobile code and resource control.
He is a member of the steering committees of the conferences Concurrency Theory, Computer Security Foundation
Symposium, and European Joint Conferences on Theory and Practice of Software (ETAPS). He is also responsible
for the University Paris Diderot of the Master Parisien de Recherche en Informatique which is the leading Research
Master in Informatics in France. He is currently teaching a course on syntax analysis and compilers.

Recent publications related to the project comprise:

1. R. Amadio, S. Coupet-Grimal, S. Dal Zilio, L. Jakubiec. A functional scenario for bytecode verification of
resource bounds. In Proc. Computer Science Logic, Springer LNCS 3210 , 2004.

2. R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae, 65(1-2):29–60, 2005.

3. R. Amadio, S. Dal-Zilio. Resource control for synchronous cooperative threads. Theoretical Computer Science,
358:229–254, 2006.

Annex I - Part B: page 25 of 38

http://www.pps.jussieu.fr/~amadio/Ens/Compilation/

2.2.3 UEDIN

The School of Informatics in the University of Edinburgh is one of the largest and most successful computing
departments in the UK, as borne out by the latest UK Research Assessment Exercise (2008) which showed the
School had a a significantly larger volume of research rated internationally excellent (3*) or world leading (4*) than
any other university in the UK. The School has world-class research institutes in the areas of theoretical computer
science, computing systems architecture, artificial intelligence and cognitive science.

This project will be carried out in the Laboratory for Foundations of Computer Science (LFCS) (http://www.
lfcs.inf.ed.ac.uk), a research group in theoretical computer science, with expertise in areas including Logic and
Semantics (Prof. Gordon Plotkin), Complexity (Dr. Kousha Etessami, Dr. Mary Cryan), Programming Languages
(Prof. Philip Wadler) and Databases (Prof. Peter Buneman). The LFCS has a long history of work on computer
assisted proof, including the development of foundational type theories such as the Edinburgh Logical Framework,
and the Extended Calculus of Constructions. The LFCS has also worked on tools for machine proof, including the
proof assistant LEGO, and Proof General, a generic front-end for proof assistants.

Also part of Edinburgh School of Informatics is the Institute for Computing Systems Architecture, with expertise
in advanced compilers (Prof. Michael O’Boyle).

Role in the project and main tasks

The UEDIN site will lead the Work Package 3 on the certification of the front end of the CerCo compiler. It will
also actively contribute to the development of the unverified prototype compiler in WP2.

Relevant previous experience (resource analysis)

• EU Project IST-2001-33149 MRG on Mobile Resource Guarantees (2003) (member).

• EU Project IST-15095 MOBIUS on Mobility, Ubiquity and Security (2005) (member)

• EPSRC funded project EP/C537068/1 ReQueST on Resource Quantification in eScience Technologies (2005)

Staff members involved (UEDIN)

Robert Pollack Research Fellow, University of Edinburgh
Post Doc (24 months) to be hired during year 1
PhD Student (36 months) to be hired

Key person at UEDIN

Dr. Robert Pollack is a world expert in computer assisted proof and proof assistants. He has a long history of
contributions in the application of type theory. In the late 1980s he developed the LEGO system at Edinburgh.
More recently, Dr. Pollack has worked on several formalization projects, including a formalization of the fundamental
theorem of algebra and investigations into ways to represent modularity and binding structure. He was on the
steering committee of the EU Coordination Action 510996 TYPES, and involved in several previous EU actions.

For 17 years he worked as a software engineer specialized in real-time systems, in particular industrial process
control and air traffic control. On these topics he had been Consultant to the Transportation Systems Center of
the U.S. Department of Transportation, and chief software engineer of a startup company building process control
computers.

Recent publications related to the project comprise:

1. Brian E. Aydemir, Arthur Charguraud, Benjamin C. Pierce, Randy Pollack, Stephanie Weirich. Engineering
formal metatheory. In Principles of Programming Languages (POPL), pp. 3–15, IEEE 2008.

2. Thierry Coquand, Randy Pollack, Makoto Takeyama. A Logical Framework with Dependently Typed Records.
Fundam. Inform. 65(1-2): 113-134, 2005.

http://www.lfcs.inf.ed.ac.uk
http://www.lfcs.inf.ed.ac.uk

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

2.3 Consortium as a whole

The participants to the consortium group together the minimal set of skills, know how and resources capable
of achieving the project objectives. The project lies at the intersection between complexity, formal checking and
compilers, requiring not only experts of the three fields, but also people with some knowledge and sensibility towards
all the different topics.

The main research field of UNIBO is currently on tools and techniques for the automation of formal reason-
ing, and especially on the development of the new Interactive Theorem Prover Matita and its applications to
correctness proofs for critical software applications. The group has direct experience on the formalization of micro-
controllers in Matita, as testified by an executable specification for all models of Freescale 8bit micro-controllers
available at the address http://matita.cs.unibo.it/library.shtml. The formalization captures all ALU families (Fam-
ilies HC05/HC08/RS08/HCS08) and all kind of memories that can be installed (RAM, ROM, Flash). The formal-
ization comprise the computational cost of every machine operation, allowing to reason at the level of granularity
of single clock cycles. An OCaml emulator running at reasonable speed has also been automatically extracted
from the executable specification. In addition, the UNIBO site has past didactical and experimental experience in
compiler construction, and good knowledge of complexity theory. In particular, Andrea Asperti held the chair in
Programming Languages and Compilers in the period 1992-2000, writing scientific and didactical monographs on
the topics,6 and is currently teaching Computability and Complexity Theory.

The present research focus of UPD is mostly on complexity aspects, and resource control for real time systems,
but they are expert in compiler construction, and comprise members with good experience in the use of interactive
provers. In particular, Roberto Amadio is currently teaching a course on Syntax Analysis and Compilers at the
University of Paris Diderot and he recently coordinated the National Project Criss, comprising the development
of a small compiler for a first order functional language, producing bytecode annotated with relevant complexity
information using shape analysis. This compiler was programmed in OCaml.

Finally, UEDIN offers much experience in the theory and implementation of programming languages, with
particular emphasis on the formal engineering of their metatheory. Randy Pollack is the author of LEGO, a well
known Interactive Prover of the nineties (no longer maintained) that was used by many students and researchers.
Prior to that, Pollack had been an industrial software engineer specializing in real-time systems. He is currently
working in the Mobility and Security Group at UEDIN, which has participated in 2 recent EU projects on formal
certification of resource properties.7 Pollack was also on the steering committee of the recently completed EU
Coordination Action TYPES. In addition, UEDIN has significant research groups in areas of complexity and
compilers.

All the partners have previously worked, alone or together, in European projects of different nature and sizes,
including RTD projects. The above mentioned projects have successfully completed, demonstrating the capabilities
of the CerCo partners of carrying out projects of European dimension, as well as their positive attitude to collabo-
rative work. In many cases, the partners CerCo Consortium have acted as project coordinators; as such, they are
well aware of execution and management policies of EU-funded projects.

2.3.1 Sub-contracting

Subcontractors will only be used for production of Certificates of Financial Statements, as required by FP7 rules.
Other subcontracting has not resulted to be necessary since all competences required for carrying out the action
are represented within the consortium.

2.3.2 Funding for beneficiaries from third countries

NOT APPLICABLE

6A.Asperti and S. Guerrini. The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1998. - A.Asperti and R.Davoli. Esperimenti di compilazione in ambiente Unix.
Edizioni Pitagora, 1994.

7IST-2001-33149 MRG on Mobile Resource Guarantees, and IST-15095 MOBIUS on Mobility, Ubiquity and Security

Annex I - Part B: page 27 of 38

http://matita.cs.unibo.it/library.shtml
http://www.pps.jussieu.fr/~amadio/Criss/criss.html
http://www.pps.jussieu.fr/~amadio/Criss/shape-analysis.html
http://www.cs.chalmers.se/Cs/Research/Logic/Types

2.3.3 Additional beneficiaries/Competitive calls

NOT APPLICABLE

2.3.4 Third parties

NOT APPLICABLE

2.4 Resources to be committed

The overall budget of the CerCo project for the 36 months reported on the A3 form shows that the total costs of
the project is 1,523,743 Euro, and the requested grant from the EU is 1,164,533 Euro. The total effort dedicated
to the project illustrated in the graph below is equal to 214 person-months. The dark grey represents the share not
funded person-months by EC.

Person months distribution among partners

Breakdown by type of activity
A percentage of total costs equal to 86.31% will be allocated to RTD activities (including WP2, WP3, WP4 and
WP5), excluding dissemination activities (WP6), which account for 7,98% of total costs. Management activities
(WP1) are budgeted at 5,70% of the total costs. These costs include: the staff specifically dedicated to the project,
involved in the daily coordination and the reporting of the project, costs for the certificates on the financial statement
(when applicable).

Breakdown by type of activity

Breakdown by cost factors The above mentioned resources will be integrated to give to CerCo the necessary
critical mass to achieve the project milestones and deliverables. All the resources described have been estimated
analytically per costs category. In the graph here included is depicted the overall budget distributed among the
main categories of eligible costs.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

Breakdown by cost factor

The costs represented will cover:
Personnel costs (866,818e, 56,89%): they represent the main share of the budget. The allocation of person-

months to the different partners reflects the activities they will carry out within the project. The overall effort of the
project is 214 person months, including new personnel hired specifically for the implementation of the project and
permanent personnel working in the different partner organizations, which constitutes the main own contribution
element provided by participants to complement the EC contribution.

The person-month distribution by partner and WPs is quite balanced and reflects their role in the project:

• UNIBO (Participant n. 1, coordinator): 79 p-m in total, 70 p-m for RTD, 9 p-m management

• UPD (participant n. 2): 66 p-m in total, 65 p-m for RTD, 1 p-m management

• UEDIN (participant n. 3): 66 p-m in total, 65 p-m for RTD, 1 p-m management

Subcontracting costs (9,400e, 0,62%): they include costs related to the production of Certificates of Financial
Statements, as required by FP7 rules. Other subcontracting has not resulted to be necessary since all competences
required for carrying out the action are represented within the consortium.

Other direct costs (120,918e, 7,94%): they include:

• Travel& Subsistence (83,511e) costs provide for each partner the necessary budget for participating to the
project coordination meetings foreseen in Europe. A relevant share of this resources are specifically assigned to
the General Assembly meetings. In particular, annual or semester meetings have been planned to coordinate
the CerCo activities: thus, considering the kick-off meeting, this leads to at most 7 coordination meetings for
the overall project. We also foresee temporary visits and exchange of researchers between the participating
sites, in particular in order to acquire competences on the tools used or developed by the visited site. A share
of the T&S costs is allocated to dissemination activities and will allow partners to participate to conferences
in order to present the contents and results of the project. Furthermore a small budget share has been kept by
the Co-ordinator for management purposes (possible need to visit partners and/or the European Commission).

Travels outside EU will be subject to prior authorization by the Project Officer.

• Equipment costs (4,000e) include only depreciation of some equipments which are needed for the project, while
mostly partners will perform their research using in-home available instrumentation. In particular equipment
includes a network server to be hosted by the coordinator and to be dedicated only to the project. The server
will be used for dissemination (hosting the project Web site) and communication between partners (hosting
the mailing list server and the message archive, but also acting as the central repository for the distributed
versioning system used by partners to share and maintain the history of documents and prototypes). Moreover,
we will set up on the server a continuous building system to run regression tests overnight in order to have
early detection of (re)introduction of bugs or loss of features.

• Other specific costs (33,407e): conference fees, costs for the hosting of meetings, costs for dissemination
activities such as the organization of workshops, the setting up and maintenance of the CerCo web site, and
costs related to dissemination materials (flyers, posters, etc.).

Annex I - Part B: page 29 of 38

Indirect costs (526,607e, 34,56%): they are calculated considering the indirect cost models chosen by each
participant, according to the provisions of FP7 financial rules, and each specific accounting principle.

The following table details the overall budget of the project per WP and per main cost factors.

WP n. p-m Personnel Subcontr. Travels Equipm. Consu-
mable

Other
specific
costs

Indirect
costs

Total Cost Total EC
Contribu-
tion

WP1 11 48,419 9,400 0 0 0 0 29,087 86,906 —
Tot.MGT 11 48,419 9,400 0 0 0 0 29,087 86,906 86,906
WP2 45 172,496 0 18,178 4,000 0 4,375 117,648 316,697 —
WP3 57 237,949 0 25,258 0 0 7,871 104,013 375,091 —
WP4 53 221,448 0 10,794 0 0 3,587 142,053 377,882 —
WP5 37 138,788 0 16,589 0 0 787 89,373 245,537 —
WP6 11 47,718 0 12,692 0 0 16,787 44,433 121,630 —
Tot.RTD 203 818,399 0 83,511 4,000 0 33,407 497,520 1,436,837 1,077,627

TOTAL 214 866,818 9,400 83,511 4,000 0 33,407 526,607 1,523,743 1,164,533

Partner’s resources which will complement the EC contribution As already said, the main own contri-
bution provided by participants are person months of permanent personnel paid partner institutions. Moreover, all
CerCo partners will use and share their own laboratories and facilities to carry on the foreseen research activities.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

3 Potential impact

3.1 Strategic impact

In spite of the many recent, astonishing achievements in proof checking (proofs of the four colors theorem [Mackenzie,
Gonthier] and prime number theorem [Avigad et al.], ongoing proof of the Kepler conjecture [Hales], etc.) and
program verification (see the long list of results mentioned in Section 1.2) the field of computer assisted reasoning,
with its long term vision of a fully dependable, formally checked information society is still one of the most visionary
field of computer science. The impressive results obtained in this area are only partially due to the advancements
in the tools for assisted reasoning, but especially to a growing confidence in their potentialities.

Compilers, filling the gap between humans and machines from the programming point of view, are one of the
main tools at the base of the information technologies. We cannot hope to build truly trustworthy, dependable and
long-lasting systems over shaky foundations: the semantics of compilation must be better understood. There is some
history of work in certified compilers [Dave], and a series of workshop meetings on the topic (Compiler Optimization
Meets Compiler Verification, 2003 – 2009). Only very recently has end-to-end certification of a realistic compiler
been attempted [Leroy09, Leroy, Leroy et al.].

This previous work is focused on denotational aspects of computation. Our proposal is new in addressing
intensional aspects, such as preserving space or time bounds of the source in compiled code. This is still perceived
by the compiler community as a highly visionary goal, that would provide a major milestone in this area.

Our proposal contributes to the long-term community goal of formally checked reliable computer systems both
directly, by our original work on a certified complexity preserving compiler, and more generally by large scale use
of state-of-the-art tools and techniques for software certification. Our proposal takes such technologies past the
proof-of-concept phase to the maturity level that could allow a substantial technology transfer towards industries.

The direct, long term, impact of the project on real-time systems (in particular reactive systems) will be that of
dramatically increasing the trust on response time of the systems, while at the same time simplifying the code by
removing some of the checks for approaching deadlines. Moreover, we envision a future where compilers (certified
or not) will give back to the user guarantees and informations on the intensional behaviour of the produced binaries
(like time, space and power consumption), to be exploited by semi-automated reasoning tools.

The certified compiler developed in the project is just a first step towards this direction. Being the first
example of a compiler that provides intensional guarantees, we do not expect to be able to immediately exploit the
provided cost annotations in an effective way. This requires an effective convergence of three communities, that are
the compiler implementation, proof assistance and invariant generation ones. Moreover, further work is required
to target processors for non embedded systems (which implement many hardware optimizations) and to enlarge
the class of inter-procedural and loop optimizations that the compiler can handle while tracking the intensional
properties. Together with the need of better understanding the issues related to multiple backends for different
architectures, the time-frame required to bring this technology to mainstream can be estimated in a decade.

It would be certainly interesting to address advanced features of general purpose processors such as cache
memory. However, we believe that such a task is not feasible in the time and resources allocated to our project.

Finally, we recall that Task 5.2 is dedicated to tools and techniques for automatic/computer-assisted inference
of the global execution cost of C programs.

3.1.1 Contribution at the European level towards the expected impacts listed in the work pro-
gramme

The project responds to the increasing expectation for trustworthy, dependable and long-lasting systems by devel-
oping reliable compilers not only from the point of view of behaviour but also of performance. Building certified
compilers (coming with a machine checked proof of their semantics preservation) is an emerging topic whose rel-
evance is destined to grow in coming years. It looks of high importance for ICT to have methods and tools for
producing certifiable systems, and automatic checking of complex invariants (such as preservation of complexity) is
a critical step and a major scientific challenge.

Annex I - Part B: page 31 of 38

Expected impacts Contribution of the project
ICT-relevant, visionary, high qual-
ity, long-term research of a foun-
dational nature, involving bright
new ideas of high-risk — high-pay-
off, aiming at a breakthrough, a
paradigm shift, or at the proof of
a novel scientific principle.

The main breakthrough envisaged by the project is the possibility to
give a precise performance estimation for the executable (a task that
is currently regarded as highly visionary in the compiler community),
by creating a (certified) infrastructure allowing to draw conclusions
on the target code, while comfortably reasoning on the source. Dis-
posing of a such a tool would allow e.g. to shift programming of
critical systems with strong temporal requirements from assembly to
a high-level language, with a major beneficial impact on reusability
and maintainability. At the same time, it would provide an occasion
for rethinking the nature of compilation, measuring the actual impact
of the many optimisation phases, and providing a better theoretical
status for the many heuristics of current use.

Research refining the visionary
ideas that have gone past the
proof-of-concept phase to bring
them to the maturity level where
they could be taken up by the
mainstream ICT programme ob-
jectives.

The realization of a tool offering precise and certified performance
bounds on the generated code requires an essential paradigm shift of
a foundational nature, emphasizing the role of execution paths and
their preservation/modification along the the process of compilation.
This poses new and interesting semantic challenges, and requires a
detailed comparison between different semantic styles to discover the
most suitable approach, also in view of its formal encoding and auto-
matic checking. It is also clear that the knowledge gained by such a
work could be profitably reused for the treatment high level program
transformation techniques, and in general for the study of properties
of program.

3.1.2 European dimension

The project lies at the intersection between complexity, formal checking and compilers, requiring a complex synergy
between experts of the three fields, and providing an original forum for a radical interdisciplinary exploration of
complexity issues from a computer assisted viewpoint. It is clear that having a geographically distributed team
always poses additional problems with respect to a tightly integrated one. However, due to the dimension of the
project and its visionary nature it is difficult to imagine a single agency to carry out the work. Even worse, in this
case, due to the cost of the project, the results of the work would presumably be covered by copyright, and the
software would hardly be open source, to the detriment of the diffusion of scientific knowledge of a foundational
nature, and the industrial take up of innovative research results, that should be among the main goals of the
European Union8.

3.1.3 Related national and international research activities

During the development of the project we shall devote a particular attention to the evolution of related research
efforts.

A closely related one is INRIA’s CompCert, the certified compiler written in Coq by X. Leroy and his team. As
for CerCo, the source language of CompCert is a large subset of C. The target language of CompCert is PowerPC
assembly and several intermediate data structures and phases of the back-end are tightly bound to this choice. For
instance, instruction selection is performed in the first phase of the back-end and pseudo-registers are partitioned
into floating point and standard registers to match the actual machine registers in later phases. In CompCert we
plan to address simpler microprocessors of the type frequently used for embedded systems. Moreover, the additional
constraints imposed by the preservation of complexity could also prevent sharing of data structures and intermediate
languages among the two projects. Nevertheless, the work done in Compcert will be a major source of inspiration.

8This is for instance the case of the Compcert verified compiler, which is distributed under the terms of the INRIA Non-Commercial
License Agreement: a non-free license only granting rights to use the software for educational, research or evaluation purposes, but not
for commercial uses.

http://pauillac.inria.fr/~xleroy/compcert/
http://compcert.inria.fr/doc/index.html

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

Another INRIA’s project we plan to collaborate with is Proval, in charge of the development the Why-Caduceus
deductive platform, in view of the possible use of this tool for the proof-of-concept prototype of WP5. In particular,
Caduceus and Why allow to generate proof obligation for C programs annotated with preconditions, postconditions
and loop invariants. The obligations can be feed to several automated or interactive theorem provers to be solved.
As a proof of concept for the exploitation of CerCo, we plan in WP5 to use these or similar systems to generate proof
obligations for complexity invariants derived from the cost annotations produced by the CerCo compiler. We will
also explore in Task T5.2 the possibility of helping the user in proving these obligations by increasing automation.

Our project is also related to the CMU/Penn Manifest Security Initiative. Its research objectives are “to develop
the theoretical foundations for manifestly secure software and to demonstrate its feasibility in practice”. As a matter
of fact, a possible application of CerCo is to proof carrying code techniques, allowing to specify the computational
cost of untrusted and potentially malicious extensions, along with a proof of their complexity.

The Poplmark Challenge, proposed by the University of Pennsylvania, is a set of benchmarks designed to evaluate
mechanized theorem proving tools in the setting of the metatheory of programming languages. The benchmarks are
drawn from the metatheory of a simple dialect of the lambda calculus, hence are focused on small scale formalization
of programming languages. Even though our effort aims at a much larger scale certification, we expect that the
experience gathered in the Poplmark Challenge might turn useful, particularly in the issues of name binding and
complex induction principles.

INRIA-Microsoft’s Mathematical Components project aims to demonstrate that formalized mathematical theo-
ries can, like modern software, be built out of components. Their effort is not only toward the formalization of finite
group theory up to the odd order theorem, an ambitious challenge and a good test case, but also in the development
of modular tools to make it possible to formalize such huge proofs. To pursue this last objective they started from
SSReflect, a proof shell extending the Coq system developed by Gonthier to carry out the formalization of the
Four Colour Theorem. SSReflect comes with a modular library of theorems conceived to reason about structures
equipped with a decidable equality and a highly flexible set of commands specifically designed to carry out huge
proofs in that domain. While structures with a decidable equality appear in a quite small part of mainstream math-
ematics, they are ubiquitous in the field of programming, and consequently in the implementation of a compiler.
For that reason the technology developed by the Mathematical Components team seems an interesting device we
may adopt, possibly tailoring it to our needs collaborating with them.

Our project is complementary to the Embound Project of the sixth Programme Framework. While the main
focus of Embound was on static analysis techniques for Worst Case Analysis of real time systems, our project is
aimed at building a verified infrastructure allowing to translate a high level analysis of the source program into a
faithful counterpart on its executable. Moreover, while Embound started from a functional based, domain specific
language as Hume, ending into a virtual abstract machine (HAM), we start from C and end up to the hardware.
The methodology is also different: Embound was based on resource bound computational techniques that in recent
years have clearly proved their limitations: we impose no restriction on the kind of techniques used to prove the
complexity bounds, focusing our attention on the translation of computational costs from the source to the target,
and proving its correctness.

3.2 Plan for the use and dissemination of foreground

3.2.1 Dissemination and Innovation Activities

Dissemination of project results into knowledge, products, and exploitation are key indicators of the success of the
project. The dissemination strategy will be explicit about the links between the research process and the dissem-
ination process, with particular attention paid to the links between the project’s outputs and the dissemination
tools and between these tools and the potential users of the project’s results.

The potential target audience of the CerCo project is composed of the following categories:

• Academic communities, which should be made aware of both the methodological and technological approach
developed in CerCo. In particular, formal verification is still seen as highly innovative in the community of
compiler construction, and complexity has been under-addressed so far in the theorem proving community.

Annex I - Part B: page 33 of 38

http://www.inria.fr/recherche/equipes/proval.fr.html
http://www.cis.upenn.edu/~plclub/ms/index.html
http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/index.php?title=The_POPLmark_Challenge
http://www.msr-inria.inria.fr/Projects/math-components
http://www-fp.cs.st-andrews.ac.uk/embounded/pubs/hume/embounded-tfp05.pdf

Other communities, like that of Worst Case Execution Time, could find in our technology a solid ground for
linking high level analysis to actual code execution.

• Other EC funded initiatives, related either to compilation and formal verification techniques (in particular for
embedded systems) or to their exploitation areas, like the European Technology Platform/Joint technology
Initiative on Embedded Systems ARTEMIS.

• European software houses active in the development of compilers or static analyzers for embedded systems,
with potential interest in certification of their products.

In order to reach these stakeholders and ensure an effective dissemination, the project foresees the following dis-
semination mechanisms:

• Definition of a project coordinated image and preparation of the dissemination materials, such as the project
logo and a coordinated set of project tools for reports and presentation of the project results, be used in
different dissemination occasions.

• Preparation of a project web site containing a reserved area needed as collaboration platform among the
project partners, as well as public pages, to be used to showcase the results which can be disseminated. In
particular, the web site will contain the project description; partners profile and relevant contact details;
scientific papers and slides of presentations to international meetings; public project deliverables; press kit:
project fact sheet and flyer; project poster; links to relevant projects; research programmes and associations;
notice of important European and international events. The content of the site will be updated regularly as
well as at the accomplishment of every deliverable. Furthermore,a quarterly newsletter will be published on
the web public section and electronically distributed to potential user communities.

• Participation in national and international scientific events (seminars, clustering activities and working groups);
presentation of results at conferences, seminars, workshops, both through speeches or posters; publication of
technical and research papers in well-known scientific and industrial journals, magazines, newspapers. Within
the initial dissemination plan, partners will contribute to create a list of possible conferences and events con-
nected with the topics dealt with by the project in order to exploit all possible dissemination opportunities.

• Presentations of the technologies developed in the project to industrial parties with potential short and long
term interests. This could also be achieved by inviting industrial representatives to late project meetings.

3.2.2 Exploitation of the results

Academic exploitation Academic partners will take great advantage from the results of CerCo mainly in terms
of increased technical know-how and scientific knowledge, increased visibility in the scientific community of
reference, increased expertise, exploitable for institutional academic purposes (e.g. didactic activities). We
also expect that the rest of the academic community will take up the innovative ideas of the project, building
on top of them code analyses at a level of accuracy that could have not been previously possible. Finally, we
expect elaboration and instantiation of our methodology to other kinds of high level languages (functional,
logic) and to more complex scenarios involving, for instance, a real time operating system.

Industrial exploitation The long term industrial exploitation of the results of the CerCo project is envisaged
mainly in the area of the embedded systems/software, in particular in the case of safety critical applications
and time critical (realtime) applications. In the short term, software houses producing compilers for embedded
systems could immediately benefit from the CerCo cost annotating technology or, more generally, by the know-
how provided in the certification of compilers. It is worth noting that several of these software houses are
located in Europe, such as the medium-sized System Engineer Group of Freescale, which is headquartered
in Scotland, Raisonance and Cosmic Software, which are headquartered in France, the small-size Hightech,
headquartered in Germany, just to name a few.

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

3.2.3 Management of Intellectual Property Rights (IPR)

Apart from the Guideline for IPR in FP7 Projects (the Project Manager is in contact with the IPR Helpdesk
Service organized by the EC) that will be the basis for the project IPR standards, more specific rules regulating
specific aspects of the property and protection needs will be defined in the Consortium Agreement. All software will
be developed under open licences and proofs will be public domain. The partners will commit in the Consortium
Agreement to avoid filing patents on the software. Nevertheless, a continuous patent survey, carried out by the
Coordinator, will assist the Advisory Board in decisions related to the danger of infringing existent patents.

The Consortium Agreement will be a formally binding legal document, prepared by the Coordinator and signed,
upon approval of the Advisory Board, by all the participants at the latest within three months after the start of
the Project.

The Consortium Agreement will be mainly aimed at complementing and better clarifying the rules stated in
the EU Contract and Annexes and will further specify the recommendations and guidelines of EU IPR HelpDesk
to the sensible results of the Project. In particular, it will be focused among others on:

1. Decision process and voting ways of the Advisory Board

2. Confidentiality

3. Publication authorization

4. IPR and ownership rules

5. Access Rights

6. Participant obligations

7. Periodic reporting

3.2.4 Contributions to standards

NOT APPLICABLE

3.2.5 Contributions to policy developments

NOT APPLICABLE

3.2.6 Risk assessment and related communication strategy

NOT APPLICABLE

Annex I - Part B: page 35 of 38

4 Ethical issues

We expect no ethical issue may arise in the project.

ETHICAL ISSUES TABLE

YES PAGE
Informed consent

Does the proposal involve children?
Does the proposal involve patients or persons not able to give con-

sent?
Does the proposal involve adult healthy volunteers?
Does the proposal involve Human Genetic Material?
Does the proposal involve Human biological samples?
Does the proposal involve Human data collection?

Research on Human embryo/foetus
Does the proposal involve Hyman Embryos?
Does the proposal involve Human Foeatal Tissue/Cells?
Does the proposal involve Human Embryonic Stem Cells?

Privacy
Does the proposal involve processing of genetic information or per-

sonal data (eg. health, sexual lifestyle, ethnicity, political opinion, religious
or philosophical conviction)

Does the proposal involve tracking the location or observation of peo-
ple?
Research on Animals

Does the proposal involve research on animals?
Are those animals transgenic small laboratory animals?
Are those animals transgenic farm animals?
Are those animals cloned farm animals?
Are those animals non-human primates?

Research Involving Developing Countries
Use of local resources (genetic, animal, plant etc)
Impact on local community

Dual Use
Research having direct military application
Research having the potential for terrorist abuse

ICT Implants
Does the proposal involve clinical trials of ICT implants?

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY
TO MY PROPOSAL

YES

FP7-ICT-2009-C
Date of preparation: 06/10/2009

STREP grant agreement
243881, CerCo

References

[Asperti et al.] A.Asperti, W.Ricciotti, C.Sacerdoti Coen, E.Tassi. A compact kernel for the calculus of inductive
constructions. In Special Issue on Iteractive Proving and Proof Checking of the Academy Journal of Engineering
Sciences (Sadhana) of the Indian Academy of Sciences. SADHANA (BANGALORE). vol. 34(1), pp. 71 - 144
ISSN: 0256-2499, 2009.

[Asperti et al.] A.Asperti, Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli. User Interaction with the
Matita Proof Assistant. Journal of Automated Reasoning, Special Issue on User Interfaces for Theorem Proving,
39(2), pp.109–139, 2007.

[Asperti et al.] A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli. Crafting a Proof Assistant In Proceedings of
Types 2006, Lecture Notes in Computer Science (LNCS), Vol. 4502, pp. 18–32, 2007.

[POPLmark] Aydemir and Bohannon and Fairbairn and Foster and Pierce and Sewell and Vytiniotis and Washburn
and Weirich and Zdancewic. Mechanized metatheory for the masses: The POPLmark Challenge. International
Conference on Theorem Proving in Higher Order Logics (TPHOLs) 2005.

[Aydemir et al.] B.Aydemir, A.Chargueraud, B.C.Pierce, R.Pollack, S.Weiric. Engineering Formal Methatheory.
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2008)

[Appel and Palsberg] A.W.Appel, J.Palsberg. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

[Avigad et al.] J.Avigad, K.Donnelly, D.Gray, P.Raff. A formally verified proof of the prime number theorem. ACM
Transactions on Computational Logic (TOCL). Volume 9, Issue 1 (December 2007)

[Chlipala] A.Chlipala. A Certified Type-Preserving Compiler from Lambda Calculus to Assembly Language. Pro-
ceedings of ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation (PLDI’07).
June 2007.

[Dave] Maulik A. Dave. Compiler verification: a bibliography. ACM SIGSOFT Software Engineering Notes, Volume
28, Issue 6 (Nov. 2003).

[Dold and Vialard] A. Dold, V. Vialard. A Mechanically Verified Compiling Specification for a Lisp Compiler. Proc.
of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2001), December 13-15, Bangalore, India. Springer LNCS 2245.

[Filliâtre and Marché] J-C. Filliâtre, C Marché. Multi-Prover Verification of C Programs. In Sixth International
Conference on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in Computer Science,
pages 15-29, Seattle, November 2004. Springer-Verlag.

[Gonthier] G. Gonthier. Formal Proof–The Four-Color Theorem. Notices of the AMS, Vol 55, no. 11, pp. 1382–1393.

[Goos and Zimmermann] G.Goos, W.Zimmermann. Verification of Compilers, Bernhard Steffen and Ernst Rdiger
Olderog (Ed.), Correct System Design, p. 201-230, Springer, Nov 1999.

[Hales] T.C.Hales. Formalizing the Proof of the Kepler Conjecture. Proceedings of the 17th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2004), Park City, Utah, USA, September 14-17, 2004.
K.Slind, A.Bunker, G.Gopalakrishnan (Eds.) LNCS 3223 Springer 2004.

[Klein and Nipkow] G.Klein, T.Nipkow. A machine-checked model for a Java-like language, virtual machine, and
compiler. ACM Transactions on Programming Languages and Systems (TOPLAS), Volume 28 , Issue 4 (July
2006).

Annex I - Part B: page 37 of 38

[Mackenzie] D.Mackenzie. What in the Name of Euclid Is Going On Here? Science 4 March 2005. Vol. 307. no.
5714, pp. 1402 - 1403.

[Muchnick] S.S.Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann, 1997.

[Leinenbach et al.] D.Leinenbach, W.J.Paul, E.Petrova. Towards the Formal Verification of a C0 Compiler: Code
Generation and Implementation Correctnes. SEFM 2005: 2-12.

[Leroy] X.Leroy. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant.
Proceedings of Proceedings of the 33th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2006)

[Leroy09] X.Leroy. Formal verification of a realistic compiler. To appear in Communications of the ACM, 2009.

[Leroy et al.] X.Leroy, S.Blazy, Z.Dargaye. Formal verification of a C compiler front-end. Proceedings of Formal
Methods 2006, LNCS 4085.

[Leroy and Tristan] X.Leroy, J-B Tristan. Formal verification of translation validators: A case study on instruc-
tion scheduling optimizations. Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2008)

[Peyton Jones et al.] S.Peyton Jones, N.Ramsey, F.Reig. C–: A portable assembly language that supports garbage
collection. Invited talk at PPDP’99, LNCS Vol1702, pp.1-28.

[Strecker] M.Strecker. Formal Verification of a Java Compiler in Isabelle. Proceedings of the 18th International
Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002. LNCS vol.2392, pp.63-77.

	II PART B
	Concept and objectives, progress beyond state-of-the-art, S/T methodology and work plan
	Concept and project objective(s)
	Progress beyond state of the art
	The CerCo approach
	User interaction flow
	Certification: tools and techniques

	S/T methodology and associated work plan
	Overall strategy and general description
	Timing of work: packages and their components
	Work package list/overview
	Deliverable list
	Work package descriptions
	Efforts for the full duration of the project
	List of milestones and planning of reviews

	Implementation
	Management structure and procedures
	Management structure
	Management procedures

	Beneficiaries
	UNIBO
	UPD
	UEDIN

	Consortium as a whole
	Sub-contracting
	Funding for beneficiaries from third countries
	Additional beneficiaries/Competitive calls
	Third parties

	Resources to be committed

	Potential impact
	Strategic impact
	Contribution at the European level towards the expected impacts listed in the work programme
	European dimension
	Related national and international research activities

	Plan for the use and dissemination of foreground
	Dissemination and Innovation Activities
	Exploitation of the results
	Management of Intellectual Property Rights (IPR)
	Contributions to standards
	Contributions to policy developments
	Risk assessment and related communication strategy

	Ethical issues

