(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: myMap.mli,v 1.3 2006/02/17 16:19:52 pottier Exp $ *)
(** Association tables over ordered types.
This module implements applicative association tables, also known as
finite maps or dictionaries, given a total ordering function
over the keys.
All operations over maps are purely applicative (no side-effects).
The implementation uses balanced binary trees, and therefore searching
and insertion take time logarithmic in the size of the map.
*)
module type OrderedType =
sig
type t
(** The type of the map keys. *)
val compare : t -> t -> int
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Pervasives.compare}. *)
end
(** Input signature of the functor {!Map.Make}. *)
module type S =
sig
type key
(** The type of the map keys. *)
type (+'a) t
(** The type of maps from type [key] to type ['a]. *)
val empty: 'a t
(** The empty map. *)
val is_empty: 'a t -> bool
(** Test whether a map is empty or not. *)
val add: key -> 'a -> 'a t -> 'a t
(** [add x y m] returns a map containing the same bindings as
[m], plus a binding of [x] to [y]. If [x] was already bound
in [m], its previous binding disappears. *)
val find: key -> 'a t -> 'a
(** [find x m] returns the current binding of [x] in [m],
or raises [Not_found] if no such binding exists. *)
val remove: key -> 'a t -> 'a t
(** [remove x m] returns a map containing the same bindings as
[m], except for [x] which is unbound in the returned map. *)
val mem: key -> 'a t -> bool
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
val iter: (key -> 'a -> unit) -> 'a t -> unit
(** [iter f m] applies [f] to all bindings in map [m].
[f] receives the key as first argument, and the associated value
as second argument. The bindings are passed to [f] in increasing
order with respect to the ordering over the type of the keys.
Only current bindings are presented to [f]:
bindings hidden by more recent bindings are not passed to [f]. *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f m] returns a map with same domain as [m], where the
associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
(** Same as {!Map.S.map}, but the function receives as arguments both the
key and the associated value for each binding of the map. *)
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
where [k1 ... kN] are the keys of all bindings in [m]
(in increasing order), and [d1 ... dN] are the associated data. *)
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
(** Total ordering between maps. The first argument is a total ordering
used to compare data associated with equal keys in the two maps. *)
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
type interval =
key option * key option
(** A type of key intervals. An interval consists of a lower bound
and an upper bound, each of which can be absent. A key is
considered to lie within the interval if it is both greater than
(or equal to) the lower bound (if present) and less than (or
equal to) the upper bound (if present). *)
val split: interval -> 'a t -> 'a t
(* [split interval m] is a map that consists of all bindings in [m]
whose keys lie within [interval]. *)
val minimum: 'a t -> key * 'a
(* [minimum m] returns the binding that corresponds to the minimum
(smallest) key within the map [m]. If [m] is empty, [Not_found]
is raised. *)
val find_remove: key -> 'a t -> 'a * 'a t
(** [find_remove x m] returns a pair of the current binding of [x]
in [m], and a map containing the same bindings as [m], except
for [x] which is unbound in the returned map. [Not_found] is
raised if no binding for [x] exists. *)
val update: key -> ('a -> 'a) -> 'a t -> 'a t
(** If [m] maps [x] to [d], then [update x f m] maps [x] to [f d]
and coincides with [m] elsewhere. A binding for [x] in [m]
must exist. *)
val restrict: (key -> bool) -> 'a t -> 'a t
(** [restrict p m] is the restriction of the map [m] to only
the keys that satisfy predicate [p]. *)
end
(** Output signature of the functor {!Map.Make}. *)
module Make (Ord : OrderedType) : S with type key = Ord.t
(** Functor building an implementation of the map structure
given a totally ordered type. *)