include "common/AST.ma". include "common/Globalenvs.ma". (* axiom find_funct_ptr_symbol_inversion: ∀F,V,init. ∀p: program F V. ∀id: ident. ∀b: block. ∀f: F ?. find_symbol ? (globalenv ?? init p) id = Some ? b → find_funct_ptr ? (globalenv ?? init p) b = Some ? f → In … (prog_funct ?? p) 〈id, f〉. axiom find_funct_ptr_exists: ∀F,V,init. ∀p: program F V. ∀id: ident. ∀f: F ?. In … (prog_funct ?? p) 〈id, f〉 → ∃b. find_symbol ? (globalenv ?? init p) id = Some ? b ∧ find_funct_ptr ? (globalenv ?? init p) b = Some ? f. axiom find_symbol_exists: ∀F,V,init. ∀p: program F V. ∀id: ident. ∀r,v. In ? (prog_vars ?? p) 〈〈id, r〉, v〉 → ∃b. find_symbol ? (globalenv ?? init p) id = Some ? b. definition is_function ≝ λF.λge : genv_t F. λi : ident.∃fd. ! bl ← find_symbol … ge i ; find_funct_ptr … ge bl = Some ? fd. definition is_internal_function ≝ λF.λge : genv_t (fundef F). λi : ident.∃fd. ! bl ← find_symbol … ge i ; find_funct_ptr … ge bl = Some ? (Internal ? fd). definition is_internal_function_of_program : ∀A.program (λvars.fundef (A vars)) ℕ → ident → Prop ≝ λA,prog,i.is_internal_function … (globalenv_noinit … prog) i. definition funct_of_ident : ∀F,ge. ident → option (Σi.is_function F ge i) ≝ λF,ge,i. match ? return λx.! bl ← find_symbol … ge i ; find_funct_ptr … ge bl = x → ? with [ Some fd ⇒ λprf.return «i, ex_intro ?? fd prf» | None ⇒ λ_.None ? ] (refl …). *) lemma symbol_of_function_block_ok : ∀F,ge,b,prf.symbol_for_block F ge b = Some ? (symbol_of_function_block F ge b prf). #F #ge #b #FFP cut (∀A,B : Type[0].∀P : B → Prop.∀x : option A.∀c1,c2. (∀v.∀prf : x = Some ? v.P (c1 v prf)) → (∀prf:x = None ?.P (c2 prf)) → P (match x return λy.x = y → ? with [ Some v ⇒ λprf.c1 v prf | None ⇒ λprf.c2 prf] (refl …))) [ #A #B #P * // ] #aux whd in ⊢ (???(??%)); @aux [//] #H generalize in match (? : False); * qed. (* definition funct_of_block : ∀F,ge. block → option (Σi.is_function F ge i) ≝ λF,ge,bl. match find_funct_ptr … ge bl return λx.find_funct_ptr … ge bl = x → ? with [ Some fd ⇒ λprf.return mk_Sig ident (λi.is_function F ge i) (symbol_of_function_block … ge bl ?) (ex_intro … fd ?) | None ⇒ λ_.None ? ] (refl …). [ >(symbol_of_block_rev … (symbol_of_function_block_ok ? ge bl ?)) @prf | >prf % #ABS destruct(ABS) ] qed. definition block_of_funct ≝ λF,ge. λi : Σi.is_function F ge i. match find_symbol … ge i return λx.(∃fd.!bl ← x; ? = ?) → ? with [ Some bl ⇒ λ_.bl | None ⇒ λprf.⊥ ] (pi2 … i). cases prf #fd normalize #ABS destruct(ABS) qed. definition description_of_function : ∀F,ge.(Σi.is_function F ge i) → F ≝ λF,ge,i. match ! bl ← find_symbol … ge i ; find_funct_ptr … ge bl return λx.(∃fd.x = ?) → ? with [ Some fd ⇒ λ_.fd | None ⇒ λprf.⊥ ] (pi2 … i). cases prf #fd #ABS destruct qed. lemma description_of_internal_function : ∀F,ge,i,fn. description_of_function ? ge i = Internal F fn → is_internal_function … ge i. #F #ge * #i * #fd #EQ #fn whd in ⊢ (??%?→?); >EQ normalize nodelta #EQ' >EQ' in EQ; #EQ %{EQ} qed. definition int_funct_of_block : ∀F,ge. block → option (Σi.is_internal_function F ge i) ≝ λF,ge,bl. ! f ← funct_of_block … ge bl ; match ? return λx.description_of_function … f = x → option (Σi.is_internal_function … ge i) with [ Internal fn ⇒ λprf.return «pi1 … f, ?» | External fn ⇒ λ_.None ? ] (refl …). @(description_of_internal_function … prf) qed. lemma internal_function_is_function : ∀F,ge,i. is_internal_function F ge i → is_function … ge i. #F #ge #i * #fn #prf %{prf} qed. definition if_of_function : ∀F,ge.(Σi.is_internal_function F ge i) → F ≝ λF,ge,i. match ! bl ← find_symbol … ge i ; find_funct_ptr … ge bl return λx.(∃fn.x = ?) → ? with [ Some fd ⇒ match fd return λx.(∃fn.Some ? x = ?) → ? with [ Internal fn ⇒ λ_.fn | External _ ⇒ λprf.⊥ ] | None ⇒ λprf.⊥ ] (pi2 … i). cases prf #fn #ABS destruct qed. lemma if_propagate : ∀A_in,A_out. ∀trans. ∀prog_in : program (λvars.fundef (A_in vars)) ℕ. let prog_out : program (λvars.fundef (A_out vars)) ℕ ≝ transform_program … prog_in (λvars.transf_fundef … (trans vars)) in ∀i.is_internal_function_of_program … prog_in i → is_internal_function_of_program … prog_out i. #A_in #A_out #trans #prog_in #ident * #ifn inversion (find_symbol ???) [ #_ #ABS whd in ABS : (??%%); destruct(ABS) ] #bl #EQfind >m_return_bind #EQfunct_ptr %{(trans … ifn)} >find_symbol_transf >EQfind >m_return_bind >(find_funct_ptr_transf … EQfunct_ptr) % qed. lemma block_of_funct_ident_is_code : ∀F,ge,i. block_region (block_of_funct F ge i) = Code. #F #ge * #i * #fd whd in ⊢ (?→??(?%)?); cases (find_symbol ???) [ #ABS normalize in ABS; destruct(ABS) ] #bl normalize nodelta >m_return_bind whd in ⊢ (??%?→?); cases (block_region bl) [ #ABS normalize in ABS; destruct(ABS) ] #_ % qed. lemma prog_if_of_function_transform : ∀A,B,trans.∀prog_in : program (λvars.fundef (A vars)) ℕ. let prog_out : program (λvars.fundef (B vars)) ℕ ≝ transform_program … prog_in (λvars.transf_fundef … (trans vars)) in ∀i_out : Σi.is_internal_function_of_program … prog_out i. ∀i_in : Σi.is_internal_function_of_program … prog_in i. pi1 … i_out = pi1 … i_in → if_of_function … i_out = trans … (if_of_function … i_in). #A #B #trans #prog * #i1 #i_prf1 * #i2 #i_prf2 #EQ destruct(EQ) cut (∀A,B : Type[0].∀Q : option A → Prop.∀P : B → Prop. ∀m.∀prf : Q m.∀f1,f2. (∀x,prf.m = Some ? x → P (f1 x prf)) → (∀prf.m = None ? → P (f2 prf)) → P (match m return λx.Q x → ? with [ Some x ⇒ f1 x | None ⇒ f2 ] prf)) [ #A #B #Q #P * /2 by / ] #aux whd in ⊢ (??%?); @aux [2: #prf #EQ generalize in match (? : False); * ] #fd * #ifn #EQ1 #EQ destruct normalize nodelta whd in ⊢ (???(??%)); @aux [2: #prf #EQ generalize in match (? : False); * ] #fd' * #ifn' #EQ1' #EQ' destruct normalize nodelta inversion (find_symbol ???) in EQ'; [ #_ #ABS whd in ABS: (??%%); destruct ] #bl #EQfind >m_return_bind #EQfunct >find_symbol_transf in EQ; >EQfind >m_return_bind >(find_funct_ptr_transf … EQfunct) #EQ'' destruct % qed. *) include alias "common/PositiveMap.ma". lemma add_functs_functions_miss : ∀F. ∀ge : genv_t F.∀ l.∀ id. id < (nextfunction ? ge) → lookup_opt … id (functions ? ge) = None ? → lookup_opt … id (functions … (add_functs F ge l)) = None ?. #F #ge #l #id whd in match add_functs; normalize nodelta elim l -l [ #_ normalize //] * #id1 #f1 #tl #IND #H #H1 whd in match (foldr ?????); >lookup_opt_insert_miss [ inversion(lookup_opt ? ? ?) [ #_ %] #f1 #H3 <(drop_fn_lfn … f1 H3) @(IND H H1) | cut(nextfunction F ge ≤ nextfunction F (foldr … (add_funct F) ge tl)) [elim tl [normalize //] #x #tl2 whd in match (foldr ?????) in ⊢ (? → %); #H %2{H} ] #H2 lapply(transitive_le … H H2) @lt_to_not_eq qed. lemma add_globals_functions_miss : ∀F,V,init. ∀gem : genv_t F × mem.∀ id,l. lookup_opt … id (functions ? (\fst gem)) = None ? → lookup_opt … id (functions … (\fst (add_globals F V init gem l))) = None ?. #F #V #init * #ge #m #id #l lapply ge -ge lapply m -m elim l [ #ge #m #H @H] ** #x1 #x2 #x3 #tl whd in match add_globals; normalize nodelta #IND #m #ge #H whd in match (foldl ?????); normalize nodelta cases(alloc m ? ? (*x2*)) #m1 #bl1 normalize nodelta @IND whd in match add_symbol; normalize nodelta inversion(lookup_opt ? ? ?) [ #_ %] #f1 #H3 <(drop_fn_lfn … f1 H3) assumption qed. lemma globalenv_no_minus_one : ∀F,V,i,p. find_funct_ptr … (globalenv F V i p) (mk_block (*Code*) (-1)) = None ?. #F #V #i #p whd in match find_funct_ptr; normalize nodelta whd in match globalenv; whd in match globalenv_allocmem; normalize nodelta @add_globals_functions_miss @add_functs_functions_miss normalize // qed. lemma globalenv_no_zero : ∀F,V,i,p. find_funct_ptr … (globalenv F V i p) (mk_block (*Code*) OZ) = None ?. // qed.