
On the correctness of an assembler for the Intel
MCS-51 microprocessor?

Dominic P. Mulligan and Claudio Sacerdoti Coen

Dipartimento di Scienze dell’Informazione, Universitá di Bologna

Abstract. We consider the formalisation of an assembler for Intel MCS-
51 assembly language in the Matita proof assistant. This formalisation
forms a major component of the EU-funded CerCo project, concerning
the construction and formalisation of a concrete complexity preserving
compiler for a large subset of the C programming language.
The efficient expansion of pseudoinstructions—particularly jumps—into
MCS-51 machine instructions is complex. We employ a strategy, involving
the use of ‘policies’, that separates the decision making over how jumps
should be expanded from the expansion process itself. This makes the
proof of correctness for the assembler significantly more straightforward.
We prove, under the assumption of the existence of a correct policy, that
the assembly process never fails and preserves the semantics of a subset of
assembly programs. Correct policies fail to exist only in a limited number
of pathological circumstances. Our assembler is complete with respect to
the choice of policy.
Surprisingly, we observe that it is impossible for an optimising assembler
to preserve the semantics of every assembly program.

1 Introduction

We consider the formalisation of an assembler for the Intel MCS-51 8-bit mi-
croprocessor in the Matita proof assistant [2]. This formalisation forms a major
component of the EU-funded CerCo project [4], concerning the construction and
formalisation of a concrete complexity preserving compiler for a large subset of
the C programming language.

The MCS-51 dates from the early 1980s and is commonly called the 8051/8052.
Despite the microprocessor’s age, derivatives are still widely manufactured by
a number of semiconductor foundries. As a result the processor is widely used,
especially in embedded systems development, where well-tested, cheap, predictable
microprocessors find their niche.

The MCS-51 has a relative paucity of features compared to its more modern
brethren. In particular, the MCS-51 does not possess a cache or any instruction
pipelining that would make predicting the concrete cost of executing a single in-
struction an involved process. Instead, each semiconductor foundry that produces

? The project CerCo acknowledges the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881

an MCS-51 derivative is able to provide accurate timing information in clock
cycles for each instruction in their derivative’s instruction set. It is important
to stress that this timing information, unlike in more sophisticated processors,
is not an estimate, it is a ‘definition’. For the MCS-51, if a manufacturer states
that a particular opcode takes three clock cycles to execute, then that opcode
always takes three clock cycles to execute.

This predictability of timing information is especially attractive to the CerCo
consortium. We are in the process of constructing a certified, concrete complexity
compiler for a realistic processor, and not for building and formalising the
worst case execution time tools (WCET—see [3], amongst many others, for an
application of WCET technology to microprocessors with more complex designs)
that would be necessary to achieve the same result with, for example, a modern
ARM or PowerPC microprocessor.

As in most things, what one hand giveth, the other taketh away: the MCS-51’s
paucity of features, though an advantage in many respects, also quickly become
a hindrance, and successfully compiling high-level code for this architecture is a
cumbrous and involved process. In particular, the MCS-51 features a relatively
miniscule series of memory spaces (including read-only code memory, stack and
internal/external random access memory) by modern standards. As a result our
C compiler, to have any sort of hope of successfully compiling realistic programs
for embedded devices, ought to produce ‘tight’ machine code. This is not simple
and requires the use of optimisations.

For example, the MCS-51 features three unconditional jump instructions:
LJMP and SJMP—‘long jump’ and ‘short jump’ respectively—and an 11-bit oddity
of the MCS-51, AJMP. Each of these three instructions expects arguments in
different sizes and behaves in markedly different ways: SJMP may only perform
a ‘local jump’; LJMP may jump to any address in the MCS-51’s memory space
and AJMP may jump to any address in the current memory page. Consequently,
the size of each opcode is different, and to squeeze as much code as possible into
the MCS-51’s limited code memory, the smallest possible opcode that will suffice
should be selected.

The prototype CerCo C compiler does not attempt to select the smallest
jump opcode in this manner, as this was thought to unnecessarily complicate
the compilation chain, making the eventual translation and formalisation of
the compiler into Matita much harder. Instead, the compiler targets a bespoke
assembly language, similar to ‘real world’ assembly languages, complete with
pseudoinstructions including Jmp and Call instructions. Labels, conditional jumps
to labels, a program preamble containing global data and a MOV instruction for
moving this global data into the MCS-51’s one 16-bit register also feature. This
latter feature will ease any later consideration of separate compilation in the
CerCo compiler. An assembler is used to expand pseudoinstructions into MCS-51
machine code.

However, this assembly process is not trivial, for numerous reasons. For
example, our conditional jumps to labels behave differently from their machine
code counterparts. At the machine code level, all conditional jumps are ‘short’,

limiting their range. However, at the assembly level, conditional jumps may jump
to a label that appears anywhere in the program, significantly liberalising the use
of conditional jumps and further simplifying the design of the CerCo compiler.

Further, trying to näıvely relate assembly programs with their machine code
counterparts simply does not work. Machine code programs that fetch from
constant addresses in code memory or programs that combine the program
counter with constant shifts do not make sense at the assembly level, since the
position of instructions in code memory will be known only after assembly and
optimisation. More generally, memory addresses can only be compared with other
memory addresses. However, checking that memory addresses are only compared
against each other at the assembly level is in fact undecidable. In short, we come
to the shocking1 realisation that, with optimisations, the full preservation of the
semantics of all assembly programs is impossible. We believe that this revelation
is significant for large formalisation projects that assume the existence of a correct
assembler. Projects in this class include both the recent CompCert [5,10] and
seL4 formalisations [6,7].

Yet, the situation is even more complex than having to expand pseudoin-
structions correctly. In particular, when formalising the assembler, we must make
sure that the assembly process does not change the timing characteristics of an
assembly program for two reasons.

First, the semantics of some functions of the MCS-51, notably I/O, depend
on the microprocessor’s clock. Changing how long a particular program takes to
execute can affect the semantics of a program. This is undesirable.

Second, as mentioned, the CerCo consortium is in the business of constructing
a verified compiler for the C programming language. However, unlike Com-
pCert [5,10]—which currently represents the state of the art for ‘industrial grade’
verified compilers—CerCo considers not just the extensional correctness of the
compiler, but also its intensional correctness. That is, CompCert focusses solely
on the preservation of the meaning of a program during the compilation process,
guaranteeing that the program’s meaning does not change as it is gradually trans-
formed into assembly code. However in any realistic compiler (even the CompCert
compiler!) there is no guarantee that the program’s time properties are preserved
during the compilation process; a compiler’s ‘optimisations’ could, in theory, even
conspire to degrade the concrete complexity of certain classes of programs. CerCo
aims to expand the current state of the art by producing a compiler where this
temporal degradation is guaranteed not to happen. Moreover, CerCo’s approach
lifts a program’s timing information to the source (C language) level. This has
the advantage of allowing a programmer to reason about a program’s intensional
properties directly on the source code that they write, not on the code that the
compiler produces.

In order to achieve this, CerCo imposes a cost model on programs or, more
specifically, on simple blocks of instructions. This cost model is induced by the
compilation process itself, and its non-compositional nature allows us to assign
different costs to identical blocks of instructions depending on how they are

1 For us, anyway.

compiled. In short, we aim to obtain a very precise costing for a program by
embracing the compilation process, not ignoring it. This, however, complicates
the proof of correctness for the compiler proper. In each translation pass from
intermediate language to intermediate language, we must prove that both the
meaning and concrete complexity characteristics of the program are preserved.
This also applies for the translation from assembly language to machine code.

Naturally, this raises a question: how do we assign an accurate cost to a
pseudoinstruction? As mentioned, conditional jumps at the assembly level can
jump to a label appearing anywhere in the program. However, at the machine
code level, conditional jumps are limited to jumping ‘locally’, using a measly byte
offset. To translate a jump to a label, a single conditional jump pseudoinstruction
may be translated into a block of three real instructions as follows (here, JZ is
‘jump if accumulator is zero’):

JZ label JZ size of SJMP instruction
. . . translates to SJMP size of LJMP instruction

label : MOV A B =⇒ LJMP address of label
. . .
MOV A B

Here, if JZ fails, we fall through to the SJMP which jumps over the LJMP. Naturally,
if label is close enough, a conditional jump pseudoinstruction is mapped directly
to a conditional jump machine instruction; the above translation only applies if
label is not sufficiently local. We address the calculation of whether a label is
indeed ‘close enough’ for the simpler translation to be used below.

Crucially, the above translation demonstrates the difficulty in predicting how
many clock cycles a pseudoinstruction will take to execute. A conditional jump
may be mapped to a single machine instruction or a block of three. Perhaps
more insidious is the realisation that the number of cycles needed to execute the
instructions in the two branches of a translated conditional jump may be different.
Depending on the particular MCS-51 derivative at hand, an SJMP could in theory
take a different number of clock cycles to execute than an LJMP. These issues
must also be dealt with in order to prove that the translation pass preserves
the concrete complexity of assembly code, and that the semantics of a program
using the MCS-51’s I/O facilities does not change. We address this problem by
parameterising the semantics over a cost model. We prove the preservation of
concrete complexity only for the program-dependent cost model induced by the
optimisation.

Yet one more question remains: how do we decide whether to expand a jump
into an SJMP or an LJMP? To understand, again, why this problem is not trivial,
consider the following snippet of assembly code:

1: (0x000) LJMP 0x100 ;; Jump forward 256.

2:
3: (0x0FA) LJMP 0x100 ;; Jump forward 256.

4:
5: (0x100) LJMP -0x100 ;; Jump backward 256.

We observe that 10016 = 25610, and lies just outside the range expressible in an
8-bit byte (0–255).

As our example shows, given an occurrence l of an LJMP instruction, it may
be possible to shrink l to an occurrence of an SJMP—consuming fewer bytes of
code memory—provided we can shrink any LJMPs that exist between l and its
target location. In particular, if we wish to shrink the LJMP occurring at line 1,
then we must shrink the LJMP occurring at line 3. However, to shrink the LJMP

occurring at line 3 we must also shrink the LJMP occurring at line 5, and vice
versa.

Further, consider what happens if, instead of appearing at memory address
0x100, the instruction at line 5 instead appeared just beyond the size of code
memory, and all other memory addresses were shifted accordingly. Now, in order
to be able to successfully fit our program into the MCS-51’s limited code memory,
we are obliged to shrink the LJMP occurring at line 5. That is, the shrinking
process is not just related to the optimisation of generated machine code but
also the completeness of the assembler itself.

How we went about resolving this problem affected the shape of our proof of
correctness for the whole assembler in a rather profound way. We first attempted
to synthesise a solution bottom up: starting with no solution, we gradually refine
a solution using the same functions that implement the jump expansion process.
Using this technique, solutions can fail to exist, and the proof of correctness for
the assembler quickly descends into a diabolical quagmire.

Abandoning this attempt, we instead split the ‘policy’—the decision over how
any particular jump should be expanded—from the implementation that actually
expands assembly programs into machine code. Assuming the existence of a
correct policy, we proved the implementation of the assembler correct. Further,
we proved that the assembler fails to assemble an assembly program if and only
if a correct policy does not exist. This is achieved by means of dependent types:
the assembly function is total over a program, a policy and the proof that the
policy is correct for that program.

Policies do not exist in only a limited number of circumstances: namely, if a
pseudoinstruction attempts to jump to a label that does not exist, or the program
is too large to fit in code memory, even after shrinking jumps according to the
best policy. The first circumstance is an example of a serious compiler error, as
an ill-formed assembly program was generated, and does not (and should not)
count as a mark against the completeness of the assembler. We plan to employ
dependent types in CerCo in order to restrict the domain of the compiler to those
programs that are ‘semantically correct’ and should be compiled. In particular,
in CerCo we are also interested in the completeness of the compilation process,
whereas previous formalisations only focused on correctness.

The rest of this paper is a detailed description of our proof that is, in part,
still a work in progress.

1.1 Overview of the paper

In Section 2 we provide a brief overview of the Matita proof assistant for the
unfamiliar reader. In Section 3 we discuss the design and implementation of the
proof proper. In Section 4 we conclude.

2 Matita

Matita is a proof assistant based on a variant of the Calculus of (Co)inductive
Constructions [2]. In particular, it features dependent types that we heavily
exploit in the formalisation. The syntax of the statements and definitions in
the paper should be self-explanatory, at least to those exposed to dependent
type theory. We only remark the use of of ‘?’ or ‘. . .’ for omitting single terms
or sequences of terms to be inferred automatically by the system, respectively.
Those that are not inferred are left to the user as proof obligations. Pairs are
denoted with angular brackets, 〈−,−〉.

Matita features a liberal system of coercions. It is possible to define a uniform
coercion λx.〈x, ?〉 from every type T to the dependent product Σx : T.P x. The
coercion opens a proof obligation that asks the user to prove that P holds for x.
When a coercion must be applied to a complex term (a λ-abstraction, a local
definition, or a case analysis), the system automatically propagates the coercion
to the sub-terms For instance, to apply a coercion to force λx.M : A → B to
have type ∀x : A.Σy : B.P x y, the system looks for a coercion from M : B to
Σy : B.P x y in a context augmented with x : A. This is significant when the
coercion opens a proof obligation, as the user will be presented with multiple, but
simpler proof obligations in the correct context. In this way, Matita supports the
“Russell” proof methodology developed by Sozeau in [15], with an implementation
that is lighter and more tightly integrated with the system than that of Coq.

3 The proof

3.1 The assembler and semantics of machine code

The formalisation in Matita of the semantics of MCS-51 machine code is described
in [13]. We merely describe enough here to understand the rest of the proof.

The emulator centres around a Status record, describing the microprocessor’s
state. This record contains fields corresponding to the microprocessor’s program
counter, registers, and so on. At the machine code level, code memory is imple-
mented as a compact trie of bytes, addressed by the program counter. Machine
code programs are loaded into Status using the load code memory function.

We may execute a single step of a machine code program using the execute 1

function, which returns an updated Status:

definition execute_1: Status → Status := . . .

The function execute allows one to execute an arbitrary, but fixed (due to
Matita’s normalisation requirement) number of steps of a program.

Naturally, assembly programs have analogues. The counterpart of the Status

record is PseudoStatus. Instead of code memory being implemented as tries
of bytes, code memory is here implemented as lists of pseudoinstructions, and
program counters are merely indices into this list. Both Status and PseudoStatus

are specialisations of the same PreStatus record, parametric in the representation

of code memory. This allows us to share some code that is common to both
records (for instance, ‘setter’ and ‘getter’ functions).

Our analogue of execute 1 is execute 1 pseudo instruction:

definition execute_1_pseudo_instruction: (Word → nat × nat) →
PseudoStatus → PseudoStatus := . . .

Notice, here, that the emulation function for assembly programs takes an addi-
tional argument. This is a function that maps program counters (at the assembly
level) to pairs of natural numbers representing the number of clock ticks that
the pseudoinstruction needs to execute, post expansion. We call this function a
costing, and note that the costing is induced by the particular strategy we use to
expand pseudoinstructions. If we change how we expand conditional jumps to
labels, for instance, then the costing needs to change, hence execute 1 pseudo -

instruction’s parametricity in the costing.
The costing returns pairs of natural numbers because, in the case of expanding

conditional jumps to labels, the expansion of the ‘true branch’ and ‘false branch’
may differ in execution time. This timing information is used inside execute -

1 pseudo instruction to update the clock of the PseudoStatus. During the
proof of correctness of the assembler we relate the clocks of Statuses and
PseudoStatuses for the policy induced by the cost model and optimisations.

The assembler, mapping programs consisting of lists of pseudoinstructions
to lists of bytes, operates in a mostly straightforward manner. To a degree of
approximation, the assembler on an assembly program, consisting of n pseudoin-
structions Pi for 1 ≤ i ≤ n, works as in the following diagram (we use −∗ to
denote a combined map and flatten operation):

[P1, . . . Pn]

(
Pi

expand pseudo instruction−−−−−−−−−−−−−−−−→[I1i,...I
q
i]

assembly1∗−−−−−−−−−−−−−−→[0110]

)∗

−−→ [010101]

Here I
j
i for 1 ≤ j ≤ q are the q machine code instructions obtained by expanding,

with expand pseudo instruction, a single pseudoinstruction Pi. Each machine
code instruction Iij is then assembled, using the assembly1 function, into a list
of bytes. This process is iterated for each pseudoinstruction, before the lists are
flattened into a single bit list representation of the original assembly program.

By inspecting the above diagram, it would appear that the best way to
proceed with a proof that the assembly process does not change the semantics of
an assembly program is by proving the same independently for expand pseudo -

instruction and for assembly1. This is a tempting approach to the proof, but
ultimately the wrong approach. In particular, to expand a pseudoinstruction we
need to know the address at which the expanded instructions will be located, for
instance to know if a short jump is possible. That address is a function of the
machine code generated for the pseudoinstructions already expanded. Thus, we
must assemble each pseudoinstruction into machine code before moving on, and
this must be eventually reflected in the proof too. Therefore we will have lemmas
proving correctness for assembly1, and for the composition of assembly1 and
expand pseudo instruction, but not for expand pseudo instruction alone.

3.2 Policies

Policies exist to dictate how conditional and unconditional jumps at the assembly
level should be expanded into machine code instructions. Using policies, we are
able to completely decouple the decision over how jumps are expanded with the
act of expansion, simplifying our proofs. As mentioned, the MCS-51 instruction
set includes three different jump instructions: SJMP, AJMP and LJMP; call these
‘short’, ‘medium’ and ‘long’ jumps, respectively:

inductive jump_length: Type[0] :=

|short_jump:jump_length |medium_jump:jump_length |long_jump:jump_length.

A jump expansion policy is a map from pseudo program counters (imple-
mented as Words) to jump lengths. Efficient implementations of policies are
based on tries. Intuitively, a policy maps positions in a program (indexed using
program counters implemented as Words) to a particular variety of jump:

definition policy_type := Word → jump_length.

Next, we require a series of ‘sigma’ functions. These functions map assembly
program counters to their machine code counterparts, establishing the correspon-
dence between ‘positions’ in an assembly program and ‘positions’ in a machine
code program. At the heart of this process is sigma0 which traverses an assembly
program building maps from pseudo program counters to program counters. This
function fails if and only if an internal call to assembly 1 pseudoinstruction -

safe fails, which happens if a jump pseudoinstruction is expanded incorrectly:

definition sigma0: pseudo_assembly_program → policy_type

→ option (nat × (nat × (BitVectorTrie Word 16))) := . . .

Here, the returned BitVectorTrie is a map between pseudo program counters
and program counters, and is constructed by successively expanding pseudoin-
structions and incrementing the two program counters the requisite amount to
keep them in correct correspondence. The two natural numbers returned are the
maximum values that the two program counters attained.

We eventually lift this to functions from pseudo program counters to program
counters, implemented as Words:

definition sigma_safe:

pseudo_assembly_program → policy_type → option (Word → Word) := . . .

Now, it’s possible to define what a ‘good policy’ is for a program p. A policy
pol is deemed good when it prevents sigma safe from failing on p. Failure is
only possible when the policy dictates that short or medium jumps be expanded
to jumps to locations too far away, or when the produced object code does not
fit into code memory. A policy for a program p is a policy that is good for p:

definition policy_ok := λpol.λp. sigma_safe p 6= None . . .
definition policy :=

λp. Σjump_expansion: policy_type. policy_ok jump_expansion p

Finally, we obtain sigma, a mapping from pseudo program counters to program
counters that takes in input a good policy and thus never fails. Note how we
avoid failure here, and in most of the remaining functions, by restricting the
domain using the dependent type policy:

definition sigma: ∀p. policy p → Word → Word := . . .

3.3 Correctness of the assembler with respect to fetching

Using our policies, we now work toward proving the total correctness of the
assembler. By ‘total correctness’, we mean that the assembly process never
fails when provided with a good policy and that the process does not change
the semantics of a certain class of well behaved assembly programs. Naturally,
this necessitates keeping some sort of correspondence between addresses at the
assembly level and addresses at the machine code level. For this, we use the
sigma machinery defined at the end of Subsection 3.2.

We expand pseudoinstructions using the function expand pseudo instruction.
This takes an assembly program (consisting of a list of pseudoinstructions), a
good policy for the program and a pointer to the pseudo code memory. It returns
a list of instructions, corresponding to the expanded pseudoinstruction referenced
by the pointer. The policy is used to decide how to expand Calls, Jmps and
conditional jumps. The function is given a dependent type that incorporates its
specification. Its pre- and post-conditions are omitted in the paper due to lack of
space. We show them as an example in the next function, build maps.

definition expand_pseudo_instruction:

∀program. ∀pol: policy program.

∀ppc:Word. . . . Σres. list instruction. . . . := . . .

The following function, build maps, is used to construct a pair of mappings
from program counters to labels and cost labels, respectively. Cost labels are a
technical device used in the CerCo prototype C compiler for proving that the
compiler is cost preserving. For our purposes in this paper, they can be safely
ignored, though the interested reader may consult [1] for an overview.

The label map, on the other hand, records the position of labels that appear
in an assembly program, so that the pseudoinstruction expansion process can
replace them with real memory addresses:

definition build_maps:

∀p. ∀pol: policy p.

Σres : ((BitVectorTrie Word 16) × (BitVectorTrie Word 16)).

let 〈labels, costs〉 := res in

∀id. occurs_exactly_once id (π2 p) →
let addr := address_of_word_labels_code_mem (π2 p) id in

lookup . . . id labels (zero . . .) = sigma pseudo_program pol addr := . . .

The type of build maps owes to our use of Matita’s Russell facility to provide
a strong specification for the function in the type (c.f. the use of Σ-types and

coercions, through which Russell is simulated in Matita). We express that for
all labels that appear exactly once in any assembly program, the newly created
map used in the implementation, and the stronger sigma function used in the
specification, agree.

Using build maps, we can express the following lemma, expressing the cor-
rectness of the assembly function:

lemma assembly_ok: ∀p,pol,assembled.
let 〈labels, costs〉 := build_maps p pol in

〈assembled,costs〉 = assembly p pol →
let cmem := load_code_memory assembled in

let preamble := π1 p in

let dlbls := construct_datalabels preamble in

let addr := address_of_word_labels_code_mem (π2 p) in

let lk_lbls := λ x. sigma p pol (addr x) in

let lk_dlbls := λ x. lookup . . . x datalabels (zero ?) in

∀ppc, pi, newppc.

∀prf: 〈pi, newppc〉 = fetch_pseudo_instruction (π2 p) ppc.

∀len, assm.

let spol := sigma program pol ppc in

let spol_len := spol + len in

let echeck := encoding_check cmem spol spol_len assm in

let a1pi := assembly_1_pseudoinstruction in

〈len, assm〉 = a1pi p pol ppc lk_lbls lk_dlbls pi (refl . . .) (refl . . .) ? →
echeck ∧ sigma p pol newppc = spol_len.

Suppose also we assemble our program p in accordance with a policy pol to
obtain assembled. Here, we perform a ‘sanity check’ to ensure that the two
cost label maps generated are identical, before loading the assembled program
into code memory cmem. Then, for every pseudoinstruction pi, pseudo program
counter ppc and new pseudo program counter newppc, such that we obtain pi

and newppc from fetching a pseudoinstruction at ppc, we check that assembling
this pseudoinstruction produces the correct number of machine code instructions,
and that the new pseudo program counter ppc has the value expected of it.

Theorem fetch assembly establishes that the fetch and assembly1 func-
tions interact correctly. The fetch function, as its name implies, fetches the
instruction indexed by the program counter in the code memory, while assembly1
maps a single instruction to its byte encoding:

theorem fetch_assembly: ∀pc, i, cmem, assembled. assembled=assembly1 i →
let len := length . . . assembled in

encoding_check cmem pc (pc + len) assembled →
let fetched := fetch code_memory (bitvector_of_nat . . . pc) in

let 〈instr_pc, ticks〉 := fetched in

let 〈instr, pc’〉 := instr_pc in

(eq_instruction instr i ∧ eqb ticks (ticks_of_instruction instr) ∧
eq_bv . . . pc’ (pc + len)) = true.

In particular, we read fetch assembly as follows. Given an instruction, i, we
first assemble the instruction to obtain assembled, checking that the assembled

instruction was stored in code memory correctly. Fetching from code memory, we
obtain fetched, a tuple consisting of the instruction, new program counter, and
the number of ticks this instruction will take to execute. Deconstructing these
tuples, we finally check that the fetched instruction is the same instruction that
we began with, and the number of ticks this instruction will take to execute is
the same as the result returned by a lookup function, ticks of instruction,
devoted to tracking this information. Or, in plainer words, assembling and then
immediately fetching again gets you back to where you started.

Lemma fetch assembly pseudo (slightly simplified, here) is obtained by com-
position of expand pseudo instruction and assembly 1 pseudoinstruction:

lemma fetch_assembly_pseudo:

∀ program.∀ pol:policy program.∀ ppc.∀ code_memory.
let pi := π1 (fetch_pseudo_instruction (π2 program) ppc) in

let instructions := expand_pseudo_instruction program pol ppc . . .in
let 〈len,assembled〉 := assembly_1_pseudoinstruction program pol ppc . . .in
encoding_check code_memory pc (pc + len) assembled →
fetch_many code_memory (pc + len) pc instructions.

Here, len is the number of machine code instructions the pseudoinstruction at
hand has been expanded into, and encoding check is a recursive function that
checks that assembled machine code is correctly stored in code memory. We
assemble a single pseudoinstruction with assembly 1 pseudoinstruction, which
internally calls jump expansion and expand pseudo instruction. The function
fetch many fetches multiple machine code instructions from code memory and
performs some routine checks.

Intuitively, Lemma fetch assembly pseudo can be read as follows. Suppose
we expand the pseudoinstruction at ppc with the policy decision pol, obtaining
the list of machine code instructions instructions. Suppose we also assemble
the pseudoinstruction at ppc to obtain assembled, a list of bytes. Then, we check
with fetch many that the number of machine instructions that were fetched
matches the number of instruction that expand pseudo instruction expanded.

The final lemma in this series is fetch assembly pseudo2 that combines the
Lemma fetch assembly pseudo with the correctness of the functions that load
object code into the processor’s memory.

lemma fetch_assembly_pseudo2:

∀ program,pol,ppc.
let 〈labels,costs〉 := build_maps program pol in

let assembled := π1 (assembly program pol) in

let code_memory := load_code_memory assembled in

let data_labels := construct_datalabels (π1 program) in

let lookup_labels :=

λ x. sigma . . . pol (address_of_word_labels_code_mem (π2 program) x) in

let lookup_datalabels := λ x. lookup ? ? x data_labels (zero ?) in

let 〈pi,newppc〉 := fetch_pseudo_instruction (π2 program) ppc in

let instrs :=expand_pseudo_instruction program pol ppc . . .in
fetch_many code_memory (sigma . . . pol newppc) (sigma . . . pol ppc) instrs.

We read fetch assembly pseudo2 as follows. Suppose we are able to suc-
cessfully assemble an assembly program using assembly and produce a code
memory, code memory. Then, fetching a pseudoinstruction from the pseudo code
memory at address ppc corresponds to fetching a sequence of instructions from
the real code memory at address sigma program pol ppc. The fetched sequence
corresponds to the expansion, according to pol, of the pseudoinstruction.

At first, the lemmas appears to immediately imply the correctness of the
assembler. However, this property is not strong enough to establish that the
semantics of an assembly program has been preserved by the assembly process
since it does not establish the correspondence between the semantics of a pseudo-
instruction and that of its expansion. In particular, the two semantics differ on
instructions that could directly manipulate program addresses.

3.4 Total correctness for ‘well behaved’ assembly programs

In any ‘reasonable’ assembly language addresses in code memory are just data
that can be manipulated in multiple ways by the program. An assembly program
can forge, compare and move addresses around, shift existing addresses or apply
logical and arithmetical operations to them. Further, every optimising assembler
is allowed to modify code memory. Hence only the semantics of a few of the
aforementioned operations are preserved by an optimising assembler/compiler.
Moreover, this characterisation of well behaved programs is clearly undecidable.

To obtain a reasonable statement of correctness for our assembler, we need
to trace memory locations (and, potentially, registers) that contain memory
addresses. This is necessary for two purposes.

First we must detect (at run time) programs that manipulate addresses in well
behaved ways, according to some approximation of well-behavedness. Second, we
must compute statuses that correspond to pseudo-statuses. The contents of the
program counter must be translated, as well as the contents of all traced locations,
by applying the sigma map. Remaining memory cells are copied verbatim.

For instance, after a function call, the two bytes that form the return pseudo
address are pushed on top of the stack, i.e. in internal RAM. This pseudo internal
RAM corresponds to an internal RAM where the stack holds the real addresses
after optimisation, and all the other values remain untouched.

We use an internal pseudo address map to trace addresses of code memory
addresses in internal RAM. The current code is parametric on the implementation
of the map itself.

axiom internal_pseudo_address_map: Type[0].

The low internal ram of pseudo low internal ram function converts the
lower internal RAM of a PseudoStatus into the lower internal RAM of a Status.
A similar function exists for higher internal RAM. Note that both RAM segments
are indexed using addresses 7-bits long. The function is currently axiomatised,
and an associated set of axioms prescribe the behaviour of the function:

axiom low_internal_ram_of_pseudo_low_internal_ram:

internal_pseudo_address_map→BitVectorTrie Byte 7→BitVectorTrie Byte 7.

Next, we are able to translate PseudoStatus records into Status records
using status of pseudo status. Translating a PseudoStatus’s code memory
requires we expand pseudoinstructions and then assemble to obtain a trie of
bytes. This never fails, providing that our policy is correct:

definition status_of_pseudo_status: internal_pseudo_address_map →
∀ps:PseudoStatus. policy (code_memory . . . ps) → Status

The next internal pseudo address map function is responsible for run time
monitoring of the behaviour of assembly programs, in order to detect well behaved
ones. It returns a map that traces memory addresses in internal RAM after
execution of the next pseudoinstruction, failing when the instruction tampers
with memory addresses in unanticipated (but potentially correct) ways. It thus
decides the membership of a strict subset of the set of well behaved programs.

definition next_internal_pseudo_address_map: internal_pseudo_address_map

→ PseudoStatus → option internal_pseudo_address_map

The function ticks of computes how long—in clock cycles—a pseudoinstruc-
tion will take to execute when expanded in accordance with a given policy. The
function returns a pair of natural numbers, needed for recording the execution
times of each branch of a conditional jump.

definition ticks_of:

∀p:pseudo_assembly_program. policy p → Word → nat × nat := . . .

Finally, we are able to state and prove our main theorem. This relates the
execution of a single assembly instruction and the execution of (possibly) many
machine code instructions, as long . That is, the assembly process preserves the
semantics of an assembly program, as it is translated into machine code, as long
as we are able to track memory addresses properly:

theorem main_thm:

∀ M,M’:internal_pseudo_address_map.∀ ps.∀ pol: policy ps.

next_internal_pseudo_address_map M ps = Some . . . M’ →
∃ n.

execute n (status_of_pseudo_status M ps pol)

= status_of_pseudo_status M’

(execute_1_pseudo_instruction (ticks_of (code_memory . . . ps) pol) ps)

[pol].

The statement is standard for forward simulation, but restricted to PseudoStatuses
ps whose next instruction to be executed is well-behaved with respect to the
internal pseudo address map M. Theorem main thm establishes the total cor-
rectness of the assembly process and can simply be lifted to the forward simulation
of an arbitrary number of well behaved steps on the assembly program.

4 Conclusions

We are proving the total correctness of an assembler for MCS-51 assembly lan-
guage. In particular, our assembly language featured labels, arbitrary conditional
and unconditional jumps to labels, global data and instructions for moving this
data into the MCS-51’s single 16-bit register. Expanding these pseudoinstructions
into machine code instructions is not trivial, and the proof that the assembly
process is ‘correct’, in that the semantics of a subset of assembly programs are
not changed is complex. Further, we have observed the ‘shocking’ fact that any
optimising assembler cannot preserve the semantics of all assembly programs.

The formalisation is a key component of the CerCo project, which aims to
produce a verified concrete complexity preserving compiler for a large subset of the
C programming language. The verified assembler, complete with the underlying
formalisation of the semantics of MCS-51 machine code (described fully in [13]),
will form the bedrock layer upon which the rest of the CerCo project will build
its verified compiler platform. However, further work is needed. In particular, as
it stands, the code produced by the prototype CerCo C compiler does not fall
into the ‘semantics preserving’ subset of assembly programs for our assembler.
This is because the MCS-51 features a small stack space, and a larger stack is
customarily manually emulated in external RAM. As a result, the majority of
programs feature slices of memory addresses and program counters being moved
in-and-out of external RAM via the registers, simulating the stack mechanism. At
the moment, this movement is not tracked by internal pseudo address map,
which only tracks the movement of memory addresses in low internal RAM. We
leave extending this tracking of memory addresses throughout the whole of the
MCS-51’s address spaces as future work.

It is interesting to compare our work to an ‘industrial grade’ assembler for
the MCS-51: SDCC [14]. SDCC is the only open source C compiler that targets
the MCS-51 instruction set. It appears that all pseudojumps in SDCC assembly
are expanded to LJMP instructions, the worst possible jump expansion policy
from an efficiency point of view. Note that this policy is the only possible policy
in theory that can preserve the semantics of an assembly program during the
assembly process. However, this comes at the expense of assembler completeness:
the generated program may be too large to fit into code memory. In this respect,
there is a trade-off between the completeness of the assembler and the efficiency
of the assembled program. The definition and proof of a complete, optimal (in
the sense that object code size is minimised) and correct jump expansion policy
is ongoing work.

Aside from their application in verified compiler projects such as CerCo
and CompCert, verified assemblers such as ours could also be applied to the
verification of operating system kernels. Of particular note is the verified seL4
kernel [6,7]. This verification explicitly assumes the existence of, amongst other
things, a trustworthy assembler and compiler.

Note that both CompCert and the seL4 formalisation assume the existence of
‘trustworthy’ assemblers. Our observation that an optimising assembler cannot
preserve the semantics of every assembly program may have important conse-

quences for these projects. If CompCert chooses to assume the existence of an
optimising assembler, then care should be made to ensure that any assembly
program produced by the CompCert compiler falls into the subset of programs
that have a hope of having their semantics preserved by an optimising assembler.

Our formalisation exploits dependent types in different ways and for multiple
purposes. The first purpose is to reduce potential errors in the formalisation of
the microprocessor. In particular, dependent types are used to constraint the
size of bit-vectors and tries that represent memory quantities and memory areas
respectively. They are also used as explained in [13]. to simulate polymorphic
variants in Matita. Polymorphic variants nicely capture the absolutely unorthogo-
nal instruction set of the MCS-51 where every opcode must accept its own subset
of the 11 addressing mode of the processor.

The second purpose is to single out the sources of incompleteness. By ab-
stracting our functions over the dependent type of correct policies, we were able
to manifest the fact that the compiler never refuses to compile a program where
a correct policy exists. This also allowed to simplify the initial proof by dropping
lemmas establishing that one function fails if and only if some other one does so.

Finally, dependent types, together with Matita’s liberal system of coercions,
allow to simulate almost entirely in user space the proof methodology “Russell”
of Sozeau [15]. However, not every proof has been done this way: we only used
this style to prove that a function satisfies a specification that only involves that
function in a significant way. For example, it would be unnatural to see the proof
that fetch and assembly commute as the specification of one of the two functions.

4.1 Related work

We are not the first to consider the total correctness of an assembler for a non-
trivial assembly language. Perhaps the most impressive piece of work in this
domain is the Piton stack [11,12]. This was a stack of verified components, written
and verified in ACL2, ranging from a proprietary FM9001 microprocessor verified
at the gate level, to assemblers and compilers for two high-level languages—a
dialect of Lisp and µGypsy [12].

Klein and Nipkow consider a Java-like programming language, Jinja [8,9].
They provide a compiler, virtual machine and operational semantics for the
programming language and virtual machine, and prove that their compiler is
semantics and type preserving.

We believe some other verified assemblers exist in the literature. However,
what sets our work apart from that above is our attempt to optimise the machine
code generated by our assembler. This complicates any formalisation effort, as the
best possible selection of machine instructions must be made, especially important
on a device such as the MCS-51 with a miniscule code memory. Further, care
must be taken to ensure that the time properties of an assembly program are not
modified by the assembly process lest we affect the semantics of any program
employing the MCS-51’s I/O facilities. This is only possible by inducing a cost
model on the source code from the optimisation strategy and input program.
This will be a leit motif of CerCo.

Finally, mention of CerCo will invariably invite comparisons with Com-
pCert [5,10], another verified compiler project related to CerCo. As previously
mentioned, CompCert considers only extensional correctness of the compiler,
and not intensional correctness, which CerCo focusses on. However, CerCo also
extends CompCert in other ways. Namely, the CompCert verified compilation
chain terminates at the assembly level, and takes for granted the existence of
a trustworthy assembler. CerCo chooses to go further, by considering a verified
compilation chain all the way down to the machine code level. The work presented
in this publication is one part of CerCo’s extension over CompCert.

4.2 Resources

All files relating to our formalisation effort can be found online at http://

cerco.cs.unibo.it. The code of the compiler has been completed, and the
proof of correctness described here is still in progress. In particular, we have
assumed several properties of “library functions” related in particular to modular
arithmetics and datastructures manipulation. Moreover, we only completed the
interesting cases of some of the main theorems that proceed by cases on all the
possible opcodes. We thus believe that the proof strategy is sound and that we
will be able to close soon all axioms, up to possible minor bugs that should have
local fixes that do not affect the global proof strategy.

The development, including the definition of the executable semantics of
the MCS-51, is spread across 17 files, totalling around 11,500 lines of Matita
source. The bulk of the proof described herein is contained in a single file,
AssemblyProof.ma, consisting at the moment of approximately 2500 lines of
Matita source. Another 1000 lines of proofs are spread all over the development
because of dependent types and the Russell proof style, that do not allow to
separate the code from the proofs. The low ratio between the number of lines of
code and the number of lines of proof is unusual. It is justified by the fact that
the pseudo-assembly and the assembly language share most constructs and that
large parts of the semantics is also shared. Thus many lines of code are required
to describe the complex semantics of the processor, but, for the shared cases, the
proof of preservation of the semantics is essentially trivial.

References

1. Amadio, R.M., Ayache, N., Régis-Gianas, Y., Saillard, R.: Cerifying cost annotations
in compilers. Tech. rep., Université Paris Diderot (Paris 7), Laboratoire PPS (2010)

2. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Automated Reasoning 39, 109–139 (2007)

3. Bate, I., Khan, U.: WCET analysis of modern processors using multi-criteria
optimisation. Empirical Software Engineering 16, 5–28 (2011)

4. The CerCo FET-Open project. http://cerco.cs.unibo.it/ (2011)
5. The CompCert project. http://compcert.inria.fr/ (2011)
6. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,

D., Engelhardt, K., Kolanski, R., Norrish, M., Thomas Sewell, H.T., Winwood, S.:
seL4: Formal verification of an operating system kernel. In: SOSP (2009)

http://cerco.cs.unibo.it
http://cerco.cs.unibo.it
http://cerco.cs.unibo.it/
http://compcert.inria.fr/

7. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Thomas Sewell, H.T., Winwood, S.:
seL4: Formal verification of an operating system kernel. CACM 53, 107–115 (2010)

8. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. TOPLAS 28(4), 619–695 (2006)

9. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. Tech. Rep. 0400001T.1, National ICT Australia (2010)

10. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
11. Moore, J.S.: Piton: A mechanically verified assembly language, Automated Reason-

ing Series, vol. 3. Springer (1996)
12. Moore, J.S.: A grand challenge proposal for formal methods (2005)
13. Mulligan, D.P., Sacerdoti Coen, C.: An executable formal semantics of the MCS-51

microprocessor in Matita. In: FMCAD (2011), submitted
14. Small device C compiler 3.0.0. http://sdcc.sourceforge.net/ (2011)
15. Sozeau, M.: Subset coercions in Coq. In: TYPES. pp. 237–252 (2006)

http://sdcc.sourceforge.net/

	On the correctness of an assembler for the Intel MCS-51 microprocessor

