
Certifying and reasoning about
cost annotations of
functional programs
Roberto M. Amadio Y. Régis-Gianas

Université Paris Diderot

Project FP7-ICT-2009-C-243881 CerCo

1

References

Extended abstract in FOPARA 2012

Long version (60 pages) available in arXiv.

Software:

http://www.pps.univ-paris-diderot.fr/∼yrg/fun-cca/

2

Common wisdom

A Lisp programmer knows the value of everything,

but the cost of nothing.

A. Perlis

We question this common wisdom following the approach

described for C. So far a thought experiment not targeting any

particular application scenario.

3

Overall picture

λM λ`
Ioo Ccps //

er

		

λ`cps

Cad --

er

��

λ`cps,vnRkk
Ccc //

er

��

λ`cc,vn
Ch //

er

��

λ`h,vn

er

��
λ

L

II

Ccps //Ccps // λcps

Cad --
λcps,vnRkk

Ccc // λcc,vn
Ch // λh,vn

The target language is essentially isomorphic to the RTLAbs

language considered in the C compiler. We’ll call it RTL λ-calculus

for short. Starting from there we rely on the back-end of the C

compiler.

NB Similar compilation chains studied by Morriset et al. 1999 (typing

preservation) and Chlipala 2010 (simulation proofs in Coq).

4

Main issues

1. What is a good labelling for programs?

2. How do we instrument programs?

3. How do we reason on the instrumentation?

4. How do we account for the cost of heap management?

(something we did not do for C).

5

Good labelling

• What is the source labelled language?

• Where do we put the labels?

Explication by example. . .

6

Source code: function composition

fun (f,g) ->

fun (x) ->

f(g(x))

CPS code

halt (fun (f,g,k) -> (* halt initial continuation *)

k(fun (x,k) ->

g(x,(fun x ->

f(x,k)))))

CPS value named code

let x_1 = fun (f,g,k) -> (* a name for each value *)

let x_2 = fun (x,k) ->

let x_3 = fun (x) -> f (x,k) (* tcall 3 *)

in g (x,x_3) (* tcall 2 *)

in k(x_2) (* tcall 1 *)

in halt(x_1) (* main *)

7

Closure conversion

let c_1 = fun (e_1,f,g,k) -> (* fun 1, fv = empty *)

let c_2 = fun (e_2,x,k) -> (* fun 2, fv = {f,g} *)

let (f,g)= e_2 in

let c_3 = fun (e_3,x) -> (* fun 3, fv = {f,k} *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in (* tcall 3 *)

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e)= g in

c(e,x,x_3) in (* tcall 2 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e)= k in

c(e,x_2) in (* tcall 1 *)

let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

8

Hoisted code (RTL level)

let c_3 = fun (e_3,x) -> (* fun 3 *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in

let c_2 = fun (e_2,x,k) -> (* fun 2 *)

let (f,g) = e_2 in

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e) = g in

c(e,x,x_3)

let c_1 = fun (e_1,f,g,k) -> (* fun 1 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e) = k in

c(e,x_2) in

let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

9

Labelled hoisted code (RTL level)

let c_3 = fun (e_3,x) -> LAB3> (* fun 3 *)

let (f,k) = e_3 in

let (c,e) = f in

c(e,x,k) in

let c_2 = fun (e_2,x,k) -> LAB2> (* fun 2 *)

let (f,g) = e_2 in

let e_3 = (f,k) in

let x_3 = (c_3,e_3) in

let (c,e) = g in

c(e,x,x_3)

let c_1 = fun (e_1,f,g,k) -> LAB1> (* fun 1 *)

let e_2 = (f,g) in

let x_2 = (c_2,e_2) in

let (c,e) = k in

c(e,x_2) in

LAB0 > let e_1 = () in (* main *)

let x_1 = (c_1,e_1) in

halt(x_1)

10

Back to labelled CPS

LAB0> halt (fun (f,g,k) -> LAB1>

k(fun (x,k) -> LAB2>

g(x,(fun x -> LAB3>

f(x,k)))))

And to labelled source

LAB0>fun (f,g) -> LAB1>

fun (x) -> LAB2>

f(g(x)> LAB3) (* post-labelling *)

11

The good initial labelling

The source language has two labelling instructions:

• ` > M : emits ` before reducing M (pre-labelling)

• M > `: reduces M to a value and then emits `

(post-labelling).

The good initial labelling associates a distinct:

• pre-labelling to every function abstraction.

• post-labelling to every application which is not immediately

sourrounded by an abstraction.

The ‘post-labelling’ takes care of the functions created by the

CPS translation while ensuring the commutation property

(which would fail if we considered M > ` as syntactic sugar for

(λx.` > x)M).

12

Instrumentation

In C we add a ‘cost variable’, but we would rather stay in the

functional world. We rely on a simple monadic

transformation (Gurr).

ψ(x) = x

ψ(λx.M) = λx.I(M)

I(V) = (0, ψ(V))

I(@(M,N)) = let (m0, x0) = I(M), (m1, x1) = I(N), (m2, x2) = @(x0, x1) in

(m0 ⊕m1 ⊕m1, xn+1)

I(` > M) = let (m,x) = I(M) in (m` ⊕m,x)
I(M > `) = let (m,x) = I(M) in (m⊕m`, x)

If π1(I(L(M))) ⇓ m then m is the cost of running M .

13

Reasoning on the instrumentation

We rely on a higher-order Hoare logic (Régis-Gianas & Pottier 2008).

1. Annotate the functional program with logic assertions.

2. Compute a set of proof obligations implying the validity of

these assertions.

3. Prove these proof obligations.

14

Reasoning, in practice

The monadic interpretation of the functional program is not

human-friendly.

• Logic assertions are written directly on source code as if the

program was in monadic form.

• An implicit variable cost is automatically added to the logical

environment.

• The monadic transformation is applied just before the

Verification Condition Generator.

15

The cost of a higher-order function

type list = Nil | Cons (nat, list) type bool = BTrue | BFalse

logic {

Definition bound (p : nat --> (nat * bool)) (k : nat) : Prop :=

forall x m: nat, forall r: bool, post p x (m, r) => m <= k.

Definition k0 := costof_lm + costof_lnil.

Definition k1 := costof_lm + costof_lp + costof_lc + costof_lf + costof_lr.

}

let rec pexists (p : nat -> bool, l: list) { forall x, pre p x } : bool {

((result = BTrue) <=> (exists x c: nat, mem x l /\ post p x (c, BTrue))) /\

(forall k: nat, bound p k /\

(result = BFalse) => cost <= k0 + (k + k1) * length (l))

} = _lm> match l with

| Nil -> _lnil> BFalse

| Cons (x, xs) -> _lc> match p (x) > _lp with

| BTrue -> BTrue

| BFalse -> _lf> (pexists (p, xs) > _lr)

Of 53 proof obligations, 46 are discharged automatically and 7 proved in Coq.

16

Account for the cost of heap management

Non-solution ‘Real-time’ GC (see Bacon et al. 2003).

How do you go from an experimental and amortized

O(1) cost to a proved and useful O(1) WCET

cost?

Chosen approach Type and effect system to guarantee safe

deallocation in constant time.

A very important property of our implementation scheme is

that programs are executed ‘as they are written’, with no

additional costs of unbounded size (...). The memory

management directives which are inserted are each constant

time operations.

Tofte and Talpin 1997.

This amounts to add one more step to a typed compilation

chain.

17

Typing of the compilation chain

• Typing of CPS is preserved by a standard double negation

translation.

• Typing of the closure conversion relies on the introduction of

existential types to hide the details of the environment

representation (Hannah, Minamide et al. 95-96).

• Value naming and hosting transformations do not affect

the typing.

A λ-term typed with simple types compiles to a

RTL λ-term typed with simple and existential types.

18

A region enriched RTL λ-calculus

Additional operations:

• Allocate a region.

• Allocate a value to a region.

• Dispose a region (with all the values allocated there).

• Region abstraction and application.

These operations correspond to simple sequences of instructions

which are inserted by the compiler. The labelling technology takes

their cost into account automatically.

19

A type and effect system

In the region enriched RTL λ-calculus types depend on regions

(and effects).

RTL types Regions enriched RTL types

1 1

A→ R ∀r1, . . . , rn.A
e→ R

A×B (A×B)at(r)

∃t.A (∃t.A)at(r)

The type and effect system guarantees that when disposing a

region r: (i) no value allocated in r is accessed and (ii) no further

disposal of the region r occurs in the rest of the computation.

20

Compilation as type inference

• The last compilation step amounts to infer region

allocations and deallocations which are legal according to

the type and effect system.

• A trivial solution is always possible.

• We rely on previous work (Aiken et al. in particular, PDLI

2005), for effective methods based on constraint solving to find

more interesting solution.

21

Summary for the functional case

Good labelling Done.

Instrumentation Done.

Reasoning Requires (more) user interaction.

Cost of heap management Region-based.

22

Related work: Hume (IFL 2006)

Closest work in the area of higher-order functional programming.

• Different compilation chain: Hume programs are compiled to

the instructions of a Hume abstract machine (think of SECD)

which is implemented in C and then compiled with standard

compilers gcc.

• The main experimental result is an estimation of the cost of

executing the instructions of the abstract machine on a simple

processor (Resenas) using the AbsInt WCET tool.

• Not covered: certification of the cost annotations, reasoning

about the cost annotations, and the cost of heap management.

23

Problems/Under-developed areas/Perspectives

• As for C, we needs tools for assume-guarantee reasoning

on WCET of complex processors.

• Region-inference. Very little is known on the complexity of

region-inference or the definition/existence of optimal

solutions.

• Connection with implicit complexity for higher-order

functional languages (light lambda calculi).

24

