include "ASM/BitVector.ma". include "common/Identifiers.ma". include "common/CostLabel.ma". include "common/LabelledObjects.ma". axiom ASMTag : String. definition Identifier ≝ identifier ASMTag. definition toASM_ident : ∀tag. identifier tag → Identifier ≝ λt,i. match i with [ an_identifier id ⇒ an_identifier ASMTag id ]. inductive addressing_mode: Type[0] ≝ DIRECT: Byte → addressing_mode | INDIRECT: Bit → addressing_mode | EXT_INDIRECT: Bit → addressing_mode | REGISTER: BitVector 3 → addressing_mode | ACC_A: addressing_mode | ACC_B: addressing_mode | DPTR: addressing_mode | DATA: Byte → addressing_mode | DATA16: Word → addressing_mode | ACC_DPTR: addressing_mode | ACC_PC: addressing_mode | EXT_INDIRECT_DPTR: addressing_mode | INDIRECT_DPTR: addressing_mode | CARRY: addressing_mode | BIT_ADDR: Byte → addressing_mode | N_BIT_ADDR: Byte → addressing_mode | RELATIVE: Byte → addressing_mode | ADDR11: Word11 → addressing_mode | ADDR16: Word → addressing_mode. definition eq_addressing_mode: addressing_mode → addressing_mode → bool ≝ λa, b: addressing_mode. match a with [ DIRECT d ⇒ match b with [ DIRECT e ⇒ eq_bv ? d e | _ ⇒ false ] | INDIRECT b' ⇒ match b with [ INDIRECT e ⇒ eq_b b' e | _ ⇒ false ] | EXT_INDIRECT b' ⇒ match b with [ EXT_INDIRECT e ⇒ eq_b b' e | _ ⇒ false ] | REGISTER bv ⇒ match b with [ REGISTER bv' ⇒ eq_bv ? bv bv' | _ ⇒ false ] | ACC_A ⇒ match b with [ ACC_A ⇒ true | _ ⇒ false ] | ACC_B ⇒ match b with [ ACC_B ⇒ true | _ ⇒ false ] | DPTR ⇒ match b with [ DPTR ⇒ true | _ ⇒ false ] | DATA b' ⇒ match b with [ DATA e ⇒ eq_bv ? b' e | _ ⇒ false ] | DATA16 w ⇒ match b with [ DATA16 e ⇒ eq_bv ? w e | _ ⇒ false ] | ACC_DPTR ⇒ match b with [ ACC_DPTR ⇒ true | _ ⇒ false ] | ACC_PC ⇒ match b with [ ACC_PC ⇒ true | _ ⇒ false ] | EXT_INDIRECT_DPTR ⇒ match b with [ EXT_INDIRECT_DPTR ⇒ true | _ ⇒ false ] | INDIRECT_DPTR ⇒ match b with [ INDIRECT_DPTR ⇒ true | _ ⇒ false ] | CARRY ⇒ match b with [ CARRY ⇒ true | _ ⇒ false ] | BIT_ADDR b' ⇒ match b with [ BIT_ADDR e ⇒ eq_bv ? b' e | _ ⇒ false ] | N_BIT_ADDR b' ⇒ match b with [ N_BIT_ADDR e ⇒ eq_bv ? b' e | _ ⇒ false ] | RELATIVE n ⇒ match b with [ RELATIVE e ⇒ eq_bv ? n e | _ ⇒ false ] | ADDR11 w ⇒ match b with [ ADDR11 e ⇒ eq_bv ? w e | _ ⇒ false ] | ADDR16 w ⇒ match b with [ ADDR16 e ⇒ eq_bv ? w e | _ ⇒ false ] ]. lemma eq_addressing_mode_refl: ∀a. eq_addressing_mode a a = true. #a cases a try #arg1 try #arg2 try @eq_bv_refl try @eq_b_refl try normalize % qed. (* dpm: renamed register to registr to avoid clash with brian's types *) inductive addressing_mode_tag : Type[0] ≝ direct: addressing_mode_tag | indirect: addressing_mode_tag | ext_indirect: addressing_mode_tag | registr: addressing_mode_tag | acc_a: addressing_mode_tag | acc_b: addressing_mode_tag | dptr: addressing_mode_tag | data: addressing_mode_tag | data16: addressing_mode_tag | acc_dptr: addressing_mode_tag | acc_pc: addressing_mode_tag | ext_indirect_dptr: addressing_mode_tag | indirect_dptr: addressing_mode_tag | carry: addressing_mode_tag | bit_addr: addressing_mode_tag | n_bit_addr: addressing_mode_tag | relative: addressing_mode_tag | addr11: addressing_mode_tag | addr16: addressing_mode_tag. definition eq_a ≝ λa, b: addressing_mode_tag. match a with [ direct ⇒ match b with [ direct ⇒ true | _ ⇒ false ] | indirect ⇒ match b with [ indirect ⇒ true | _ ⇒ false ] | ext_indirect ⇒ match b with [ ext_indirect ⇒ true | _ ⇒ false ] | registr ⇒ match b with [ registr ⇒ true | _ ⇒ false ] | acc_a ⇒ match b with [ acc_a ⇒ true | _ ⇒ false ] | acc_b ⇒ match b with [ acc_b ⇒ true | _ ⇒ false ] | dptr ⇒ match b with [ dptr ⇒ true | _ ⇒ false ] | data ⇒ match b with [ data ⇒ true | _ ⇒ false ] | data16 ⇒ match b with [ data16 ⇒ true | _ ⇒ false ] | acc_dptr ⇒ match b with [ acc_dptr ⇒ true | _ ⇒ false ] | acc_pc ⇒ match b with [ acc_pc ⇒ true | _ ⇒ false ] | ext_indirect_dptr ⇒ match b with [ ext_indirect_dptr ⇒ true | _ ⇒ false ] | indirect_dptr ⇒ match b with [ indirect_dptr ⇒ true | _ ⇒ false ] | carry ⇒ match b with [ carry ⇒ true | _ ⇒ false ] | bit_addr ⇒ match b with [ bit_addr ⇒ true | _ ⇒ false ] | n_bit_addr ⇒ match b with [ n_bit_addr ⇒ true | _ ⇒ false ] | relative ⇒ match b with [ relative ⇒ true | _ ⇒ false ] | addr11 ⇒ match b with [ addr11 ⇒ true | _ ⇒ false ] | addr16 ⇒ match b with [ addr16 ⇒ true | _ ⇒ false ] ]. lemma eq_a_to_eq: ∀a,b. eq_a a b = true → a = b. #a #b cases a cases b #K try cases (eq_true_false K) % qed. lemma eq_a_reflexive: ∀a. eq_a a a = true. #a cases a % qed. let rec member_addressing_mode_tag (n: nat) (v: Vector addressing_mode_tag n) (a: addressing_mode_tag) on v: Prop ≝ match v with [ VEmpty ⇒ False | VCons n' hd tl ⇒ bool_to_Prop (eq_a hd a) ∨ member_addressing_mode_tag n' tl a ]. lemma mem_decidable: ∀n: nat. ∀v: Vector addressing_mode_tag n. ∀element: addressing_mode_tag. mem … eq_a n v element = true ∨ mem … eq_a … v element = false. #n #v #element // qed. lemma eq_a_elim: ∀tag. ∀hd. ∀P: bool → Prop. (tag = hd → P (true)) → (tag ≠ hd → P (false)) → P (eq_a tag hd). #tag #hd #P cases tag cases hd #true_hyp #false_hyp try @false_hyp try @true_hyp try % #absurd destruct(absurd) qed. (* to avoid expansion... *) let rec is_a (d:addressing_mode_tag) (A:addressing_mode) on d ≝ match d with [ direct ⇒ match A with [ DIRECT _ ⇒ true | _ ⇒ false ] | indirect ⇒ match A with [ INDIRECT _ ⇒ true | _ ⇒ false ] | ext_indirect ⇒ match A with [ EXT_INDIRECT _ ⇒ true | _ ⇒ false ] | registr ⇒ match A with [ REGISTER _ ⇒ true | _ ⇒ false ] | acc_a ⇒ match A with [ ACC_A ⇒ true | _ ⇒ false ] | acc_b ⇒ match A with [ ACC_B ⇒ true | _ ⇒ false ] | dptr ⇒ match A with [ DPTR ⇒ true | _ ⇒ false ] | data ⇒ match A with [ DATA _ ⇒ true | _ ⇒ false ] | data16 ⇒ match A with [ DATA16 _ ⇒ true | _ ⇒ false ] | acc_dptr ⇒ match A with [ ACC_DPTR ⇒ true | _ ⇒ false ] | acc_pc ⇒ match A with [ ACC_PC ⇒ true | _ ⇒ false ] | ext_indirect_dptr ⇒ match A with [ EXT_INDIRECT_DPTR ⇒ true | _ ⇒ false ] | indirect_dptr ⇒ match A with [ INDIRECT_DPTR ⇒ true | _ ⇒ false ] | carry ⇒ match A with [ CARRY ⇒ true | _ ⇒ false ] | bit_addr ⇒ match A with [ BIT_ADDR _ ⇒ true | _ ⇒ false ] | n_bit_addr ⇒ match A with [ N_BIT_ADDR _ ⇒ true | _ ⇒ false ] | relative ⇒ match A with [ RELATIVE _ ⇒ true | _ ⇒ false ] | addr11 ⇒ match A with [ ADDR11 _ ⇒ true | _ ⇒ false ] | addr16 ⇒ match A with [ ADDR16 _ ⇒ true | _ ⇒ false ] ]. lemma is_a_decidable: ∀hd. ∀element. is_a hd element = true ∨ is_a hd element = false. #hd #element // qed. let rec is_in n (l: Vector addressing_mode_tag n) (A:addressing_mode) on l : bool ≝ match l return λm.λ_:Vector addressing_mode_tag m.bool with [ VEmpty ⇒ false | VCons m he (tl: Vector addressing_mode_tag m) ⇒ is_a he A ∨ is_in ? tl A ]. definition is_in_cons_elim: ∀len.∀hd,tl.∀m:addressing_mode .is_in (S len) (hd:::tl) m → (bool_to_Prop (is_a hd m)) ∨ (bool_to_Prop (is_in len tl m)). #len #hd #tl #am #ISIN whd in match (is_in ???) in ISIN; cases (is_a hd am) in ISIN; /2/ qed. lemma is_in_monotonic_wrt_append: ∀m, n: nat. ∀p: Vector addressing_mode_tag m. ∀q: Vector addressing_mode_tag n. ∀to_search: addressing_mode. bool_to_Prop (is_in ? p to_search) → bool_to_Prop (is_in ? (q @@ p) to_search). #m #n #p #q #to_search #assm elim q try assumption #n' #hd #tl #inductive_hypothesis normalize cases (is_a ??) try @I >inductive_hypothesis @I qed. corollary is_in_hd_tl: ∀to_search: addressing_mode. ∀hd: addressing_mode_tag. ∀n: nat. ∀v: Vector addressing_mode_tag n. bool_to_Prop (is_in ? v to_search) → bool_to_Prop (is_in ? (hd:::v) to_search). #to_search #hd #n #v elim v [1: #absurd normalize in absurd; cases absurd |2: #n' #hd' #tl #inductive_hypothesis #assm >vector_cons_append >(vector_cons_append … hd' tl) @(is_in_monotonic_wrt_append … ([[hd']]@@tl) [[hd]] to_search) assumption ] qed. lemma is_a_to_mem_to_is_in: ∀he,a,m,q. is_a he … a = true → mem … eq_a (S m) q he = true → is_in … q a = true. #he #a #m #q elim q [1: #_ #K assumption |2: #m' #t #q' #II #H1 #H2 normalize change with (orb ??) in H2:(??%?); cases (inclusive_disjunction_true … H2) [1: #K <(eq_a_to_eq … K) >H1 % |2: #K >II try assumption cases (is_a t a) normalize % ] ] qed. lemma is_a_true_to_is_in: ∀n: nat. ∀x: addressing_mode. ∀tag: addressing_mode_tag. ∀supervector: Vector addressing_mode_tag n. mem addressing_mode_tag eq_a n supervector tag → is_a tag x = true → is_in … supervector x. #n #x #tag #supervector elim supervector [1: #absurd cases absurd |2: #n' #hd #tl #inductive_hypothesis whd in match (mem … eq_a (S n') (hd:::tl) tag); @eq_a_elim normalize nodelta [1: #tag_hd_eq #irrelevant whd in match (is_in (S n') (hd:::tl) x); is_a_hyp normalize nodelta @I |2: #tag_hd_neq whd in match (is_in (S n') (hd:::tl) x); change with ( mem … eq_a n' tl tag) in match (fold_right … n' ? false tl); #mem_hyp #is_a_hyp cases(is_a hd x) [1: normalize nodelta // |2: normalize nodelta @inductive_hypothesis assumption ] ] ] qed. record subaddressing_mode (n) (l: Vector addressing_mode_tag (S n)) : Type[0] ≝ { subaddressing_modeel:> addressing_mode; subaddressing_modein: bool_to_Prop (is_in ? l subaddressing_modeel) }. coercion subaddressing_mode : ∀n.∀l:Vector addressing_mode_tag (S n).Type[0] ≝ subaddressing_mode on _l: Vector addressing_mode_tag (S ?) to Type[0]. coercion mk_subaddressing_mode : ∀n.∀l:Vector addressing_mode_tag (S n).∀a:addressing_mode. ∀p:bool_to_Prop (is_in ? l a).subaddressing_mode n l ≝ mk_subaddressing_mode on a:addressing_mode to subaddressing_mode ? ?. lemma is_in_subvector_is_in_supervector: ∀m, n: nat. ∀subvector: Vector addressing_mode_tag m. ∀supervector: Vector addressing_mode_tag n. ∀element: addressing_mode. subvector_with … eq_a subvector supervector → is_in m subvector element → is_in n supervector element. #m #n #subvector #supervector #element elim subvector [1: #subvector_with_proof #is_in_proof cases is_in_proof |2: #n' #hd' #tl' #inductive_hypothesis #subvector_with_proof whd in match (is_in … (hd':::tl') element); cases (is_a_decidable hd' element) [1: #is_a_true >is_a_true #irrelevant whd in match (subvector_with … eq_a (hd':::tl') supervector) in subvector_with_proof; @(is_a_true_to_is_in … is_a_true) lapply(subvector_with_proof) cases(mem … eq_a n supervector hd') // |2: #is_a_false >is_a_false normalize nodelta #assm @inductive_hypothesis [1: generalize in match subvector_with_proof; whd in match (subvector_with … eq_a (hd':::tl') supervector); cases(mem_decidable n supervector hd') [1: #mem_true >mem_true normalize nodelta #assm assumption |2: #mem_false >mem_false #absurd cases absurd ] |2: assumption ] ] ] qed. (* XXX: move back into ASM.ma *) lemma subvector_with_to_subvector_with_tl: ∀n: nat. ∀m: nat. ∀v. ∀fixed_v. ∀proof: (subvector_with addressing_mode_tag n (S m) eq_a v fixed_v). ∀n': nat. ∀hd: addressing_mode_tag. ∀tl: Vector addressing_mode_tag n'. ∀m_refl: S n'=n. ∀v_refl: v≃hd:::tl. subvector_with addressing_mode_tag n' (S m) eq_a tl fixed_v. #n #m #v #fixed_v #proof #n' #hd #tl #m_refl #v_refl generalize in match proof; destruct whd in match (subvector_with … eq_a (hd:::tl) fixed_v); cases (mem … eq_a ? fixed_v hd) normalize nodelta [1: whd in match (subvector_with … eq_a tl fixed_v); #assm assumption |2: normalize in ⊢ (% → ?); #absurd cases absurd ] qed. let rec subaddressing_mode_elim_type (m: nat) (fixed_v: Vector addressing_mode_tag (S m)) (origaddr: fixed_v) (Q: fixed_v → Prop) (n: nat) (v: Vector addressing_mode_tag n) (proof: subvector_with … eq_a v fixed_v) on v: Prop ≝ match v return λo: nat. λv': Vector addressing_mode_tag o. o = n → v ≃ v' → ? with [ VEmpty ⇒ λm_refl. λv_refl. Q origaddr | VCons n' hd tl ⇒ λm_refl. λv_refl. let tail_call ≝ subaddressing_mode_elim_type m fixed_v origaddr Q n' tl ? in match hd return λa: addressing_mode_tag. a = hd → ? with [ addr11 ⇒ λhd_refl. (∀w: Word11. Q (ADDR11 w)) → tail_call | addr16 ⇒ λhd_refl. (∀w: Word. Q (ADDR16 w)) → tail_call | direct ⇒ λhd_refl. (∀w: Byte. Q (DIRECT w)) → tail_call | indirect ⇒ λhd_refl. (∀w: Bit. Q (INDIRECT w)) → tail_call | ext_indirect ⇒ λhd_refl. (∀w: Bit. Q (EXT_INDIRECT w)) → tail_call | acc_a ⇒ λhd_refl. Q ACC_A → tail_call | registr ⇒ λhd_refl. (∀w: BitVector 3. Q (REGISTER w)) → tail_call | acc_b ⇒ λhd_refl. Q ACC_B → tail_call | dptr ⇒ λhd_refl. Q DPTR → tail_call | data ⇒ λhd_refl. (∀w: Byte. Q (DATA w)) → tail_call | data16 ⇒ λhd_refl. (∀w: Word. Q (DATA16 w)) → tail_call | acc_dptr ⇒ λhd_refl. Q ACC_DPTR → tail_call | acc_pc ⇒ λhd_refl. Q ACC_PC → tail_call | ext_indirect_dptr ⇒ λhd_refl. Q EXT_INDIRECT_DPTR → tail_call | indirect_dptr ⇒ λhd_refl. Q INDIRECT_DPTR → tail_call | carry ⇒ λhd_refl. Q CARRY → tail_call | bit_addr ⇒ λhd_refl. (∀w: Byte. Q (BIT_ADDR w)) → tail_call | n_bit_addr ⇒ λhd_refl. (∀w: Byte. Q (N_BIT_ADDR w)) → tail_call | relative ⇒ λhd_refl. (∀w: Byte. Q (RELATIVE w)) → tail_call ] (refl … hd) ] (refl … n) (refl_jmeq … v). [20: @(subvector_with_to_subvector_with_tl … proof … m_refl v_refl) ] @(is_in_subvector_is_in_supervector … proof) destruct @I qed. lemma subaddressing_mode_elim0: ∀n: nat. ∀v: Vector addressing_mode_tag (S n). ∀addr: v. ∀Q: v → Prop. ∀m,w,H. (∀xaddr: v. ¬ is_in … w xaddr → Q xaddr) → subaddressing_mode_elim_type n v addr Q m w H. #n #v #addr #Q #m #w elim w [1: /2/ |2: #n' #hd #tl #IH cases hd #H #INV whd #PO @IH #xaddr cases xaddr * try (#b #IS_IN #ALREADYSEEN) try (#IS_IN #ALREADYSEEN) try @PO @INV @ALREADYSEEN ] qed. lemma subaddressing_mode_elim: ∀n: nat. ∀v: Vector addressing_mode_tag (S n). ∀addr: v. ∀Q: v → Prop. subaddressing_mode_elim_type n v addr Q (S n) v ?. [1: #n #v #addr #Q @subaddressing_mode_elim0 * #el #H #NH @⊥ >H in NH; // |2: @subvector_with_refl @eq_a_reflexive ] qed. inductive preinstruction (A: Type[0]) : Type[0] ≝ ADD: [[acc_a]] → [[ registr ; direct ; indirect ; data ]] → preinstruction A | ADDC: [[acc_a]] → [[ registr ; direct ; indirect ; data ]] → preinstruction A | SUBB: [[acc_a]] → [[ registr ; direct ; indirect ; data ]] → preinstruction A | INC: [[ acc_a ; registr ; direct ; indirect ; dptr ]] → preinstruction A | DEC: [[ acc_a ; registr ; direct ; indirect ]] → preinstruction A | MUL: [[acc_a]] → [[acc_b]] → preinstruction A | DIV: [[acc_a]] → [[acc_b]] → preinstruction A | DA: [[acc_a]] → preinstruction A (* conditional jumps *) | JC: A → preinstruction A | JNC: A → preinstruction A | JB: [[bit_addr]] → A → preinstruction A | JNB: [[bit_addr]] → A → preinstruction A | JBC: [[bit_addr]] → A → preinstruction A | JZ: A → preinstruction A | JNZ: A → preinstruction A | CJNE: [[acc_a]] × [[direct; data]] ⊎ [[registr; indirect]] × [[data]] → A → preinstruction A | DJNZ: [[registr ; direct]] → A → preinstruction A (* logical operations *) | ANL: [[acc_a]] × [[ registr ; direct ; indirect ; data ]] ⊎ [[direct]] × [[ acc_a ; data ]] ⊎ [[carry]] × [[ bit_addr ; n_bit_addr]] → preinstruction A | ORL: [[acc_a]] × [[ registr ; data ; direct ; indirect ]] ⊎ [[direct]] × [[ acc_a ; data ]] ⊎ [[carry]] × [[ bit_addr ; n_bit_addr]] → preinstruction A | XRL: [[acc_a]] × [[ data ; registr ; direct ; indirect ]] ⊎ [[direct]] × [[ acc_a ; data ]] → preinstruction A | CLR: [[ acc_a ; carry ; bit_addr ]] → preinstruction A | CPL: [[ acc_a ; carry ; bit_addr ]] → preinstruction A | RL: [[acc_a]] → preinstruction A | RLC: [[acc_a]] → preinstruction A | RR: [[acc_a]] → preinstruction A | RRC: [[acc_a]] → preinstruction A | SWAP: [[acc_a]] → preinstruction A (* data transfer *) | MOV: [[acc_a]] × [[ registr ; direct ; indirect ; data ]] ⊎ [[ registr ; indirect ]] × [[ acc_a ; direct ; data ]] ⊎ [[direct]] × [[ acc_a ; registr ; direct ; indirect ; data ]] ⊎ [[dptr]] × [[data16]] ⊎ [[carry]] × [[bit_addr]] ⊎ [[bit_addr]] × [[carry]] → preinstruction A | MOVX: [[acc_a]] × [[ ext_indirect ; ext_indirect_dptr ]] ⊎ [[ ext_indirect ; ext_indirect_dptr ]] × [[acc_a]] → preinstruction A | SETB: [[ carry ; bit_addr ]] → preinstruction A | PUSH: [[direct]] → preinstruction A | POP: [[direct]] → preinstruction A | XCH: [[acc_a]] → [[ registr ; direct ; indirect ]] → preinstruction A | XCHD: [[acc_a]] → [[indirect]] → preinstruction A (* program branching *) | RET: preinstruction A | RETI: preinstruction A | NOP: preinstruction A. definition eq_preinstruction: preinstruction [[relative]] → preinstruction [[relative]] → bool ≝ λi, j. match i with [ ADD arg1 arg2 ⇒ match j with [ ADD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | ADDC arg1 arg2 ⇒ match j with [ ADDC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | SUBB arg1 arg2 ⇒ match j with [ SUBB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | INC arg ⇒ match j with [ INC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | DEC arg ⇒ match j with [ DEC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | MUL arg1 arg2 ⇒ match j with [ MUL arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | DIV arg1 arg2 ⇒ match j with [ DIV arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | DA arg ⇒ match j with [ DA arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | JC arg ⇒ match j with [ JC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | JNC arg ⇒ match j with [ JNC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | JB arg1 arg2 ⇒ match j with [ JB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | JNB arg1 arg2 ⇒ match j with [ JNB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | JBC arg1 arg2 ⇒ match j with [ JBC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | JZ arg ⇒ match j with [ JZ arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | JNZ arg ⇒ match j with [ JNZ arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | CJNE arg1 arg2 ⇒ match j with [ CJNE arg1' arg2' ⇒ let prod_eq_left ≝ eq_prod [[acc_a]] [[direct; data]] eq_addressing_mode eq_addressing_mode in let prod_eq_right ≝ eq_prod [[registr; indirect]] [[data]] eq_addressing_mode eq_addressing_mode in let arg1_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in arg1_eq arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | DJNZ arg1 arg2 ⇒ match j with [ DJNZ arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | CLR arg ⇒ match j with [ CLR arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | CPL arg ⇒ match j with [ CPL arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | RL arg ⇒ match j with [ RL arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | RLC arg ⇒ match j with [ RLC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | RR arg ⇒ match j with [ RR arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | RRC arg ⇒ match j with [ RRC arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | SWAP arg ⇒ match j with [ SWAP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | SETB arg ⇒ match j with [ SETB arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | PUSH arg ⇒ match j with [ PUSH arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | POP arg ⇒ match j with [ POP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | XCH arg1 arg2 ⇒ match j with [ XCH arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | XCHD arg1 arg2 ⇒ match j with [ XCHD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | RET ⇒ match j with [ RET ⇒ true | _ ⇒ false ] | RETI ⇒ match j with [ RETI ⇒ true | _ ⇒ false ] | NOP ⇒ match j with [ NOP ⇒ true | _ ⇒ false ] | MOVX arg ⇒ match j with [ MOVX arg' ⇒ let prod_eq_left ≝ eq_prod [[acc_a]] [[ext_indirect; ext_indirect_dptr]] eq_addressing_mode eq_addressing_mode in let prod_eq_right ≝ eq_prod [[ext_indirect; ext_indirect_dptr]] [[acc_a]] eq_addressing_mode eq_addressing_mode in let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in sum_eq arg arg' | _ ⇒ false ] | XRL arg ⇒ match j with [ XRL arg' ⇒ let prod_eq_left ≝ eq_prod [[acc_a]] [[ data ; registr ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in let prod_eq_right ≝ eq_prod [[direct]] [[ acc_a ; data ]] eq_addressing_mode eq_addressing_mode in let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in sum_eq arg arg' | _ ⇒ false ] | ORL arg ⇒ match j with [ ORL arg' ⇒ let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; data ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in let prod_eq_right ≝ eq_prod [[carry]] [[ bit_addr ; n_bit_addr]] eq_addressing_mode eq_addressing_mode in let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in sum_eq arg arg' | _ ⇒ false ] | ANL arg ⇒ match j with [ ANL arg' ⇒ let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; direct ; indirect ; data ]] eq_addressing_mode eq_addressing_mode in let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in let prod_eq_right ≝ eq_prod [[carry]] [[ bit_addr ; n_bit_addr]] eq_addressing_mode eq_addressing_mode in let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in sum_eq arg arg' | _ ⇒ false ] | MOV arg ⇒ match j with [ MOV arg' ⇒ let prod_eq_6 ≝ eq_prod [[acc_a]] [[registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in let prod_eq_5 ≝ eq_prod [[registr; indirect]] [[acc_a; direct; data]] eq_addressing_mode eq_addressing_mode in let prod_eq_4 ≝ eq_prod [[direct]] [[acc_a; registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in let prod_eq_3 ≝ eq_prod [[dptr]] [[data16]] eq_addressing_mode eq_addressing_mode in let prod_eq_2 ≝ eq_prod [[carry]] [[bit_addr]] eq_addressing_mode eq_addressing_mode in let prod_eq_1 ≝ eq_prod [[bit_addr]] [[carry]] eq_addressing_mode eq_addressing_mode in let sum_eq_1 ≝ eq_sum ? ? prod_eq_6 prod_eq_5 in let sum_eq_2 ≝ eq_sum ? ? sum_eq_1 prod_eq_4 in let sum_eq_3 ≝ eq_sum ? ? sum_eq_2 prod_eq_3 in let sum_eq_4 ≝ eq_sum ? ? sum_eq_3 prod_eq_2 in let sum_eq_5 ≝ eq_sum ? ? sum_eq_4 prod_eq_1 in sum_eq_5 arg arg' | _ ⇒ false ] ]. lemma eq_preinstruction_refl: ∀i. eq_preinstruction i i = true. #i cases i try #arg1 try #arg2 try @eq_addressing_mode_refl [1,2,3,4,5,6,7,8,10,16,17,18,19,20: whd in ⊢ (??%?); try % >eq_addressing_mode_refl >eq_addressing_mode_refl % |13,15: whd in ⊢ (??%?); cases arg1 [*: #arg1_left normalize nodelta >eq_prod_refl [*: try % #argr @eq_addressing_mode_refl] ] |11,12: whd in ⊢ (??%?); cases arg1 [1: #arg1_left normalize nodelta >(eq_sum_refl …) [1: % | 2,3: #arg @eq_prod_refl ] @eq_addressing_mode_refl |2: #arg1_left normalize nodelta @eq_prod_refl [*: @eq_addressing_mode_refl ] |3: #arg1_left normalize nodelta >(eq_sum_refl …) [1: % |2,3: #arg @eq_prod_refl #arg @eq_addressing_mode_refl ] |4: #arg1_left normalize nodelta @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |14: whd in ⊢ (??%?); cases arg1 [1: #arg1_left normalize nodelta @eq_sum_refl [1: #arg @eq_sum_refl [1: #arg @eq_sum_refl [1: #arg @eq_sum_refl [1: #arg @eq_prod_refl [*: @eq_addressing_mode_refl ] |2: #arg @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |2: #arg @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |2: #arg @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |2: #arg @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |2: #arg1_right normalize nodelta @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] |*: whd in ⊢ (??%?); cases arg1 [*: #arg1 >eq_sum_refl [1,4: @eq_addressing_mode_refl |2,3,5,6: #arg @eq_prod_refl [*: #arg @eq_addressing_mode_refl ] ] ] ] qed. inductive instruction: Type[0] ≝ | ACALL: [[addr11]] → instruction | LCALL: [[addr16]] → instruction | AJMP: [[addr11]] → instruction | LJMP: [[addr16]] → instruction | SJMP: [[relative]] → instruction | JMP: [[indirect_dptr]] → instruction | MOVC: [[acc_a]] → [[ acc_dptr ; acc_pc ]] → instruction | RealInstruction: preinstruction [[ relative ]] → instruction. coercion RealInstruction: ∀p: preinstruction [[ relative ]]. instruction ≝ RealInstruction on _p: preinstruction ? to instruction. definition eq_instruction: instruction → instruction → bool ≝ λi, j. match i with [ ACALL arg ⇒ match j with [ ACALL arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | LCALL arg ⇒ match j with [ LCALL arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | AJMP arg ⇒ match j with [ AJMP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | LJMP arg ⇒ match j with [ LJMP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | SJMP arg ⇒ match j with [ SJMP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | JMP arg ⇒ match j with [ JMP arg' ⇒ eq_addressing_mode arg arg' | _ ⇒ false ] | MOVC arg1 arg2 ⇒ match j with [ MOVC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2' | _ ⇒ false ] | RealInstruction instr ⇒ match j with [ RealInstruction instr' ⇒ eq_preinstruction instr instr' | _ ⇒ false ] ]. lemma eq_instruction_refl: ∀i. eq_instruction i i = true. #i cases i [*: #arg1 ] try @eq_addressing_mode_refl try @eq_preinstruction_refl #arg2 whd in ⊢ (??%?); >eq_addressing_mode_refl >eq_addressing_mode_refl % qed. lemma eq_instruction_to_eq: ∀i1, i2: instruction. eq_instruction i1 i2 = true → i1 ≃ i2. #i1 #i2 cases i1 cases i2 cases daemon (* easy but tedious [1,10,19,28,37,46: #arg1 #arg2 whd in match (eq_instruction ??); cases arg1 #subaddressing_mode cases subaddressing_mode try (#arg1' #arg2' normalize in ⊢ (% → ?); #absurd cases absurd @I) try (#arg1' normalize in ⊢ (% → ?); #absurd cases absurd @I) try (normalize in ⊢ (% → ?); #absurd cases absurd @I) #word11 #irrelevant cases arg2 #subaddressing_mode cases subaddressing_mode try (#arg1' #arg2' normalize in ⊢ (% → ?); #absurd cases absurd @I) try (#arg1' normalize in ⊢ (% → ?); #absurd cases absurd @I) try (normalize in ⊢ (% → ?); #absurd cases absurd @I) #word11' #irrelevant normalize nodelta #eq_bv_assm cases (eq_bv_eq … eq_bv_assm) % *) qed. inductive pseudo_instruction: Type[0] ≝ | Instruction: preinstruction Identifier → pseudo_instruction | Comment: String → pseudo_instruction | Cost: costlabel → pseudo_instruction | Jmp: Identifier → pseudo_instruction | Call: Identifier → pseudo_instruction | Mov: [[dptr]] → Identifier → pseudo_instruction. definition labelled_instruction ≝ labelled_obj ASMTag pseudo_instruction. definition preamble ≝ (identifier_map SymbolTag nat) × (list (Identifier × Word)). definition assembly_program ≝ list instruction. definition pseudo_assembly_program ≝ preamble × (list labelled_instruction). (* labels & instructions *) definition instruction_has_label ≝ λid: Identifier. λi. match i with [ Jmp j ⇒ j = id | Call j ⇒ j = id | Instruction instr ⇒ match instr with [ JC j ⇒ j = id | JNC j ⇒ j = id | JZ j ⇒ j = id | JNZ j ⇒ j = id | JB _ j ⇒ j = id | JNB _ j ⇒ j = id | JBC _ j ⇒ j = id | DJNZ _ j ⇒ j = id | CJNE _ j ⇒ j = id | _ ⇒ False ] | _ ⇒ False ].