include "Csem.ma". include "extralib.ma". include "IOMonad.ma". include "Plogic/russell_support.ma". ndefinition P_to_P_option_res : ∀A:Type[0].∀P:A → CProp[0].option (res A) → CProp[0] ≝ λA,P,a.match a with [ None ⇒ False | Some y ⇒ match y return λ_.CProp[0] with [ Error ⇒ True | OK z ⇒ P z ]]. ndefinition err_inject : ∀A.∀P:A → Prop.∀a:option (res A).∀p:P_to_P_option_res A P a.res (sigma A P) ≝ λA.λP:A → Prop.λa:option (res A).λp:P_to_P_option_res A P a. (match a return λa'.a=a' → res (sigma A P) with [ None ⇒ λe1.? | Some b ⇒ λe1.(match b return λb'.b=b' → ? with [ Error ⇒ λ_. Error ? | OK c ⇒ λe2. OK ? (sig_intro A P c ?) ]) (refl ? b) ]) (refl ? a). ##[ nrewrite > e1 in p; nnormalize; *; ##| nrewrite > e1 in p; nrewrite > e2; nnormalize; // ##] nqed. ndefinition err_eject : ∀A.∀P: A → Prop. res (sigma A P) → res A ≝ λA,P,a.match a with [ Error ⇒ Error ? | OK b ⇒ match b with [ sig_intro w p ⇒ OK ? w] ]. ndefinition sig_eject : ∀A.∀P: A → Prop. sigma A P → A ≝ λA,P,a.match a with [ sig_intro w p ⇒ w]. ncoercion err_inject : ∀A.∀P:A → Prop.∀a.∀p:P_to_P_option_res ? P a.res (sigma A P) ≝ err_inject on a:option (res ?) to res (sigma ? ?). ncoercion err_eject : ∀A.∀P:A → Prop.∀c:res (sigma A P).res A ≝ err_eject on _c:res (sigma ? ?) to res ?. ncoercion sig_eject : ∀A.∀P:A → Prop.∀c:sigma A P.A ≝ sig_eject on _c:sigma ? ? to ?. ndefinition bool_of_val_3 : ∀v:val. ∀ty:type. res (Σr:bool. bool_of_val v ty (of_bool r)) ≝ λv,ty. match v in val with [ Vint i ⇒ match ty with [ Tint _ _ ⇒ Some ? (OK ? (¬eq i zero)) | Tpointer _ _ ⇒ Some ? (OK ? (¬eq i zero)) | _ ⇒ Some ? (Error ?) ] | Vfloat f ⇒ match ty with [ Tfloat _ ⇒ Some ? (OK ? (¬Fcmp Ceq f Fzero)) | _ ⇒ Some ? (Error ?) ] | Vptr _ _ _ ⇒ match ty with [ Tint _ _ ⇒ Some ? (OK ? true) | Tpointer _ _ ⇒ Some ? (OK ? true) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ]. nwhd; //; ##[ ##1,2: nlapply (eq_spec c0 zero); nelim (eq c0 zero); ##[ ##1,3: #e; nrewrite > e; napply bool_of_val_false; //; ##| ##2,4: #ne; napply bool_of_val_true; /2/; ##] ##| nelim (eq_dec c0 Fzero); ##[ #e; nrewrite > e; nrewrite > (Feq_zero_true …); napply bool_of_val_false; //; ##| #ne; nrewrite > (Feq_zero_false …); //; napply bool_of_val_true; /2/; ##] ##| ##4,5: napply bool_of_val_true; // ##] nqed. ndefinition err_eq ≝ λA,P. λx:res (sigma A P). λy:A. match x with [ Error ⇒ False | OK x' ⇒ match x' with [ sig_intro x'' _ ⇒ x'' = y ]]. (* TODO: can I write a coercion for the above? *) (* Same as before, except we have to use a slightly different "equality". *) nlemma bool_of_val_3_complete : ∀v,ty,r. bool_of_val v ty r → ∃b. r = of_bool b ∧ err_eq ?? (bool_of_val_3 v ty) b. #v ty r H; nelim H; #v t H'; nelim H'; ##[ #i is s ne; @ true; @; //; nwhd; nrewrite > (eq_false … ne); //; ##| #p b i i0 s; @ true; @; // ##| #i p t ne; @ true; @; //; nwhd; nrewrite > (eq_false … ne); //; ##| #p b i p0 t0; @ true; @; // ##| #f s ne; @ true; @; //; nwhd; nrewrite > (Feq_zero_false … ne); //; ##| #i s; @ false; @; //; (*nwhd; nrewrite > (eq_true …); //;*) ##| #p t; @ false; @; //; (*nwhd; nrewrite > (eq_true …); //;*) ##| #s; @ false; @; //; nwhd; nrewrite > (Feq_zero_true …); //; ##] nqed. (* Prove a few minor results to make proof obligations easy. *) nlemma bind_assoc_r: ∀A,B,C,e,f,g. bind B C (bind A B e f) g = bind A C e (λx.bind B C (f x) g). #A B C e f g; ncases e; nnormalize; //; nqed. nlemma bind_OK: ∀A,B,P,e,f. (∀v. e = OK A v → match f v with [ Error ⇒ True | OK v' ⇒ P v' ]) → match bind A B e f with [ Error ⇒ True | OK v ⇒ P v ]. #A B P e f; nelim e; /2/; nqed. nlemma sig_bind_OK: ∀A,B. ∀P:A → Prop. ∀P':B → Prop. ∀e:res (sigma A P). ∀f:sigma A P → res B. (∀v:A. ∀p:P v. match f (sig_intro A P v p) with [ Error ⇒ True | OK v' ⇒ P' v'] ) → match bind (sigma A P) B e f with [ Error ⇒ True | OK v' ⇒ P' v' ]. #A B P P' e f; nelim e; ##[ #v0; nelim v0; #v Hv IH; napply IH; ##| #_; napply I; ##] nqed. nlemma bind2_OK: ∀A,B,C,P,e,f. (∀v1,v2. e = OK ? 〈v1,v2〉 → match f v1 v2 with [ Error ⇒ True | OK v' ⇒ P v' ]) → match bind2 A B C e f with [ Error ⇒ True | OK v ⇒ P v ]. #A B C P e f; nelim e; //; #v; ncases v; /2/; nqed. nlemma sig_bind2_OK: ∀A,B,C. ∀P:A×B → Prop. ∀P':C → Prop. ∀e:res (sigma (A×B) P). ∀f:A → B → res C. (∀v1:A.∀v2:B. P 〈v1,v2〉 → match f v1 v2 with [ Error ⇒ True | OK v' ⇒ P' v'] ) → match bind2 A B C e f with [ Error ⇒ True | OK v' ⇒ P' v' ]. #A B C P P' e f; nelim e; //; #v0; nelim v0; #v; nelim v; #v1 v2 Hv IH; napply IH; //; nqed. nlemma reinject: ∀A. ∀P,P':A → Prop. ∀e:res (sigma A P'). (∀v:A. err_eq A P' e v → P' v → P v) → match err_eject A P' e with [ Error ⇒ True | OK v' ⇒ P v' ]. #A P P' e; ncases e; //; #v0; nelim v0; #v Pv' IH; /2/; nqed. nlemma bool_val_distinct: Vtrue ≠ Vfalse. @; #H; nwhd in H:(??%%); ndestruct; napply (absurd ? e0 one_not_zero); nqed. nlemma bool_of: ∀v,ty,b. bool_of_val v ty (of_bool b) → if b then is_true v ty else is_false v ty. #v ty b; ncases b; #H; ninversion H; #v' ty' H' ev et ev; //; napply False_ind; napply (absurd ? ev ?); ##[ ##2: napply sym_neq ##] napply bool_val_distinct; nqed. ndefinition opt_to_res ≝ λA.λv:option A. match v with [ None ⇒ Error A | Some v ⇒ OK A v ]. nlemma opt_OK: ∀A,P,e. (∀v. e = Some ? v → P v) → match opt_to_res A e with [ Error ⇒ True | OK v ⇒ P v ]. #A P e; nelim e; /2/; nqed. nlemma opt_bind_OK: ∀A,B,P,e,f. (∀v. e = Some A v → match f v with [ Error ⇒ True | OK v' ⇒ P v' ]) → match bind A B (opt_to_res A e) f with [ Error ⇒ True | OK v ⇒ P v ]. #A B P e f; nelim e; nnormalize; /2/; nqed. nlemma extract_subset_pair: ∀A,B,C,P. ∀e:{e:A×B | P e}. ∀Q:A→B→res C. ∀R:C→Prop. (∀a,b. eject ?? e = 〈a,b〉 → P 〈a,b〉 → match Q a b with [ OK v ⇒ R v | Error ⇒ True]) → match match eject ?? e with [ mk_pair a b ⇒ Q a b ] with [ OK v ⇒ R v | Error ⇒ True ]. #A B C P e Q R; ncases e; #e'; ncases e'; nnormalize; ##[ #H; napply (False_ind … H); ##| #e''; ncases e''; #a b Pab H; nnormalize; /2/; ##] nqed. (* nremark err_later: ∀A,B. ∀e:res A. match e with [ Error ⇒ Error B | OK v ⇒ Error B ] = Error B. #A B e; ncases e; //; nqed. *) nlet rec try_cast_null (m:mem) (i:int) (ty:type) (ty':type) on i : res (Σv':val. cast m (Vint i) ty ty' v') ≝ match eq i zero with [ true ⇒ match ty with [ Tint _ _ ⇒ match ty' with [ Tpointer _ _ ⇒ Some ? (OK ? (Vint i)) | Tarray _ _ _ ⇒ Some ? (OK ? (Vint i)) | Tfunction _ _ ⇒ Some ? (OK ? (Vint i)) | _ ⇒ Some ? (Error ?) ] | Tpointer _ _ ⇒ match ty' with [ Tpointer _ _ ⇒ Some ? (OK ? (Vint i)) | Tarray _ _ _ ⇒ Some ? (OK ? (Vint i)) | Tfunction _ _ ⇒ Some ? (OK ? (Vint i)) | _ ⇒ Some ? (Error ?) ] | Tarray _ _ _ ⇒ match ty' with [ Tpointer _ _ ⇒ Some ? (OK ? (Vint i)) | Tarray _ _ _ ⇒ Some ? (OK ? (Vint i)) | Tfunction _ _ ⇒ Some ? (OK ? (Vint i)) | _ ⇒ Some ? (Error ?) ] | Tfunction _ _ ⇒ match ty' with [ Tpointer _ _ ⇒ Some ? (OK ? (Vint i)) | Tarray _ _ _ ⇒ Some ? (OK ? (Vint i)) | Tfunction _ _ ⇒ Some ? (OK ? (Vint i)) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ] | false ⇒ Some ? (Error ?) ]. nwhd; //; nlapply (eq_spec i zero); nrewrite > c0; #e; nrewrite > e; ##[ ##1,2,3: napply cast_ip_z ##| ##*: napply cast_pp_z ##] //; nqed. ndefinition ms_eq_dec : ∀s1,s2:memory_space. (s1 = s2) + (s1 ≠ s2). #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. ndefinition exec_cast : ∀m:mem. ∀v:val. ∀ty:type. ∀ty':type. res (Σv':val. cast m v ty ty' v') ≝ λm:mem. λv:val. λty:type. λty':type. match v with [ Vint i ⇒ match ty with [ Tint sz1 si1 ⇒ match ty' with [ Tint sz2 si2 ⇒ Some ? (OK ? (Vint (cast_int_int sz2 si2 i))) | Tfloat sz2 ⇒ Some ? (OK ? (Vfloat (cast_float_float sz2 (cast_int_float si1 i)))) | Tpointer _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | Tarray _ _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | Tfunction _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | _ ⇒ Some ? (Error ?) ] | Tpointer _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | Tarray _ _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | Tfunction _ _ ⇒ Some (res val) (do r ← try_cast_null m i ty ty'; OK val r) | _ ⇒ Some ? (Error ?) ] | Vfloat f ⇒ match ty with [ Tfloat sz ⇒ match ty' with [ Tint sz' si' ⇒ Some ? (OK ? (Vint (cast_int_int sz' si' (cast_float_int si' f)))) | Tfloat sz' ⇒ Some ? (OK ? (Vfloat (cast_float_float sz' f))) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ] | Vptr p b ofs ⇒ Some ? ( do s ← match ty with [ Tpointer s _ ⇒ OK ? s | Tarray s _ _ ⇒ OK ? s | Tfunction _ _ ⇒ OK ? Code | _ ⇒ Error ? ]; do u ← match ms_eq_dec p s with [ inl _ ⇒ OK ? something | inr _ ⇒ Error ? ]; do s' ← match ty' with [ Tpointer s _ ⇒ OK ? s | Tarray s _ _ ⇒ OK ? s | Tfunction _ _ ⇒ OK ? Code | _ ⇒ Error ? ]; if is_pointer_compat (block_space m b) s' then OK ? (Vptr s' b ofs) else Error ?) | _ ⇒ Some ? (Error ?) ]. nwhd; //; ##[ ##1,2,3,4,5,6: napply sig_bind_OK; #v'; #H; ndestruct; napply H; ##| napply bind_OK; #s es; ncut (type_space ty s); ##[ ncases ty in es ⊢ %; ##[ #e; ##| ##3,9: #a e; ##| ##2,4,6,7,8: #a b e; ##| #a b c e; ##] nwhd in e:(??%?); ndestruct; //; ##| #Hty; napply bind_OK; #u1 eeq; napply bind_OK; #s' es'; ncut (type_space ty' s'); ##[ ncases ty' in es' ⊢ %; ##[ #e; ##| ##3,9: #a e; ##| ##2,4,6,7,8: #a b e; ##| #a b c e; ##] nwhd in e:(??%?); ndestruct; //; ##| #Hty'; ncut (s = c0). nelim (ms_eq_dec c0 s) in eeq; //; nnormalize; #_; #e; ndestruct. #e; nrewrite < e; nwhd in match (is_pointer_compat ??) in ⊢ %; ncases (pointer_compat_dec (block_space m c1) s'); #Hcompat; nwhd; /2/; ##] ##] ##] nqed. ndefinition load_value_of_type' ≝ λty,m,l. match l with [ mk_pair pl ofs ⇒ match pl with [ mk_pair psp loc ⇒ load_value_of_type ty m psp loc ofs ] ]. (* To make the evaluation of bare lvalue expressions invoke exec_lvalue with a structurally smaller value, we break out the surrounding Expr constructor and use exec_lvalue'. *) nlet rec exec_expr (ge:genv) (en:env) (m:mem) (e:expr) on e : res (Σr:val×trace. eval_expr ge en m e (\fst r) (\snd r)) ≝ match e with [ Expr e' ty ⇒ match e' with [ Econst_int i ⇒ Some ? (OK ? 〈Vint i, E0〉) | Econst_float f ⇒ Some ? (OK ? 〈Vfloat f, E0〉) | Evar _ ⇒ Some ? ( do 〈l,tr〉 ← exec_lvalue' ge en m e' ty; do v ← opt_to_res ? (load_value_of_type' ty m l); OK ? 〈v,tr〉) | Ederef _ ⇒ Some ? ( do 〈l,tr〉 ← exec_lvalue' ge en m e' ty; do v ← opt_to_res ? (load_value_of_type' ty m l); OK ? 〈v,tr〉) | Efield _ _ ⇒ Some ? ( do 〈l,tr〉 ← exec_lvalue' ge en m e' ty; do v ← opt_to_res ? (load_value_of_type' ty m l); OK ? 〈v,tr〉) | Eaddrof a ⇒ Some ? ( do 〈plo,tr〉 ← exec_lvalue ge en m a; OK ? 〈match plo with [ mk_pair pl ofs ⇒ match pl with [ mk_pair pcl loc ⇒ Vptr pcl loc ofs ] ], tr〉) | Esizeof ty' ⇒ Some ? (OK ? 〈Vint (repr (sizeof ty')), E0〉) | Eunop op a ⇒ Some ? ( do 〈v1,tr〉 ← exec_expr ge en m a; do v ← opt_to_res ? (sem_unary_operation op v1 (typeof a)); OK ? 〈v,tr〉) | Ebinop op a1 a2 ⇒ Some ? ( do 〈v1,tr1〉 ← exec_expr ge en m a1; do 〈v2,tr2〉 ← exec_expr ge en m a2; do v ← opt_to_res ? (sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m); OK ? 〈v,tr1⧺tr2〉) | Econdition a1 a2 a3 ⇒ Some ? ( do 〈v,tr1〉 ← exec_expr ge en m a1; do b ← bool_of_val_3 v (typeof a1); do 〈v',tr2〉 ← match b return λ_.res (val×trace) with [ true ⇒ (exec_expr ge en m a2) | false ⇒ (exec_expr ge en m a3) ]; OK ? 〈v',tr1⧺tr2〉) (* if b then exec_expr ge en m a2 else exec_expr ge en m a3)*) | Eorbool a1 a2 ⇒ Some ? ( do 〈v1,tr1〉 ← exec_expr ge en m a1; do b1 ← bool_of_val_3 v1 (typeof a1); match b1 return λ_.res (val×trace) with [ true ⇒ OK ? 〈Vtrue,tr1〉 | false ⇒ do 〈v2,tr2〉 ← exec_expr ge en m a2; do b2 ← bool_of_val_3 v2 (typeof a2); OK ? 〈of_bool b2, tr1⧺tr2〉 ]) | Eandbool a1 a2 ⇒ Some ? ( do 〈v1,tr1〉 ← exec_expr ge en m a1; do b1 ← bool_of_val_3 v1 (typeof a1); match b1 return λ_.res (val×trace) with [ true ⇒ do 〈v2,tr2〉 ← exec_expr ge en m a2; do b2 ← bool_of_val_3 v2 (typeof a2); OK ? 〈of_bool b2, tr1⧺tr2〉 | false ⇒ OK ? 〈Vfalse,tr1〉 ]) | Ecast ty' a ⇒ Some ? ( do 〈v,tr〉 ← exec_expr ge en m a; do v' ← exec_cast m v (typeof a) ty'; OK ? 〈(* XXX *)sig_eject ?? v',tr〉) | Ecost l a ⇒ Some ? ( do 〈v,tr〉 ← exec_expr ge en m a; OK ? 〈v,tr⧺(Echarge l)〉) ] ] and exec_lvalue' (ge:genv) (en:env) (m:mem) (e':expr_descr) (ty:type) on e' : res (Σr:memory_space × block × int × trace. eval_lvalue ge en m (Expr e' ty) (\fst (\fst (\fst r))) (\snd (\fst (\fst r))) (\snd (\fst r)) (\snd r)) ≝ match e' with [ Evar id ⇒ match (get … id en) with [ None ⇒ Some ? (do 〈sp,l〉 ← opt_to_res ? (find_symbol ? ? ge id); OK ? 〈〈〈sp,l〉,zero〉,E0〉) (* global *) | Some loc ⇒ Some ? (OK ? 〈〈〈Any,loc〉,zero〉,E0〉) (* local *) ] | Ederef a ⇒ Some ? ( do 〈v,tr〉 ← exec_expr ge en m a; match v with [ Vptr sp l ofs ⇒ OK ? 〈〈〈sp,l〉,ofs〉,tr〉 | _ ⇒ Error ? ]) | Efield a i ⇒ match (typeof a) with [ Tstruct id fList ⇒ Some ? ( do 〈plofs,tr〉 ← exec_lvalue ge en m a; do delta ← field_offset i fList; OK ? 〈〈\fst plofs,add (\snd plofs) (repr delta)〉,tr〉) | Tunion id fList ⇒ Some ? ( do 〈plofs,tr〉 ← exec_lvalue ge en m a; OK ? 〈plofs,tr〉) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ] and exec_lvalue (ge:genv) (en:env) (m:mem) (e:expr) on e : res (Σr:memory_space × block × int × trace. eval_lvalue ge en m e (\fst (\fst (\fst r))) (\snd (\fst (\fst r))) (\snd (\fst r)) (\snd r)) ≝ match e with [ Expr e' ty ⇒ exec_lvalue' ge en m e' ty ]. nwhd; ##[ ##1,2: // ##| ##3,4: napply sig_bind2_OK; nrewrite > c4; #x; ncases x; #y; ncases y; #sp loc ofs tr H; napply opt_bind_OK; #v ev; nwhd in ev:(??%?); napply (eval_Elvalue … H ev); ##| napply sig_bind2_OK; #x; ncases x; #y; ncases y; #sp loc ofs tr H; nwhd; napply eval_Eaddrof; //; ##| napply sig_bind2_OK; #v1 tr Hv1; napply opt_bind_OK; #v ev; napply (eval_Eunop … Hv1 ev); ##| napply sig_bind2_OK; #v1 tr1 Hv1; napply sig_bind2_OK; #v2 tr2 Hv2; napply opt_bind_OK; #v ev; napply (eval_Ebinop … Hv1 Hv2 ev); ##| napply sig_bind2_OK; #v tr Hv; napply sig_bind_OK; #v' Hv'; napply (eval_Ecast … Hv Hv'); ##| napply sig_bind2_OK; #vb tr1 Hvb; napply sig_bind_OK; #b; ncases b; #Hb; napply sig_bind2_OK; #v tr Hv; ##[ napply (eval_Econdition_true … Hvb ? Hv); napply (bool_of ??? Hb); ##| napply (eval_Econdition_false … Hvb ? Hv); napply (bool_of ??? Hb); ##] ##| napply sig_bind2_OK; #v1 tr1 Hv1; napply sig_bind_OK; #b1; ncases b1; #Hb1; ##[ napply sig_bind2_OK; #v2 tr2 Hv2; napply sig_bind_OK; #b2 Hb2; napply (eval_Eandbool_2 … Hv1 … Hv2); ##[ napply (bool_of … Hb1); ##| napply Hb2; ##] ##| napply (eval_Eandbool_1 … Hv1); napply (bool_of … Hb1); ##] ##| napply sig_bind2_OK; #v1 tr1 Hv1; napply sig_bind_OK; #b1; ncases b1; #Hb1; ##[ napply (eval_Eorbool_1 … Hv1); napply (bool_of … Hb1); ##| napply sig_bind2_OK; #v2 tr2 Hv2; napply sig_bind_OK; #b2 Hb2; napply (eval_Eorbool_2 … Hv1 … Hv2); ##[ napply (bool_of … Hb1); ##| napply Hb2; ##] ##] ##| // ##| napply sig_bind2_OK; nrewrite > c5; #x; ncases x; #y; ncases y; #sp l ofs tr H; napply opt_bind_OK; #v ev; napply (eval_Elvalue … H ev); ##| napply sig_bind2_OK; #v tr1 H; napply (eval_Ecost … H); ##| // ##| // ##| napply opt_bind_OK; #sl; ncases sl; #sp l el; napply eval_Evar_global; /2/; ##| napply (eval_Evar_local … c3); ##| napply sig_bind2_OK; #v; ncases v; //; #sp l ofs tr Hv; nwhd; napply eval_Ederef; // ##| ##20,21,22,23,24,25,26,27,28,29,30,31,32,33: // ##| napply sig_bind2_OK; #x; ncases x; #sp l ofs H; napply bind_OK; #delta Hdelta; napply (eval_Efield_struct … H c5 Hdelta); ##| napply sig_bind2_OK; #x; ncases x; #sp l ofs H; napply (eval_Efield_union … H c5); ##| // ##| // ##] nqed. (* TODO: Can we do this sensibly with a map combinator? *) nlet rec exec_exprlist (ge:genv) (e:env) (m:mem) (l:list expr) on l : res (Σvltr:list val×trace. eval_exprlist ge e m l (\fst vltr) (\snd vltr)) ≝ match l with [ nil ⇒ Some ? (OK ? 〈nil val, E0〉) | cons e1 es ⇒ Some ? ( do 〈v,tr1〉 ← exec_expr ge e m e1; do 〈vs,tr2〉 ← exec_exprlist ge e m es; OK ? 〈cons val v vs, tr1⧺tr2〉) ]. nwhd; //; napply sig_bind2_OK; #v tr1 Hv; napply sig_bind2_OK; #vs tr2 Hvs; nwhd; napply eval_Econs; //; nqed. (* Don't really want to use subset rather than sigma here, but can't be bothered with *another* set of coercions. XXX: why do I have to get the recursive call's property manually? *) nlet rec exec_alloc_variables (en:env) (m:mem) (l:list (ident × type)) on l : { r:env × mem | alloc_variables en m l (\fst r) (\snd r) } ≝ match l with [ nil ⇒ Some ? 〈en, m〉 | cons h vars ⇒ match h with [ mk_pair id ty ⇒ match alloc m 0 (sizeof ty) Any with [ mk_pair m1 b1 ⇒ match exec_alloc_variables (set … id b1 en) m1 vars with [ sig_intro r p ⇒ r ] ]]]. nwhd; ##[ //; ##| nelim (exec_alloc_variables (set ident ? ? c3 c7 en) c6 c1); #H; nelim H; //; #H0; nelim H0; nnormalize; #en' m' IH; napply (alloc_variables_cons … IH); /2/; nqed. (* TODO: can we establish that length params = length vs in advance? *) nlet rec exec_bind_parameters (e:env) (m:mem) (params:list (ident × type)) (vs:list val) on params : res (Σm2:mem. bind_parameters e m params vs m2) ≝ match params with [ nil ⇒ match vs with [ nil ⇒ Some ? (OK ? m) | cons _ _ ⇒ Some ? (Error ?) ] | cons idty params' ⇒ match idty with [ mk_pair id ty ⇒ match vs with [ nil ⇒ Some ? (Error ?) | cons v1 vl ⇒ Some ? ( do b ← opt_to_res ? (get … id e); do m1 ← opt_to_res ? (store_value_of_type ty m Any b zero v1); err_eject ?? (exec_bind_parameters e m1 params' vl)) (* FIXME: don't want to have to eject here *) ] ] ]. nwhd; //; napply opt_bind_OK; #b eb; napply opt_bind_OK; #m1 em1; napply reinject; #m2 em2 Hm2; napply (bind_parameters_cons … eb em1 Hm2); nqed. ndefinition is_not_void : ∀t:type. res (Σu:unit. t ≠ Tvoid) ≝ λt. match t with [ Tvoid ⇒ Some ? (Error ?) | _ ⇒ Some ? (OK ??) ]. nwhd; //; @; #H; ndestruct; nqed. ninductive decide : Type ≝ | dy : decide | dn : decide. ndefinition dodecide : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ ¬P ]).P + ¬P. #P d;ncases d;/2/; nqed. ncoercion decide_inject : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ ¬P ]).P + ¬P ≝ dodecide on d:decide to ? + (¬?). ndefinition dodecide2 : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ True ]).res P. #P d; ncases d; nnormalize; #p; ##[ napply (OK ? p); ##| napply Error ##] nqed. ncoercion decide_inject2 : ∀P:Prop.∀d.∀p:(match d with [ dy ⇒ P | dn ⇒ True ]).res P ≝ dodecide2 on d:decide to res ?. alias id "Tint" = "cic:/matita/c-semantics/Csyntax/type.con(0,2,0)". alias id "Tfloat" = "cic:/matita/c-semantics/Csyntax/type.con(0,3,0)". ndefinition sz_eq_dec : ∀s1,s2:intsize. (s1 = s2) + (s1 ≠ s2). #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. ndefinition sg_eq_dec : ∀s1,s2:signedness. (s1 = s2) + (s1 ≠ s2). #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. ndefinition fs_eq_dec : ∀s1,s2:floatsize. (s1 = s2) + (s1 ≠ s2). #s1; ncases s1; #s2; ncases s2; /2/; @2; @; #H; ndestruct; nqed. nlet rec assert_type_eq (t1,t2:type) : res (t1 = t2) ≝ match t1 with [ Tvoid ⇒ match t2 with [ Tvoid ⇒ dy | _ ⇒ dn ] | Tint sz sg ⇒ match t2 with [ Tint sz' sg' ⇒ match sz_eq_dec sz sz' with [ inl _ ⇒ match sg_eq_dec sg sg' with [ inl _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | Tfloat f ⇒ match t2 with [ Tfloat f' ⇒ match fs_eq_dec f f' with [ inl _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | Tpointer s t ⇒ match t2 with [ Tpointer s' t' ⇒ match ms_eq_dec s s' with [ inl _ ⇒ match assert_type_eq t t' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | Tarray s t n ⇒ match t2 with [ Tarray s' t' n' ⇒ match ms_eq_dec s s' with [ inl _ ⇒ match assert_type_eq t t' with [ OK _ ⇒ match decidable_eq_Z_Type n n' with [ inl _ ⇒ dy | inr _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | Tfunction tl t ⇒ match t2 with [ Tfunction tl' t' ⇒ match assert_typelist_eq tl tl' with [ OK _ ⇒ match assert_type_eq t t' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | Tstruct i fl ⇒ match t2 with [ Tstruct i' fl' ⇒ match ident_eq i i' with [ inl _ ⇒ match assert_fieldlist_eq fl fl' with [ OK _ ⇒ dy | _ ⇒ dn ] | inr _ ⇒ dn ] | _ ⇒ dn ] | Tunion i fl ⇒ match t2 with [ Tunion i' fl' ⇒ match ident_eq i i' with [ inl _ ⇒ match assert_fieldlist_eq fl fl' with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] | Tcomp_ptr i ⇒ match t2 with [ Tcomp_ptr i' ⇒ match ident_eq i i' with [ inl _ ⇒ dy | inr _ ⇒ dn ] | _ ⇒ dn ] ] and assert_typelist_eq (tl1,tl2:typelist) : res (tl1 = tl2) ≝ match tl1 with [ Tnil ⇒ match tl2 with [ Tnil ⇒ dy | _ ⇒ dn ] | Tcons t1 ts1 ⇒ match tl2 with [ Tnil ⇒ dn | Tcons t2 ts2 ⇒ match assert_type_eq t1 t2 with [ OK _ ⇒ match assert_typelist_eq ts1 ts2 with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] ] ] and assert_fieldlist_eq (fl1,fl2:fieldlist) : res (fl1 = fl2) ≝ match fl1 with [ Fnil ⇒ match fl2 with [ Fnil ⇒ dy | _ ⇒ dn ] | Fcons i1 t1 fs1 ⇒ match fl2 with [ Fnil ⇒ dn | Fcons i2 t2 fs2 ⇒ match ident_eq i1 i2 with [ inl _ ⇒ match assert_type_eq t1 t2 with [ OK _ ⇒ match assert_fieldlist_eq fs1 fs2 with [ OK _ ⇒ dy | _ ⇒ dn ] | _ ⇒ dn ] | _ ⇒ dn ] ] ]. (* A poor man's clear, otherwise automation picks up recursive calls without checking that the argument is smaller. *) ngeneralize in assert_type_eq; ngeneralize in assert_typelist_eq; ngeneralize in assert_fieldlist_eq; #avoid1; #_; #avoid2; #_; #avoid3; #_; nwhd; //; (* XXX: I have no idea why the first // didn't catch these. *) //; //; //; //; //; //; //; //; //; nqed. nlet rec is_is_call_cont (k:cont) : (is_call_cont k) + (¬is_call_cont k) ≝ match k with [ Kstop ⇒ dy | Kcall _ _ _ _ ⇒ dy | _ ⇒ dn ]. nwhd; //; @; #H; nelim H; nqed. nlet rec is_Sskip (s:statement) : (s = Sskip) + (s ≠ Sskip) ≝ match s with [ Sskip ⇒ dy | _ ⇒ dn ]. ##[ //; ##| ##*: @; #H; ndestruct; ##] nqed. (* IO monad *) (* Interactions are function calls that return a value and do not change the rest of the Clight program's state. *) ndefinition io_out ≝ (ident × (list eventval)). ndefinition do_io : ident → list eventval → IO eventval io_out eventval ≝ λfn,args. Interact ?? eventval 〈fn,args〉 (λres. Value ?? eventval res). ndefinition ret: ∀T. T → (IO eventval io_out T) ≝ λT,x.(Value ?? T x). (* Checking types of values given to / received from an external function call. *) ndefinition check_eventval : ∀ev:eventval. ∀ty:typ. res (Σv:val. eventval_match ev ty v) ≝ λev,ty. match ty with [ Tint ⇒ match ev with [ EVint i ⇒ Some ? (OK ? (Vint i)) | _ ⇒ Some ? (Error ?) ] | Tfloat ⇒ match ev with [ EVfloat f ⇒ Some ? (OK ? (Vfloat f)) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ]. nwhd; //; nqed. ndefinition check_eventval' : ∀v:val. ∀ty:typ. res (Σev:eventval. eventval_match ev ty v) ≝ λv,ty. match ty with [ Tint ⇒ match v with [ Vint i ⇒ Some ? (OK ? (EVint i)) | _ ⇒ Some ? (Error ?) ] | Tfloat ⇒ match v with [ Vfloat f ⇒ Some ? (OK ? (EVfloat f)) | _ ⇒ Some ? (Error ?) ] | _ ⇒ Some ? (Error ?) ]. nwhd; //; nqed. nlet rec check_eventval_list (vs: list val) (tys: list typ) : res (Σevs:list eventval. eventval_list_match evs tys vs) ≝ match vs with [ nil ⇒ match tys with [ nil ⇒ Some ? (OK ? (nil ?)) | _ ⇒ Some ? (Error ?) ] | cons v vt ⇒ match tys with [ nil ⇒ Some ? (Error ?) | cons ty tyt ⇒ Some ? ( do ev ← check_eventval' v ty; do evt ← check_eventval_list vt tyt; OK ? ((sig_eject ?? ev)::evt)) ] ]. nwhd; //; napply sig_bind_OK; #ev Hev; napply sig_bind_OK; #evt Hevt; nnormalize; /2/; nqed. (* execution *) ndefinition store_value_of_type' ≝ λty,m,l,v. match l with [ mk_pair pl ofs ⇒ match pl with [ mk_pair pcl loc ⇒ store_value_of_type ty m pcl loc ofs v ] ]. nlet rec exec_step (ge:genv) (st:state) on st : (IO eventval io_out (Σr:trace × state. step ge st (\fst r) (\snd r))) ≝ match st with [ State f s k e m ⇒ match s with [ Sassign a1 a2 ⇒ Some ? ( ! 〈l,tr1〉 ← exec_lvalue ge e m a1; ! 〈v2,tr2〉 ← exec_expr ge e m a2; ! m' ← store_value_of_type' (typeof a1) m l v2; ret ? 〈tr1⧺tr2, State f Sskip k e m'〉) | Scall lhs a al ⇒ Some ? ( ! 〈vf,tr2〉 ← exec_expr ge e m a; ! 〈vargs,tr3〉 ← exec_exprlist ge e m al; ! fd ← find_funct ? ? ge vf; ! p ← err_to_io … (assert_type_eq (type_of_fundef fd) (typeof a)); (* ! k' ← match lhs with [ None ⇒ ret ? (Kcall (None ?) f e k) | Some lhs' ⇒ ! locofs ← exec_lvalue ge e m lhs'; ret ? (Kcall (Some ? 〈sig_eject ?? locofs, typeof lhs'〉) f e k) ]; ret ? 〈E0, Callstate fd vargs k' m〉) *) match lhs with [ None ⇒ ret ? 〈tr2⧺tr3, Callstate fd vargs (Kcall (None ?) f e k) m〉 | Some lhs' ⇒ ! 〈locofs,tr1〉 ← exec_lvalue ge e m lhs'; ret ? 〈tr1⧺tr2⧺tr3, Callstate fd vargs (Kcall (Some ? 〈locofs, typeof lhs'〉) f e k) m〉 ]) | Ssequence s1 s2 ⇒ Some ? (ret ? 〈E0, State f s1 (Kseq s2 k) e m〉) | Sskip ⇒ match k with [ Kseq s k' ⇒ Some ? (ret ? 〈E0, State f s k' e m〉) | Kstop ⇒ match fn_return f with [ Tvoid ⇒ Some ? (ret ? 〈E0, Returnstate Vundef k (free_list m (blocks_of_env e))〉) | _ ⇒ Some ? (Wrong ???) ] | Kcall _ _ _ _ ⇒ match fn_return f with [ Tvoid ⇒ Some ? (ret ? 〈E0, Returnstate Vundef k (free_list m (blocks_of_env e))〉) | _ ⇒ Some ? (Wrong ???) ] | Kwhile a s' k' ⇒ Some ? (ret ? 〈E0, State f (Swhile a s') k' e m〉) | Kdowhile a s' k' ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a; ! b ← bool_of_val_3 v (typeof a); match b with [ true ⇒ ret ? 〈tr, State f (Sdowhile a s') k' e m〉 | false ⇒ ret ? 〈tr, State f Sskip k' e m〉 ]) | Kfor2 a2 a3 s' k' ⇒ Some ? (ret ? 〈E0, State f a3 (Kfor3 a2 a3 s' k') e m〉) | Kfor3 a2 a3 s' k' ⇒ Some ? (ret ? 〈E0, State f (Sfor Sskip a2 a3 s') k' e m〉) | Kswitch k' ⇒ Some ? (ret ? 〈E0, State f Sskip k' e m〉) | _ ⇒ Some ? (Wrong ???) ] | Scontinue ⇒ match k with [ Kseq s' k' ⇒ Some ? (ret ? 〈E0, State f Scontinue k' e m〉) | Kwhile a s' k' ⇒ Some ? (ret ? 〈E0, State f (Swhile a s') k' e m〉) | Kdowhile a s' k' ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a; ! b ← bool_of_val_3 v (typeof a); match b with [ true ⇒ ret ? 〈tr, State f (Sdowhile a s') k' e m〉 | false ⇒ ret ? 〈tr, State f Sskip k' e m〉 ]) | Kfor2 a2 a3 s' k' ⇒ Some ? (ret ? 〈E0, State f a3 (Kfor3 a2 a3 s' k') e m〉) | Kswitch k' ⇒ Some ? (ret ? 〈E0, State f Scontinue k' e m〉) | _ ⇒ Some ? (Wrong ???) ] | Sbreak ⇒ match k with [ Kseq s' k' ⇒ Some ? (ret ? 〈E0, State f Sbreak k' e m〉) | Kwhile a s' k' ⇒ Some ? (ret ? 〈E0, State f Sskip k' e m〉) | Kdowhile a s' k' ⇒ Some ? (ret ? 〈E0, State f Sskip k' e m〉) | Kfor2 a2 a3 s' k' ⇒ Some ? (ret ? 〈E0, State f Sskip k' e m〉) | Kswitch k' ⇒ Some ? (ret ? 〈E0, State f Sskip k' e m〉) | _ ⇒ Some ? (Wrong ???) ] | Sifthenelse a s1 s2 ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a; ! b ← bool_of_val_3 v (typeof a); ret ? 〈tr, State f (if b then s1 else s2) k e m〉) | Swhile a s' ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a; ! b ← bool_of_val_3 v (typeof a); ret ? 〈tr, if b then State f s' (Kwhile a s' k) e m else State f Sskip k e m〉) | Sdowhile a s' ⇒ Some ? (ret ? 〈E0, State f s' (Kdowhile a s' k) e m〉) | Sfor a1 a2 a3 s' ⇒ match is_Sskip a1 with [ inl _ ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a2; ! b ← bool_of_val_3 v (typeof a2); ret ? 〈tr, State f (if b then s' else Sskip) (if b then (Kfor2 a2 a3 s' k) else k) e m〉) | inr _ ⇒ Some ? (ret ? 〈E0, State f a1 (Kseq (Sfor Sskip a2 a3 s') k) e m〉) ] | Sreturn a_opt ⇒ match a_opt with [ None ⇒ match fn_return f with [ Tvoid ⇒ Some ? (ret ? 〈E0, Returnstate Vundef (call_cont k) (free_list m (blocks_of_env e))〉) | _ ⇒ Some ? (Wrong ???) ] | Some a ⇒ Some ? ( ! u ← is_not_void (fn_return f); ! 〈v,tr〉 ← exec_expr ge e m a; ret ? 〈tr, Returnstate v (call_cont k) (free_list m (blocks_of_env e))〉) ] | Sswitch a sl ⇒ Some ? ( ! 〈v,tr〉 ← exec_expr ge e m a; match v with [ Vint n ⇒ ret ? 〈tr, State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e m〉 | _ ⇒ Wrong ??? ]) | Slabel lbl s' ⇒ Some ? (ret ? 〈E0, State f s' k e m〉) | Sgoto lbl ⇒ match find_label lbl (fn_body f) (call_cont k) with [ Some sk' ⇒ match sk' with [ mk_pair s' k' ⇒ Some ? (ret ? 〈E0, State f s' k' e m〉) ] | None ⇒ Some ? (Wrong ???) ] | Scost lbl s' ⇒ Some ? (ret ? 〈Echarge lbl, State f s' k e m〉) ] | Callstate f0 vargs k m ⇒ match f0 with [ Internal f ⇒ Some ? ( match exec_alloc_variables empty_env m ((fn_params f) @ (fn_vars f)) with [ mk_pair e m1 ⇒ ! m2 ← exec_bind_parameters e m1 (fn_params f) vargs; ret ? 〈E0, State f (fn_body f) k e m2〉 ]) | External f argtys retty ⇒ Some ? ( ! evargs ← check_eventval_list vargs (typlist_of_typelist argtys); ! evres ← do_io f evargs; ! vres ← check_eventval evres (proj_sig_res (signature_of_type argtys retty)); ret ? 〈(Eextcall f evargs evres), Returnstate vres k m〉) ] | Returnstate res k m ⇒ match k with [ Kcall r f e k' ⇒ match r with [ None ⇒ match res with [ Vundef ⇒ Some ? (ret ? 〈E0, (State f Sskip k' e m)〉) | _ ⇒ Some ? (Wrong ???) ] | Some r' ⇒ match r' with [ mk_pair l ty ⇒ Some ? ( ! m' ← store_value_of_type' ty m l res; ret ? 〈E0, (State f Sskip k' e m')〉) ] ] | _ ⇒ Some ? (Wrong ???) ] ]. nwhd; //; ##[ nrewrite > c7; napply step_skip_call; //; napply c8; ##| napply step_skip_or_continue_while; @; //; ##| napply sig_bindIO2_OK; #v tr Hv; napply sig_bindIO_OK; #b; ncases b; #Hb; ##[ napply (step_skip_or_continue_dowhile_true … Hv); ##[ @; // ##| napply (bool_of … Hb); ##] ##| napply (step_skip_or_continue_dowhile_false … Hv); ##[ @; // ##| napply (bool_of … Hb); ##] ##] ##| napply step_skip_or_continue_for2; @; //; ##| napply step_skip_break_switch; @; //; ##| nrewrite > c11; napply step_skip_call; //; napply c12; ##| napply sig_bindIO2_OK; #x; ncases x; #y; ncases y; #pcl loc ofs tr1 Hlval; napply sig_bindIO2_OK; #v2 tr2 Hv2; napply opt_bindIO_OK; #m' em'; nwhd; napply (step_assign … Hlval Hv2 em'); ##| napply sig_bindIO2_OK; #vf tr1 Hvf; napply sig_bindIO2_OK; #vargs tr2 Hvargs; napply opt_bindIO_OK; #fd efd; napply bindIO_OK; #ety; ncases c6; nwhd; ##[ napply (step_call_none … Hvf Hvargs efd ety); ##| #lhs'; napply sig_bindIO2_OK; #x; ncases x; #y; ncases y; #pcl loc ofs tr3 Hlocofs; nwhd; napply (step_call_some … Hlocofs Hvf Hvargs efd ety); ##] ##| napply sig_bindIO2_OK; #v tr Hv; napply sig_bindIO_OK; #b; ncases b; #Hb; ##[ napply (step_ifthenelse_true … Hv); napply (bool_of … Hb); ##| napply (step_ifthenelse_false … Hv); napply (bool_of … Hb) ##] ##| napply sig_bindIO2_OK; #v tr Hv; napply sig_bindIO_OK; #b; ncases b; #Hb; ##[ napply (step_while_true … Hv); napply (bool_of … Hb); ##| napply (step_while_false … Hv); napply (bool_of … Hb); ##] ##| nrewrite > c11; napply sig_bindIO2_OK; #v tr Hv; napply sig_bindIO_OK; #b; ncases b; #Hb; ##[ napply (step_for_true … Hv); napply (bool_of … Hb); ##| napply (step_for_false … Hv); napply (bool_of … Hb); ##] ##| napply step_for_start; //; ##| napply step_skip_break_switch; @2; //; ##| napply step_skip_or_continue_while; @2; //; ##| napply sig_bindIO2_OK; #v tr Hv; napply sig_bindIO_OK; #b; ncases b; #Hb; ##[ napply (step_skip_or_continue_dowhile_true … Hv); ##[ @2; // ##| napply (bool_of … Hb); ##] ##| napply (step_skip_or_continue_dowhile_false … Hv); ##[ @2; // ##| napply (bool_of … Hb); ##] ##] ##| napply step_skip_or_continue_for2; @2; // ##| napply step_return_0; napply c9; ##| napply sig_bindIO_OK; #u Hnotvoid; napply sig_bindIO2_OK; #v tr Hv; nwhd; napply (step_return_1 … Hnotvoid Hv); ##| napply sig_bindIO2_OK; #v; ncases v; //; #n tr Hv; napply step_switch; //; ##| napply step_goto; nrewrite < c12; napply c9; ##| napply extract_subset_pair_io; #e m1 ealloc Halloc; napply sig_bindIO_OK; #m2 Hbind; nwhd; napply (step_internal_function … Halloc Hbind); ##| napply sig_bindIO_OK; #evs Hevs; napply bindIO_OK; #eres; napply sig_bindIO_OK; #res Hres; nwhd; napply step_external_function; @; ##[ napply Hevs; ##| napply Hres; ##] ##| ncases c11; #x; ncases x; #pcl b ofs; napply opt_bindIO_OK; #m' em'; napply step_returnstate_1; nwhd in em':(??%?); //; ##] nqed. nlet rec make_initial_state (p:program) : IO eventval io_out (Σs:state. initial_state p s) ≝ let ge ≝ globalenv Genv ?? p in let m0 ≝ init_mem Genv ?? p in Some ? ( ! 〈sp,b〉 ← find_symbol ? ? ge (prog_main ?? p); ! u ← opt_to_io … (match ms_eq_dec sp Code with [ inl _ ⇒ Some ? something | inr _ ⇒ None ? ]); ! f ← find_funct_ptr ? ? ge b; ret ? (Callstate f (nil ?) Kstop m0)). nwhd; napply opt_bindIO2_OK; #sp b esb; napply opt_bindIO_OK; #u ecode; napply opt_bindIO_OK; #f ef; ncases sp in esb ecode; #esb ecode; nwhd in ecode:(??%%); ##[ ##1,2,3,4,5: ndestruct (ecode); ##] nwhd; napply (initial_state_intro … esb ef); nqed. ndefinition is_final_state : ∀st:state. (∃r. final_state st r) + (¬∃r. final_state st r). #st; nelim st; ##[ #f s k e m; @2; @;*; #r H; ninversion H; #i m e; ndestruct; ##| #f l k m; @2; @;*; #r H; ninversion H; #i m e; ndestruct; ##| #v k m; ncases k; ##[ ncases v; ##[ ##2: #i; @1; @ i; //; ##| ##1: @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##| #f; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##| #pcl b of; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##] ##| #a b; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##| ##3,4: #a b c; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##| ##5,6,8: #a b c d; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##| #a; @2; @; *; #r H; ninversion H; #i m e; ndestruct; ##] ##] nqed. nlet rec exec_steps (n:nat) (ge:genv) (s:state) : IO eventval io_out (Σts:trace×state. star (mk_transrel ?? step) ge s (\fst ts) (\snd ts)) ≝ match is_final_state s with [ inl _ ⇒ Some ? (ret ? 〈E0, s〉) | inr _ ⇒ match n with [ O ⇒ Some ? (ret ? 〈E0, s〉) | S n' ⇒ Some ? ( ! 〈t,s'〉 ← exec_step ge s; (* ! 〈t,s'〉 ← match s with [ State f s k e m ⇒ match m with [ mk_mem c n p ⇒ exec_step ge (State f s k e (mk_mem c n p)) ] | Callstate fd args k m ⇒ match m with [ mk_mem c n p ⇒ exec_step ge (Callstate fd args k (mk_mem c n p)) ] | Returnstate r k m ⇒ match m with [ mk_mem c n p ⇒ exec_step ge (Returnstate r k (mk_mem c n p)) ] ] ;*) ! 〈t',s''〉 ← match s' with [ State f s k e m ⇒ match m with [ mk_mem c n p ⇒ exec_steps n' ge (State f s k e (mk_mem c n p)) ] | Callstate fd args k m ⇒ match m with [ mk_mem c n p ⇒ exec_steps n' ge (Callstate fd args k (mk_mem c n p)) ] | Returnstate r k m ⇒ match m with [ mk_mem c n p ⇒ exec_steps n' ge (Returnstate r k (mk_mem c n p)) ] ] ; (* ! 〈t',s''〉 ← exec_steps n' ge s';*) ret ? 〈t ⧺ t',s''〉) ] ]. nwhd; /2/; napply sig_bindIO2_OK; #t s'; ncases s'; ##[ #f st k e m; ##| #fd args k m; ##| #r k m; ##] nwhd in ⊢ (? → ?????(??????%?)); ncases m; #mc mn mp; #H1; nwhd in ⊢ (?????(??????%?)); napply sig_bindIO2_OK; #t' s'' IH; nwhd; napply (star_step … IH); //; nqed. (* nlet rec exec_steps_without_proof (n:nat) (ge:genv) (s:state) : res (trace×state) ≝ match is_final_state s with [ inl _ ⇒ OK ? 〈E0, s〉 | inr _ ⇒ match n with [ O ⇒ OK ? 〈E0, s〉 | S n' ⇒ 〈t,s'〉 ← exec_step ge s; 〈t',s''〉 ← exec_steps_without_proof n' ge s'; OK ? 〈t ⧺ t',s''〉 ] ]. *) (* A (possibly non-terminating) execution. *) ncoinductive execution : Type ≝ | e_stop : trace → state → execution | e_step : trace → state → execution → execution | e_wrong : execution | e_interact : io_out → (eventval → execution) → execution. nlet corec exec_inf_aux (ge:genv) (s:IO eventval io_out (trace×state)) : execution ≝ match s with [ Wrong ⇒ e_wrong | Value v ⇒ match v with [ mk_pair t s' ⇒ match is_final_state s' with [ inl _ ⇒ e_stop t s' | inr _ ⇒ e_step t s' (exec_inf_aux ge (exec_step ge s')) ] ] | Interact out k' ⇒ e_interact out (λv. exec_inf_aux ge (k' v)) ]. ndefinition exec_inf : program → execution ≝ λp. exec_inf_aux (globalenv Genv ?? p) (! s ← make_initial_state p; ret ? 〈E0,sig_eject ?? s〉).