(* Memory model used in the dynamic semantics of the back-end intermediate languages. Inspired by common/Mem.ma, adapted from Compcert *) (* * This file develops the memory model that is used in the dynamic semantics of all the languages used in the compiler. It defines a type [mem] of memory states, the following 4 basic operations over memory states, and their properties: - [load]: read a memory chunk at a given address; - [store]: store a memory chunk at a given address; - [alloc]: allocate a fresh memory block; - [free]: invalidate a memory block. *) include "common/ByteValues.ma". include "common/GenMem.ma". definition bemem ≝ mem. definition is_addressable : region → bool ≝ λr.match r with [ XData ⇒ true | Code ⇒ true | _ ⇒ false ]. definition is_address : (beval × beval) → Prop ≝ λa. ∃p : Σp.bool_to_Prop (is_addressable (ptype p)).∃p0,p1. \fst a = BVptr p p0 ∧ part_no … p0 = 0 ∧ \snd a = BVptr p p1 ∧ part_no … p1 = 1. definition is_addressb : (beval × beval) → bool ≝ λa. match a with [ mk_Prod a0 a1 ⇒ match a0 with [ BVptr p0 part0 ⇒ is_addressable (ptype p0) ∧ eqb part0 0 ∧ match a1 with [ BVptr p1 part1 ⇒ eq_pointer p0 p1 ∧ eqb part1 1 | _ ⇒ false ] | _ ⇒ false ] ]. lemma is_addressb_elim : ∀P : bool → Prop.∀a : beval × beval. (is_address a → P true) → (¬is_address a → P false) → P (is_addressb a). #P * * [4:|*: [|#b0|(*#r0*)#part0] #a1 #_ #Pfalse @Pfalse % * #x * #p0 * #p1 *** #EQ destruct(EQ)] #p0 #part0 #a1 whd in match is_addressb; normalize nodelta elim (true_or_false_Prop (is_addressable (ptype p0))) #H >H [ @(eqb_elim part0 0) #Heq [ cases a1 [|#b0|(*#r0*)#part0|#p1#part1] whd in match (?∧?); [4: @eq_pointer_elim #Heq' [ @(eqb_elim part1 1) #Heq'' [ #Ptrue #_ @Ptrue destruct %{p1} [assumption] %{part0} %{part1} % [ % [ % ]] try % assumption ] ] ] ] ] #_ #Pfalse @Pfalse % ** #p0' #H' * #part0' * #part1' *** #H0 #H1 #H2 #H3 destruct /2 by absurd/ qed. (* CSC: only pointers to XRAM or code memory ATM *) definition address ≝ beval × beval. definition safe_address ≝ Sig address is_address. unification hint 0 ≔ ; P ≟ Prod beval beval (*------------------*)⊢ safe_address ≡ Sig P is_address. definition eq_address: address → address → bool ≝ λaddr1,addr2. eq_beval (\fst addr1) (\fst addr2) ∧ eq_beval (\snd addr1) (\snd addr2). definition pointer_of_address: address → res pointer ≝ λp. let 〈v1,v2〉 ≝ p in pointer_of_bevals [v1;v2]. definition pointer_of_address_safe : safe_address → pointer ≝ λp.match \fst p return λx.\fst p = x → ? with [ BVptr ptr _ ⇒ λ_.ptr | _ ⇒ λabs.⊥ ] (refl …). lapply abs -abs cases p * #a0 #a1 * #x * #p0 * #p1 *** #H0 #H1 #H2 #H3 #H4 destruct(H0 H4) qed. (* For full 8051 memory spaces definition pointer_compat' ≝ λb,r. match b with [ mk_block r' z ⇒ if eq_region r' r then True else match r with [ Any ⇒ True | XData ⇒ match r' with [ PData ⇒ True | _ ⇒ False ] | _ ⇒ False ] ]. lemma pointer_compat_to_ind : ∀b,r.pointer_compat' b r → pointer_compat b r. ** #z ** // qed. lemma pointer_compat_from_ind : ∀b,r.pointer_compat b r → pointer_compat' b r. #b #r #H inversion H [ #s #id #EQ1 #EQ2 #EQ3 whd >reflexive_eq_region % | #id #EQ1 #EQ2 #EQ3 % | #r #id #EQ1 #EQ2 #EQ3 whd @eq_region_elim #EQ4 destruct(EQ4) % ] qed. *) lemma pointer_of_address_is_safe : ∀a : safe_address.pointer_of_address a = OK … (pointer_of_address_safe a). ** #a0 #a1 ***** #z #o #Hr (* ** #a0 #a1 ***** #r #z #Hr #o * lapply (pointer_compat_from_ind ?? Hr) cases r in Hr ⊢ %; #Hr * *) ** #part0 #H0 ** #part1 #H1 *** #EQa0 #EQpart0 #EQa1 #EQpart1 destruct normalize @eqZb_elim [2,4,6: * #ABS elim (ABS (refl …))] change with (eq_bv ???) in match (eq_v ?????); @eq_bv_elim [2,4,6: * #ABS elim (ABS (refl …))] #_ #_ normalize % qed. definition address_of_pointer : pointer → res address ≝ beval_pair_of_pointer. example address_of_pointer_OK_to_safe : ∀p,a.address_of_pointer p = OK … a → is_address a. #p lapply (refl … p) generalize in match p in ⊢ (???%→%); *(***) whd in match (address_of_pointer ?); #b (*#H*) #o #EQp * #a0 #a1 normalize #EQ destruct(EQ) %{p} >EQp [ cases (block_region b) // | % [2: % [2: % [ % [ % ] ] ] ] % (* %{p} >EQp [1,3: %] % [2,4: % [2,4: % [1,3: % [1,3: %]]]] % *) qed. definition safe_address_of_pointer: pointer → res safe_address ≝ λp. do a as EQ ← address_of_pointer p ; return «a ,address_of_pointer_OK_to_safe ?? EQ». lemma address_of_pointer_is_safe : ∀p.address_of_pointer p = ! a ← safe_address_of_pointer p ; return (a : address). #p normalize % qed. (* ****#z #H lapply (pointer_compat_from_ind ?? H) * #o normalize % qed.*) definition code_pointer_of_address: address → res (Σp:pointer. ptype p = Code) ≝ code_pointer_of_beval_pair. definition address_of_code_pointer: (Σp:pointer. ptype p = Code) → address ≝ beval_pair_of_code_pointer. definition safe_address_of_code_pointer: (Σp:pointer. ptype p = Code) → safe_address ≝ address_of_code_pointer. cases H -H * #b #o normalize cases b * #z #EQ destruct %{«mk_pointer (mk_block Code z) o,I»} % [2: % [2: % [ % [ % ]]]] % qed. (* cases H -H * #r #b #H #o #EQ destruct(EQ) normalize lapply H lapply (pointer_compat_from_ind … H) -H cases b * #z * #H %{«mk_pointer ? (mk_block Code z) H o,I»} % [2: % [2: % [ % [ % ]] % |]|] qed.*) (* Paolo: why only code pointers and not XRAM too? *) definition addr_add: address → nat → res address ≝ λaddr,n. do ptr ← code_pointer_of_address addr ; OK … (address_of_code_pointer (shift_pointer 16 ptr (bitvector_of_nat … n))). normalize cases ptr #p #E @E qed. definition safe_addr_add: safe_address → nat → res safe_address ≝ λaddr,n. do ptr ← code_pointer_of_address addr ; OK … (safe_address_of_code_pointer (shift_pointer 16 ptr (bitvector_of_nat … n))). normalize cases ptr #p #E @E qed. definition addr_sub: address → nat → res address ≝ λaddr,n. do ptr ← code_pointer_of_address addr ; OK … (address_of_code_pointer (neg_shift_pointer 16 ptr (bitvector_of_nat … n))). normalize cases ptr #p #E @E qed. definition safe_addr_sub: safe_address → nat → res safe_address ≝ λaddr,n. do ptr ← code_pointer_of_address addr ; OK … (safe_address_of_code_pointer (neg_shift_pointer 16 ptr (bitvector_of_nat … n))). normalize cases ptr #p #E @E qed.