include "ASM/StatusProofs.ma". include "common/StructuredTraces.ma". include "ASM/Fetch.ma". definition sign_extension: Byte → Word ≝ λc. let b ≝ get_index_v ? 8 c 1 ? in [[ b; b; b; b; b; b; b; b ]] @@ c. normalize; repeat (@ (le_S_S ?)); @ (le_O_n); qed. lemma eq_a_to_eq: ∀a,b. eq_a a b = true → a=b. # a # b cases a cases b normalize # K try % cases (eq_true_false K) qed. lemma is_a_to_mem_to_is_in: ∀he,a,m,q. is_a he … a = true → mem … eq_a (S m) q he = true → is_in … q a = true. # he # a # m # q elim q [ normalize # _ # K assumption | # m' # t # q' # II # H1 # H2 normalize change with (orb ??) in H2: (??%?); cases (inclusive_disjunction_true … H2) [ # K < (eq_a_to_eq … K) > H1 % | # K > II try assumption cases (is_a t a) normalize % ] ] qed. lemma execute_1_technical: ∀n, m: nat. ∀v: Vector addressing_mode_tag (S n). ∀q: Vector addressing_mode_tag (S m). ∀a: addressing_mode. bool_to_Prop (is_in ? v a) → bool_to_Prop (subvector_with ? ? ? eq_a v q) → bool_to_Prop (is_in ? q a). # n # m # v # q # a elim v [ normalize # K cases K | # n' # he # tl # II whd in ⊢ (% → ? → ?); lapply (refl … (is_in … (he:::tl) a)) cases (is_in … (he:::tl) a) in ⊢ (???% → %); [ # K # _ normalize in K; whd in ⊢ (% → ?); lapply (refl … (subvector_with … eq_a (he:::tl) q)); cases (subvector_with … eq_a (he:::tl) q) in ⊢ (???% → %); [ # K1 # _ change with ((andb ? (subvector_with …)) = true) in K1; cases (conjunction_true … K1) # K3 # K4 cases (inclusive_disjunction_true … K) # K2 [ > (is_a_to_mem_to_is_in … K2 K3) % | @ II [ > K2 % | > K4 % ] ] | # K1 # K2 normalize in K2; cases K2; ] | # K1 # K2 normalize in K2; cases K2 ] ] qed. include alias "arithmetics/nat.ma". include alias "ASM/BitVectorTrie.ma". definition ASM_classify00: ∀a. preinstruction a → status_class ≝ λa, pre. match pre with [ RET ⇒ cl_return | RETI ⇒ cl_return | JZ _ ⇒ cl_jump | JNZ _ ⇒ cl_jump | JC _ ⇒ cl_jump | JNC _ ⇒ cl_jump | JB _ _ ⇒ cl_jump | JNB _ _ ⇒ cl_jump | JBC _ _ ⇒ cl_jump | CJNE _ _ ⇒ cl_jump | DJNZ _ _ ⇒ cl_jump | _ ⇒ cl_other ]. definition ASM_classify0: instruction → status_class ≝ λi. match i with [ RealInstruction pre ⇒ ASM_classify00 [[relative]] pre | ACALL _ ⇒ cl_call | LCALL _ ⇒ cl_call | JMP _ ⇒ cl_call | AJMP _ ⇒ cl_jump | LJMP _ ⇒ cl_jump | SJMP _ ⇒ cl_jump | _ ⇒ cl_other ]. definition current_instruction0 ≝ λcode_memory: BitVectorTrie Byte 16. λprogram_counter: Word. \fst (\fst (fetch … code_memory program_counter)). definition current_instruction ≝ λcode_memory. λs: Status code_memory. current_instruction0 code_memory (program_counter … s). definition ASM_classify: ∀code_memory. Status code_memory → status_class ≝ λcode_memory. λs: Status code_memory. ASM_classify0 (current_instruction … s). definition execute_1_preinstruction': ∀ticks: nat × nat. ∀a, m: Type[0]. ∀cm. (a → PreStatus m cm → Word) → ∀instr: preinstruction a. ∀s: PreStatus m cm. Σs': PreStatus m cm. And (Or (clock ?? s' = \fst ticks + clock … s) (clock ?? s' = \snd ticks + clock … s)) (ASM_classify00 a instr = cl_other → program_counter ?? s' = program_counter … s) ≝ λticks: nat × nat. λa, m: Type[0]. λcm. λaddr_of: a → PreStatus m cm → Word. λinstr: preinstruction a. λs: PreStatus m cm. let add_ticks1 ≝ λs: PreStatus m cm. set_clock ?? s (\fst ticks + clock ?? s) in let add_ticks2 ≝ λs: PreStatus m cm. set_clock ?? s (\snd ticks + clock ?? s) in match instr in preinstruction return λx. x = instr → Σs': PreStatus m cm. And (Or (clock ?? s' = \fst ticks + clock … s) (clock ?? s' = \snd ticks + clock … s)) (ASM_classify00 a instr = cl_other → program_counter ?? s' = program_counter … s) with [ ADD addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let 〈result, flags〉 ≝ add_8_with_carry (get_arg_8 … s false addr1) (get_arg_8 … s false addr2) false in let cy_flag ≝ get_index' ? O ? flags in let ac_flag ≝ get_index' ? 1 ? flags in let ov_flag ≝ get_index' ? 2 ? flags in let s ≝ set_arg_8 … s ACC_A result in set_flags … s cy_flag (Some Bit ac_flag) ov_flag | ADDC addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let old_cy_flag ≝ get_cy_flag ?? s in let 〈result, flags〉 ≝ add_8_with_carry (get_arg_8 … s false addr1) (get_arg_8 … s false addr2) old_cy_flag in let cy_flag ≝ get_index' ? O ? flags in let ac_flag ≝ get_index' ? 1 ? flags in let ov_flag ≝ get_index' ? 2 ? flags in let s ≝ set_arg_8 … s ACC_A result in set_flags … s cy_flag (Some Bit ac_flag) ov_flag | SUBB addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let old_cy_flag ≝ get_cy_flag ?? s in let 〈result, flags〉 ≝ sub_8_with_carry (get_arg_8 … s false addr1) (get_arg_8 … s false addr2) old_cy_flag in let cy_flag ≝ get_index' ? O ? flags in let ac_flag ≝ get_index' ? 1 ? flags in let ov_flag ≝ get_index' ? 2 ? flags in let s ≝ set_arg_8 … s ACC_A result in set_flags … s cy_flag (Some Bit ac_flag) ov_flag | ANL addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in match addr with [ inl l ⇒ match l with [ inl l' ⇒ let 〈addr1, addr2〉 ≝ l' in let and_val ≝ conjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 and_val | inr r ⇒ let 〈addr1, addr2〉 ≝ r in let and_val ≝ conjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 and_val ] | inr r ⇒ let 〈addr1, addr2〉 ≝ r in let and_val ≝ andb (get_cy_flag … s) (get_arg_1 … s addr2 true) in set_flags … s and_val (None ?) (get_ov_flag ?? s) ] | ORL addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in match addr with [ inl l ⇒ match l with [ inl l' ⇒ let 〈addr1, addr2〉 ≝ l' in let or_val ≝ inclusive_disjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 or_val | inr r ⇒ let 〈addr1, addr2〉 ≝ r in let or_val ≝ inclusive_disjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 or_val ] | inr r ⇒ let 〈addr1, addr2〉 ≝ r in let or_val ≝ (get_cy_flag … s) ∨ (get_arg_1 … s addr2 true) in set_flags … s or_val (None ?) (get_ov_flag … s) ] | XRL addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in match addr with [ inl l' ⇒ let 〈addr1, addr2〉 ≝ l' in let xor_val ≝ exclusive_disjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 xor_val | inr r ⇒ let 〈addr1, addr2〉 ≝ r in let xor_val ≝ exclusive_disjunction_bv ? (get_arg_8 … s true addr1) (get_arg_8 … s true addr2) in set_arg_8 … s addr1 xor_val ] | INC addr ⇒ λinstr_refl. match addr return λx. bool_to_Prop (is_in … [[ acc_a;registr;direct;indirect;dptr ]] x) → Σs': PreStatus m cm. ? with [ ACC_A ⇒ λacc_a: True. let s' ≝ add_ticks1 s in let 〈 carry, result 〉 ≝ half_add ? (get_arg_8 … s' true ACC_A) (bitvector_of_nat 8 1) in set_arg_8 … s' ACC_A result | REGISTER r ⇒ λregister: True. let s' ≝ add_ticks1 s in let 〈 carry, result 〉 ≝ half_add ? (get_arg_8 … s' true (REGISTER r)) (bitvector_of_nat 8 1) in set_arg_8 … s' (REGISTER r) result | DIRECT d ⇒ λdirect: True. let s' ≝ add_ticks1 s in let 〈 carry, result 〉 ≝ half_add ? (get_arg_8 … s' true (DIRECT d)) (bitvector_of_nat 8 1) in set_arg_8 … s' (DIRECT d) result | INDIRECT i ⇒ λindirect: True. let s' ≝ add_ticks1 s in let 〈 carry, result 〉 ≝ half_add ? (get_arg_8 … s' true (INDIRECT i)) (bitvector_of_nat 8 1) in set_arg_8 … s' (INDIRECT i) result | DPTR ⇒ λdptr: True. let s' ≝ add_ticks1 s in let 〈 carry, bl 〉 ≝ half_add ? (get_8051_sfr … s' SFR_DPL) (bitvector_of_nat 8 1) in let 〈 carry, bu 〉 ≝ full_add ? (get_8051_sfr … s' SFR_DPH) (zero 8) carry in let s ≝ set_8051_sfr … s' SFR_DPL bl in set_8051_sfr … s' SFR_DPH bu | _ ⇒ λother: False. ⊥ ] (subaddressing_modein … addr) | NOP ⇒ λinstr_refl. let s ≝ add_ticks2 s in s | DEC addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in let 〈 result, flags 〉 ≝ sub_8_with_carry (get_arg_8 … s true addr) (bitvector_of_nat 8 1) false in set_arg_8 … s addr result | MUL addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let acc_a_nat ≝ nat_of_bitvector 8 (get_8051_sfr … s SFR_ACC_A) in let acc_b_nat ≝ nat_of_bitvector 8 (get_8051_sfr … s SFR_ACC_B) in let product ≝ acc_a_nat * acc_b_nat in let ov_flag ≝ product ≥ 256 in let low ≝ bitvector_of_nat 8 (product mod 256) in let high ≝ bitvector_of_nat 8 (product ÷ 256) in let s ≝ set_8051_sfr … s SFR_ACC_A low in set_8051_sfr … s SFR_ACC_B high | DIV addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let acc_a_nat ≝ nat_of_bitvector 8 (get_8051_sfr … s SFR_ACC_A) in let acc_b_nat ≝ nat_of_bitvector 8 (get_8051_sfr … s SFR_ACC_B) in match acc_b_nat with [ O ⇒ set_flags … s false (None Bit) true | S o ⇒ let q ≝ bitvector_of_nat 8 (acc_a_nat ÷ (S o)) in let r ≝ bitvector_of_nat 8 (acc_a_nat mod 256) in let s ≝ set_8051_sfr … s SFR_ACC_A q in let s ≝ set_8051_sfr … s SFR_ACC_B r in set_flags … s false (None Bit) false ] | DA addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in let 〈acc_nu, acc_nl〉 ≝ split ? 4 4 (get_8051_sfr … s SFR_ACC_A) in if (gtb (nat_of_bitvector ? acc_nl) 9) ∨ (get_ac_flag … s) then let 〈result, flags〉 ≝ add_8_with_carry (get_8051_sfr … s SFR_ACC_A) (bitvector_of_nat 8 6) false in let cy_flag ≝ get_index' ? O ? flags in let 〈acc_nu', acc_nl'〉 ≝ split ? 4 4 result in if (gtb (nat_of_bitvector ? acc_nu') 9) ∨ cy_flag then let 〈 carry, nu 〉 ≝ half_add ? acc_nu' (bitvector_of_nat 4 6) in let new_acc ≝ nu @@ acc_nl' in let s ≝ set_8051_sfr … s SFR_ACC_A new_acc in set_flags … s cy_flag (Some ? (get_ac_flag … s)) (get_ov_flag … s) else s else s | CLR addr ⇒ λinstr_refl. match addr return λx. bool_to_Prop (is_in … [[ acc_a; carry; bit_addr ]] x) → Σs': PreStatus m cm. ? with [ ACC_A ⇒ λacc_a: True. let s ≝ add_ticks1 s in set_arg_8 … s ACC_A (zero 8) | CARRY ⇒ λcarry: True. let s ≝ add_ticks1 s in set_arg_1 … s CARRY false | BIT_ADDR b ⇒ λbit_addr: True. let s ≝ add_ticks1 s in set_arg_1 … s (BIT_ADDR b) false | _ ⇒ λother: False. ⊥ ] (subaddressing_modein … addr) | CPL addr ⇒ λinstr_refl. match addr return λx. bool_to_Prop (is_in … [[ acc_a; carry; bit_addr ]] x) → Σs': PreStatus m cm. ? with [ ACC_A ⇒ λacc_a: True. let s ≝ add_ticks1 s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let new_acc ≝ negation_bv ? old_acc in set_8051_sfr … s SFR_ACC_A new_acc | CARRY ⇒ λcarry: True. let s ≝ add_ticks1 s in let old_cy_flag ≝ get_arg_1 … s CARRY true in let new_cy_flag ≝ ¬old_cy_flag in set_arg_1 … s CARRY new_cy_flag | BIT_ADDR b ⇒ λbit_addr: True. let s ≝ add_ticks1 s in let old_bit ≝ get_arg_1 … s (BIT_ADDR b) true in let new_bit ≝ ¬old_bit in set_arg_1 … s (BIT_ADDR b) new_bit | _ ⇒ λother: False. ? ] (subaddressing_modein … addr) | SETB b ⇒ λinstr_refl. let s ≝ add_ticks1 s in set_arg_1 … s b false | RL _ ⇒ λinstr_refl. (* DPM: always ACC_A *) let s ≝ add_ticks1 s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let new_acc ≝ rotate_left … 1 old_acc in set_8051_sfr … s SFR_ACC_A new_acc | RR _ ⇒ λinstr_refl. (* DPM: always ACC_A *) let s ≝ add_ticks1 s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let new_acc ≝ rotate_right … 1 old_acc in set_8051_sfr … s SFR_ACC_A new_acc | RLC _ ⇒ λinstr_refl. (* DPM: always ACC_A *) let s ≝ add_ticks1 s in let old_cy_flag ≝ get_cy_flag ?? s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let new_cy_flag ≝ get_index' ? O ? old_acc in let new_acc ≝ shift_left … 1 old_acc old_cy_flag in let s ≝ set_arg_1 … s CARRY new_cy_flag in set_8051_sfr … s SFR_ACC_A new_acc | RRC _ ⇒ λinstr_refl. (* DPM: always ACC_A *) let s ≝ add_ticks1 s in let old_cy_flag ≝ get_cy_flag ?? s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let new_cy_flag ≝ get_index' ? 7 ? old_acc in let new_acc ≝ shift_right … 1 old_acc old_cy_flag in let s ≝ set_arg_1 … s CARRY new_cy_flag in set_8051_sfr … s SFR_ACC_A new_acc | SWAP _ ⇒ λinstr_refl. (* DPM: always ACC_A *) let s ≝ add_ticks1 s in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let 〈nu,nl〉 ≝ split ? 4 4 old_acc in let new_acc ≝ nl @@ nu in set_8051_sfr … s SFR_ACC_A new_acc | PUSH addr ⇒ λinstr_refl. match addr return λx. bool_to_Prop (is_in … [[ direct ]] x) → Σs': PreStatus m cm. ? with [ DIRECT d ⇒ λdirect: True. let s ≝ add_ticks1 s in let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) in let s ≝ set_8051_sfr … s SFR_SP new_sp in write_at_stack_pointer … s d | _ ⇒ λother: False. ⊥ ] (subaddressing_modein … addr) | POP addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in let contents ≝ read_at_stack_pointer ?? s in let 〈new_sp, flags〉 ≝ sub_8_with_carry (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) false in let s ≝ set_8051_sfr … s SFR_SP new_sp in set_arg_8 … s addr contents | XCH addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let old_addr ≝ get_arg_8 … s false addr2 in let old_acc ≝ get_8051_sfr … s SFR_ACC_A in let s ≝ set_8051_sfr … s SFR_ACC_A old_addr in set_arg_8 … s addr2 old_acc | XCHD addr1 addr2 ⇒ λinstr_refl. let s ≝ add_ticks1 s in let 〈acc_nu, acc_nl〉 ≝ split … 4 4 (get_8051_sfr … s SFR_ACC_A) in let 〈arg_nu, arg_nl〉 ≝ split … 4 4 (get_arg_8 … s false addr2) in let new_acc ≝ acc_nu @@ arg_nl in let new_arg ≝ arg_nu @@ acc_nl in let s ≝ set_8051_sfr ?? s SFR_ACC_A new_acc in set_arg_8 … s addr2 new_arg | RET ⇒ λinstr_refl. let s ≝ add_ticks1 s in let high_bits ≝ read_at_stack_pointer ?? s in let 〈new_sp, flags〉 ≝ sub_8_with_carry (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) false in let s ≝ set_8051_sfr … s SFR_SP new_sp in let low_bits ≝ read_at_stack_pointer ?? s in let 〈new_sp, flags〉 ≝ sub_8_with_carry (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) false in let s ≝ set_8051_sfr … s SFR_SP new_sp in let new_pc ≝ high_bits @@ low_bits in set_program_counter … s new_pc | RETI ⇒ λinstr_refl. let s ≝ add_ticks1 s in let high_bits ≝ read_at_stack_pointer ?? s in let 〈new_sp, flags〉 ≝ sub_8_with_carry (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) false in let s ≝ set_8051_sfr … s SFR_SP new_sp in let low_bits ≝ read_at_stack_pointer ?? s in let 〈new_sp, flags〉 ≝ sub_8_with_carry (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) false in let s ≝ set_8051_sfr … s SFR_SP new_sp in let new_pc ≝ high_bits @@ low_bits in set_program_counter … s new_pc | MOVX addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in (* DPM: only copies --- doesn't affect I/O *) match addr with [ inl l ⇒ let 〈addr1, addr2〉 ≝ l in set_arg_8 … s addr1 (get_arg_8 … s false addr2) | inr r ⇒ let 〈addr1, addr2〉 ≝ r in set_arg_8 … s addr1 (get_arg_8 … s false addr2) ] | MOV addr ⇒ λinstr_refl. let s ≝ add_ticks1 s in match addr with [ inl l ⇒ match l with [ inl l' ⇒ match l' with [ inl l'' ⇒ match l'' with [ inl l''' ⇒ match l''' with [ inl l'''' ⇒ let 〈addr1, addr2〉 ≝ l'''' in set_arg_8 … s addr1 (get_arg_8 … s false addr2) | inr r'''' ⇒ let 〈addr1, addr2〉 ≝ r'''' in set_arg_8 … s addr1 (get_arg_8 … s false addr2) ] | inr r''' ⇒ let 〈addr1, addr2〉 ≝ r''' in set_arg_8 … s addr1 (get_arg_8 … s false addr2) ] | inr r'' ⇒ let 〈addr1, addr2〉 ≝ r'' in set_arg_16 … s (get_arg_16 … s addr2) addr1 ] | inr r ⇒ let 〈addr1, addr2〉 ≝ r in set_arg_1 … s addr1 (get_arg_1 … s addr2 false) ] | inr r ⇒ let 〈addr1, addr2〉 ≝ r in set_arg_1 … s addr1 (get_arg_1 … s addr2 false) ] | JC addr ⇒ λinstr_refl. if get_cy_flag ?? s then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr s) else let s ≝ add_ticks2 s in s | JNC addr ⇒ λinstr_refl. if ¬(get_cy_flag ?? s) then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr s) else let s ≝ add_ticks2 s in s | JB addr1 addr2 ⇒ λinstr_refl. if get_arg_1 … s addr1 false then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr2 s) else let s ≝ add_ticks2 s in s | JNB addr1 addr2 ⇒ λinstr_refl. if ¬(get_arg_1 … s addr1 false) then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr2 s) else let s ≝ add_ticks2 s in s | JBC addr1 addr2 ⇒ λinstr_refl. let s ≝ set_arg_1 … s addr1 false in if get_arg_1 … s addr1 false then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr2 s) else let s ≝ add_ticks2 s in s | JZ addr ⇒ λinstr_refl. if eq_bv ? (get_8051_sfr … s SFR_ACC_A) (zero 8) then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr s) else let s ≝ add_ticks2 s in s | JNZ addr ⇒ λinstr_refl. if ¬(eq_bv ? (get_8051_sfr … s SFR_ACC_A) (zero 8)) then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr s) else let s ≝ add_ticks2 s in s | CJNE addr1 addr2 ⇒ λinstr_refl. match addr1 with [ inl l ⇒ let 〈addr1, addr2'〉 ≝ l in let new_cy ≝ ltb (nat_of_bitvector ? (get_arg_8 … s false addr1)) (nat_of_bitvector ? (get_arg_8 … s false addr2')) in if ¬(eq_bv ? (get_arg_8 … s false addr1) (get_arg_8 … s false addr2')) then let s ≝ add_ticks1 s in let s ≝ set_program_counter … s (addr_of addr2 s) in set_flags … s new_cy (None ?) (get_ov_flag ?? s) else let s ≝ add_ticks2 s in set_flags … s new_cy (None ?) (get_ov_flag ?? s) | inr r' ⇒ let 〈addr1, addr2'〉 ≝ r' in let new_cy ≝ ltb (nat_of_bitvector ? (get_arg_8 … s false addr1)) (nat_of_bitvector ? (get_arg_8 … s false addr2')) in if ¬(eq_bv ? (get_arg_8 … s false addr1) (get_arg_8 … s false addr2')) then let s ≝ add_ticks1 s in let s ≝ set_program_counter … s (addr_of addr2 s) in set_flags … s new_cy (None ?) (get_ov_flag ?? s) else let s ≝ add_ticks2 s in set_flags … s new_cy (None ?) (get_ov_flag ?? s) ] | DJNZ addr1 addr2 ⇒ λinstr_refl. let 〈result, flags〉 ≝ sub_8_with_carry (get_arg_8 … s true addr1) (bitvector_of_nat 8 1) false in let s ≝ set_arg_8 … s addr1 result in if ¬(eq_bv ? result (zero 8)) then let s ≝ add_ticks1 s in set_program_counter … s (addr_of addr2 s) else let s ≝ add_ticks2 s in s ] (refl … instr). try (cases(other)) try assumption (*20s*) try (% @False) (*6s*) (* Bug exploited here to implement solve :-*) try ( @(execute_1_technical … (subaddressing_modein …)) @I ) (*66s*) normalize nodelta % try (clock_set_program_counter clock_proof' destruct(INSTR_PC_TICKS) % |2: #classify_assm -clock_proof >classify_proof -classify_proof [1: normalize nodelta normalize program_counter_refl % ] ] qed. definition execute_1: ∀cm. Status cm → Status cm ≝ execute_1'. lemma execute_1_ok: ∀cm.∀s. (clock ?? (execute_1 cm s) = current_instruction_cost … s + clock … s) ∧ (ASM_classify cm s = cl_other → \snd (\fst (fetch cm (program_counter … s))) = program_counter … (execute_1 cm s)). #cm #s whd in match execute_1; normalize nodelta @pi2 qed-. (*x Andrea: indexing takes ages here *) definition execute_1_pseudo_instruction0: (nat × nat) → ∀cm. PseudoStatus cm → ? → ? → PseudoStatus cm ≝ λticks,cm,s,instr,pc. let s ≝ set_program_counter ?? s pc in let s ≝ match instr with [ Instruction instr ⇒ execute_1_preinstruction ticks … (λx, y. address_of_word_labels cm x) instr s | Comment cmt ⇒ set_clock … s (\fst ticks + clock … s) | Cost cst ⇒ s | Jmp jmp ⇒ let s ≝ set_clock … s (\fst ticks + clock … s) in set_program_counter … s (address_of_word_labels cm jmp) | Call call ⇒ let s ≝ set_clock ?? s (\fst ticks + clock … s) in let a ≝ address_of_word_labels cm call in let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) in let s ≝ set_8051_sfr … s SFR_SP new_sp in let 〈pc_bu, pc_bl〉 ≝ split ? 8 8 (program_counter … s) in let s ≝ write_at_stack_pointer … s pc_bl in let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1) in let s ≝ set_8051_sfr … s SFR_SP new_sp in let s ≝ write_at_stack_pointer … s pc_bu in set_program_counter … s a | Mov dptr ident ⇒ let s ≝ set_clock ?? s (\fst ticks + clock … s) in let the_preamble ≝ \fst cm in let data_labels ≝ construct_datalabels the_preamble in set_arg_16 … s (get_arg_16 … s (DATA16 (lookup_def ? ? data_labels ident (zero ?)))) dptr ] in s. normalize @I qed. definition execute_1_pseudo_instruction: (Word → nat × nat) → ∀cm. PseudoStatus cm → PseudoStatus cm ≝ λticks_of,cm,s. let 〈instr, pc〉 ≝ fetch_pseudo_instruction (\snd cm) (program_counter … s) in let ticks ≝ ticks_of (program_counter … s) in execute_1_pseudo_instruction0 ticks cm s instr pc. let rec execute (n: nat) (cm:?) (s: Status cm) on n: Status cm ≝ match n with [ O ⇒ s | S o ⇒ execute o … (execute_1 … s) ]. let rec execute_pseudo_instruction (n: nat) (ticks_of: Word → nat × nat) (cm:?) (s: PseudoStatus cm) on n: PseudoStatus cm ≝ match n with [ O ⇒ s | S o ⇒ execute_pseudo_instruction o ticks_of … (execute_1_pseudo_instruction ticks_of … s) ].