(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (* * Abstract syntax for the Clight language *) (*include "Integers.ma".*) include "common/AST.ma". include "utilities/Coqlib.ma". include "common/Errors.ma". include "common/CostLabel.ma". (* * * Abstract syntax *) (* * ** Types *) (* * The syntax of type expressions. Some points to note: - Array types [Tarray n] carry the size [n] of the array. Arrays with unknown sizes are represented by pointer types. - Function types [Tfunction targs tres] specify the number and types of the function arguments (list [targs]), and the type of the function result ([tres]). Variadic functions and old-style unprototyped functions are not supported. - In C, struct and union types are named and compared by name. This enables the definition of recursive struct types such as << struct s1 { int n; struct * s1 next; }; >> Note that recursion within types must go through a pointer type. For instance, the following is not allowed in C. << struct s2 { int n; struct s2 next; }; >> In Clight, struct and union types [Tstruct id fields] and [Tunion id fields] are compared by structure: the [fields] argument gives the names and types of the members. The identifier [id] is a local name which can be used in conjuction with the [Tcomp_ptr] constructor to express recursive types. [Tcomp_ptr rg id] stands for a pointer type to the nearest enclosing [Tstruct] or [Tunion] type named [id] in memory region [rg]. For instance. the structure [s1] defined above in C is expressed by << Tstruct "s1" (Fcons "n" (Tint I32 Signed) (Fcons "next" (Tcomp_ptr Any "id") Fnil)) >> Note that the incorrect structure [s2] above cannot be expressed at all, since [Tcomp_ptr] lets us refer to a pointer to an enclosing structure or union, but not to the structure or union directly. *) inductive type : Type[0] ≝ | Tvoid: type (**r the [void] type *) | Tint: intsize → signedness → type (**r integer types *) | Tfloat: floatsize → type (**r floating-point types *) | Tpointer: region → type → type (**r pointer types ([*ty]) *) | Tarray: region → type → nat → type (**r array types ([ty[len]]) *) | Tfunction: typelist → type → type (**r function types *) | Tstruct: ident → fieldlist → type (**r struct types *) | Tunion: ident → fieldlist → type (**r union types *) | Tcomp_ptr: region → ident → type (**r pointer to named struct or union *) with typelist : Type[0] ≝ | Tnil: typelist | Tcons: type → typelist → typelist with fieldlist : Type[0] ≝ | Fnil: fieldlist | Fcons: ident → type → fieldlist → fieldlist. (* XXX: no induction scheme! *) let rec type_ind (P:type → Prop) (vo:P Tvoid) (it:∀i,s. P (Tint i s)) (fl:∀f. P (Tfloat f)) (pt:∀s,t. P t → P (Tpointer s t)) (ar:∀s,t,n. P t → P (Tarray s t n)) (fn:∀tl,t. P t → P (Tfunction tl t)) (st:∀i,fl. P (Tstruct i fl)) (un:∀i,fl. P (Tunion i fl)) (cp:∀rg,i. P (Tcomp_ptr rg i)) (t:type) on t : P t ≝ match t return λt'.P t' with [ Tvoid ⇒ vo | Tint i s ⇒ it i s | Tfloat s ⇒ fl s | Tpointer s t' ⇒ pt s t' (type_ind P vo it fl pt ar fn st un cp t') | Tarray s t' n ⇒ ar s t' n (type_ind P vo it fl pt ar fn st un cp t') | Tfunction tl t' ⇒ fn tl t' (type_ind P vo it fl pt ar fn st un cp t') | Tstruct i fs ⇒ st i fs | Tunion i fs ⇒ un i fs | Tcomp_ptr rg i ⇒ cp rg i ]. let rec fieldlist_ind (P:fieldlist → Prop) (nl:P Fnil) (cs:∀i,t,fs. P fs → P (Fcons i t fs)) (fs:fieldlist) on fs : P fs ≝ match fs with [ Fnil ⇒ nl | Fcons i t fs' ⇒ cs i t fs' (fieldlist_ind P nl cs fs') ]. (* * ** Expressions *) (* * Arithmetic and logical operators. *) inductive unary_operation : Type[0] ≝ | Onotbool : unary_operation (**r boolean negation ([!] in C) *) | Onotint : unary_operation (**r integer complement ([~] in C) *) | Oneg : unary_operation. (**r opposite (unary [-]) *) inductive binary_operation : Type[0] ≝ | Oadd : binary_operation (**r addition (binary [+]) *) | Osub : binary_operation (**r subtraction (binary [-]) *) | Omul : binary_operation (**r multiplication (binary [*]) *) | Odiv : binary_operation (**r division ([/]) *) | Omod : binary_operation (**r remainder ([%]) *) | Oand : binary_operation (**r bitwise and ([&]) *) | Oor : binary_operation (**r bitwise or ([|]) *) | Oxor : binary_operation (**r bitwise xor ([^]) *) | Oshl : binary_operation (**r left shift ([<<]) *) | Oshr : binary_operation (**r right shift ([>>]) *) | Oeq: binary_operation (**r comparison ([==]) *) | One: binary_operation (**r comparison ([!=]) *) | Olt: binary_operation (**r comparison ([<]) *) | Ogt: binary_operation (**r comparison ([>]) *) | Ole: binary_operation (**r comparison ([<=]) *) | Oge: binary_operation. (**r comparison ([>=]) *) (* * Clight expressions are a large subset of those of C. The main omissions are string literals and assignment operators ([=], [+=], [++], etc). In Clight, assignment is a statement, not an expression. All expressions are annotated with their types. An expression (type [expr]) is therefore a pair of a type and an expression description (type [expr_descr]). *) inductive expr : Type[0] ≝ | Expr: expr_descr → type → expr with expr_descr : Type[0] ≝ | Econst_int: ∀sz:intsize. bvint sz → expr_descr (**r integer literal *) | Econst_float: float → expr_descr (**r float literal *) | Evar: ident → expr_descr (**r variable *) | Ederef: expr → expr_descr (**r pointer dereference (unary [*]) *) | Eaddrof: expr → expr_descr (**r address-of operator ([&]) *) | Eunop: unary_operation → expr → expr_descr (**r unary operation *) | Ebinop: binary_operation → expr → expr → expr_descr (**r binary operation *) | Ecast: type → expr → expr_descr (**r type cast ([(ty) e]) *) | Econdition: expr → expr → expr → expr_descr (**r conditional ([e1 ? e2 : e3]) *) | Eandbool: expr → expr → expr_descr (**r sequential and ([&&]) *) | Eorbool: expr → expr → expr_descr (**r sequential or ([||]) *) | Esizeof: type → expr_descr (**r size of a type *) | Efield: expr → ident → expr_descr (**r access to a member of a struct or union *) | Ecost: costlabel → expr → expr_descr. (* * Extract the type part of a type-annotated Clight expression. *) definition typeof : expr → type ≝ λe. match e with [ Expr de te ⇒ te ]. (* * ** Statements *) (* * Clight statements include all C statements. Only structured forms of [switch] are supported; moreover, the [default] case must occur last. Blocks and block-scoped declarations are not supported. *) definition label ≝ ident. inductive statement : Type[0] ≝ | Sskip : statement (**r do nothing *) | Sassign : expr → expr → statement (**r assignment [lvalue = rvalue] *) | Scall: option expr → expr → list expr → statement (**r function call *) | Ssequence : statement → statement → statement (**r sequence *) | Sifthenelse : expr → statement → statement → statement (**r conditional *) | Swhile : expr → statement → statement (**r [while] loop *) | Sdowhile : expr → statement → statement (**r [do] loop *) | Sfor: statement → expr → statement → statement → statement (**r [for] loop *) | Sbreak : statement (**r [break] statement *) | Scontinue : statement (**r [continue] statement *) | Sreturn : option expr → statement (**r [return] statement *) | Sswitch : expr → labeled_statements → statement (**r [switch] statement *) | Slabel : label → statement → statement | Sgoto : label → statement | Scost : costlabel → statement → statement with labeled_statements : Type[0] ≝ (**r cases of a [switch] *) | LSdefault: statement → labeled_statements | LScase: ∀sz:intsize. bvint sz → statement → labeled_statements → labeled_statements. let rec statement_ind2 (P:statement → Prop) (Q:labeled_statements → Prop) (Ssk:P Sskip) (Sas:∀e1,e2. P (Sassign e1 e2)) (Sca:∀eo,e,args. P (Scall eo e args)) (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) (Swh:∀e,s. P s → P (Swhile e s)) (Sdo:∀e,s. P s → P (Sdowhile e s)) (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) (Sbr:P Sbreak) (Sco:P Scontinue) (Sre:∀eo. P (Sreturn eo)) (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) (Sla:∀l,s. P s → P (Slabel l s)) (Sgo:∀l. P (Sgoto l)) (Scs:∀l,s. P s → P (Scost l s)) (LSd:∀s. P s → Q (LSdefault s)) (LSc:∀sz,i,s,t. P s → Q t → Q (LScase sz i s t)) (s:statement) on s : P s ≝ match s with [ Sskip ⇒ Ssk | Sassign e1 e2 ⇒ Sas e1 e2 | Scall eo e args ⇒ Sca eo e args | Ssequence s1 s2 ⇒ Ssq s1 s2 (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) | Sifthenelse e s1 s2 ⇒ Sif e s1 s2 (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) | Swhile e s ⇒ Swh e s (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) | Sdowhile e s ⇒ Sdo e s (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) | Sfor s1 e s2 s3 ⇒ Sfo s1 e s2 s3 (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s3) | Sbreak ⇒ Sbr | Scontinue ⇒ Sco | Sreturn eo ⇒ Sre eo | Sswitch e ls ⇒ Ssw e ls (labeled_statements_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc ls) | Slabel l s ⇒ Sla l s (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) | Sgoto l ⇒ Sgo l | Scost l s ⇒ Scs l s (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) ] and labeled_statements_ind2 (P:statement → Prop) (Q:labeled_statements → Prop) (Ssk:P Sskip) (Sas:∀e1,e2. P (Sassign e1 e2)) (Sca:∀eo,e,args. P (Scall eo e args)) (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) (Swh:∀e,s. P s → P (Swhile e s)) (Sdo:∀e,s. P s → P (Sdowhile e s)) (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) (Sbr:P Sbreak) (Sco:P Scontinue) (Sre:∀eo. P (Sreturn eo)) (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) (Sla:∀l,s. P s → P (Slabel l s)) (Sgo:∀l. P (Sgoto l)) (Scs:∀l,s. P s → P (Scost l s)) (LSd:∀s. P s → Q (LSdefault s)) (LSc:∀sz,i,s,t. P s → Q t → Q (LScase sz i s t)) (ls:labeled_statements) on ls : Q ls ≝ match ls with [ LSdefault s ⇒ LSd s (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) | LScase sz i s t ⇒ LSc sz i s t (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) (labeled_statements_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc t) ]. definition statement_ind ≝ λP,Ssk,Sas,Sca,Ssq,Sif,Swh,Sdo,Sfo,Sbr,Sco,Sre,Ssw,Sla,Sgo,Scs. statement_ind2 P (λ_.True) Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs (λ_,_. I) (λ_,_,_,_,_,_.I). (* * ** Functions *) (* * A function definition is composed of its return type ([fn_return]), the names and types of its parameters ([fn_params]), the names and types of its local variables ([fn_vars]), and the body of the function (a statement, [fn_body]). *) record function : Type[0] ≝ { fn_return: type; fn_params: list (ident × type); fn_vars: list (ident × type); fn_body: statement }. (* * Functions can either be defined ([CL_Internal]) or declared as external functions ([CL_External]). Similar to the AST definition, but with high level type information for external functions. *) inductive clight_fundef : Type[0] ≝ | CL_Internal: function → clight_fundef | CL_External: ident → typelist → type → clight_fundef. (* * ** Programs *) (* * A program is a collection of named functions, plus a collection of named global variables, carrying their types and optional initialization data. See module [AST] for more details. *) definition clight_program : Type[0] ≝ program (λ_.clight_fundef) (list init_data × type). (* * * Operations over types *) (* * The type of a function definition. *) let rec type_of_params (params: list (ident × type)) : typelist ≝ match params with [ nil ⇒ Tnil | cons h rem ⇒ let 〈id,ty〉 ≝ h in Tcons ty (type_of_params rem) ]. definition type_of_function : function → type ≝ λf. Tfunction (type_of_params (fn_params f)) (fn_return f). definition type_of_fundef : clight_fundef → type ≝ λf. match f with [ CL_Internal fd ⇒ type_of_function fd | CL_External id args res ⇒ Tfunction args res ]. (* * Natural alignment of a type, in bytes. *) (* FIXME: these are old values for 32 bit machines *) let rec alignof (t: type) : nat ≝ match t with [ Tvoid ⇒ 1 | Tint sz _ ⇒ match sz with [ I8 ⇒ 1 | I16 ⇒ 2 | I32 ⇒ 4 ] | Tfloat sz ⇒ match sz with [ F32 ⇒ 4 | F64 ⇒ 8 ] | Tpointer _ _ ⇒ 4 | Tarray _ t' n ⇒ alignof t' | Tfunction _ _ ⇒ 1 | Tstruct _ fld ⇒ alignof_fields fld | Tunion _ fld ⇒ alignof_fields fld | Tcomp_ptr _ _ ⇒ 4 ] and alignof_fields (f: fieldlist) : nat ≝ match f with [ Fnil ⇒ 1 | Fcons id t f' ⇒ max (alignof t) (alignof_fields f') ]. (* Scheme type_ind2 := Induction for type Sort Prop with fieldlist_ind2 := Induction for fieldlist Sort Prop. *) (* XXX: automatic generation? *) let rec type_ind2 (P:type → Prop) (Q:fieldlist → Prop) (vo:P Tvoid) (it:∀i,s. P (Tint i s)) (fl:∀f. P (Tfloat f)) (pt:∀s,t. P t → P (Tpointer s t)) (ar:∀s,t,n. P t → P (Tarray s t n)) (fn:∀tl,t. P t → P (Tfunction tl t)) (st:∀i,fl. Q fl → P (Tstruct i fl)) (un:∀i,fl. Q fl → P (Tunion i fl)) (cp:∀r,i. P (Tcomp_ptr r i)) (nl:Q Fnil) (cs:∀i,t,f'. P t → Q f' → Q (Fcons i t f')) (t:type) on t : P t ≝ match t return λt'.P t' with [ Tvoid ⇒ vo | Tint i s ⇒ it i s | Tfloat s ⇒ fl s | Tpointer s t' ⇒ pt s t' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') | Tarray s t' n ⇒ ar s t' n (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') | Tfunction tl t' ⇒ fn tl t' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') | Tstruct i fs ⇒ st i fs (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs fs) | Tunion i fs ⇒ un i fs (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs fs) | Tcomp_ptr r i ⇒ cp r i ] and fieldlist_ind2 (P:type → Prop) (Q:fieldlist → Prop) (vo:P Tvoid) (it:∀i,s. P (Tint i s)) (fl:∀f. P (Tfloat f)) (pt:∀s,t. P t → P (Tpointer s t)) (ar:∀s,t,n. P t → P (Tarray s t n)) (fn:∀tl,t. P t → P (Tfunction tl t)) (st:∀i,fl. Q fl → P (Tstruct i fl)) (un:∀i,fl. Q fl → P (Tunion i fl)) (cp:∀r,i. P (Tcomp_ptr r i)) (nl:Q Fnil) (cs:∀i,t,f'. P t → Q f' → Q (Fcons i t f')) (fs:fieldlist) on fs : Q fs ≝ match fs return λfs'.Q fs' with [ Fnil ⇒ nl | Fcons i t f' ⇒ cs i t f' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t) (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs f') ]. lemma alignof_fields_pos: ∀f. alignof_fields f > 0. @fieldlist_ind //; #i #t #fs' #IH @max_r @IH qed. lemma alignof_pos: ∀t. alignof t > 0. #t elim t; normalize; //; [ 1,2: #z cases z; /2/; | 3,4: #i @alignof_fields_pos ] qed. (* * Size of a type, in bytes. *) let rec sizeof (t: type) : nat ≝ match t with [ Tvoid ⇒ 1 | Tint i _ ⇒ match i with [ I8 ⇒ 1 | I16 ⇒ 2 | I32 ⇒ 4 ] | Tfloat f ⇒ match f with [ F32 ⇒ 4 | F64 ⇒ 8 ] | Tpointer r _ ⇒ size_pointer r | Tarray _ t' n ⇒ sizeof t' * max 1 n | Tfunction _ _ ⇒ 1 | Tstruct _ fld ⇒ align (max 1 (sizeof_struct fld 0)) (alignof t) | Tunion _ fld ⇒ align (max 1 (sizeof_union fld)) (alignof t) | Tcomp_ptr r _ ⇒ size_pointer r ] and sizeof_struct (fld: fieldlist) (pos: nat) on fld : nat ≝ match fld with [ Fnil ⇒ pos | Fcons id t fld' ⇒ sizeof_struct fld' (align pos (alignof t) + sizeof t) ] and sizeof_union (fld: fieldlist) : nat ≝ match fld with [ Fnil ⇒ 0 | Fcons id t fld' ⇒ max (sizeof t) (sizeof_union fld') ]. (* TODO: needs some Z_times results lemma sizeof_pos: ∀t. sizeof t > 0. #t0 napply (type_ind2 (λt. sizeof t > 0) (λf. sizeof_union f ≥ 0 ∧ ∀pos:Z. pos ≥ 0 → sizeof_struct f pos ≥ 0)); [ 1,4,6,9: //; | #i cases i;#s //; | #f cases f;// | #t #n #H whd in ⊢ (?%?); Proof. intro t0. apply (type_ind2 (fun t => sizeof t > 0) (fun f => sizeof_union f >= 0 /\ forall pos, pos >= 0 -> sizeof_struct f pos >= 0)); intros; simpl; auto; try omega. destruct i; omega. destruct f; omega. apply Zmult_gt_0_compat. auto. generalize (Zmax1 1 z); omega. destruct H. generalize (align_le (Zmax 1 (sizeof_struct f 0)) (alignof_fields f) (alignof_fields_pos f)). generalize (Zmax1 1 (sizeof_struct f 0)). omega. generalize (align_le (Zmax 1 (sizeof_union f)) (alignof_fields f) (alignof_fields_pos f)). generalize (Zmax1 1 (sizeof_union f)). omega. split. omega. auto. destruct H0. split; intros. generalize (Zmax2 (sizeof t) (sizeof_union f)). omega. apply H1. generalize (align_le pos (alignof t) (alignof_pos t)). omega. Qed. Lemma sizeof_struct_incr: forall fld pos, pos <= sizeof_struct fld pos. Proof. induction fld; intros; simpl. omega. eapply Zle_trans. 2: apply IHfld. apply Zle_trans with (align pos (alignof t)). apply align_le. apply alignof_pos. assert (sizeof t > 0) by apply sizeof_pos. omega. Qed. (** Byte offset for a field in a struct or union. Field are laid out consecutively, and padding is inserted to align each field to the natural alignment for its type. *) Open Local Scope string_scope. *) axiom UnknownField : String. let rec field_offset_rec (id: ident) (fld: fieldlist) (pos: nat) on fld : res nat ≝ match fld with [ Fnil ⇒ Error ? [MSG UnknownField (*"Unknown field "*); CTX ? id] | Fcons id' t fld' ⇒ match ident_eq id id' with [ inl _ ⇒ OK ? (align pos (alignof t)) | inr _ ⇒ field_offset_rec id fld' (align pos (alignof t) + sizeof t) ] ]. definition field_offset ≝ λid: ident. λfld: fieldlist. field_offset_rec id fld 0. let rec field_type (id: ident) (fld: fieldlist) on fld : res type := match fld with [ Fnil ⇒ Error ? [MSG UnknownField (*"Unknown field "*); CTX ? id] | Fcons id' t fld' ⇒ match ident_eq id id' with [ inl _ ⇒ OK ? t | inr _ ⇒ field_type id fld'] ]. (* * Some sanity checks about field offsets. First, field offsets are within the range of acceptable offsets. *) (* Remark field_offset_rec_in_range: forall id ofs ty fld pos, field_offset_rec id fld pos = OK ofs → field_type id fld = OK ty → pos <= ofs /\ ofs + sizeof ty <= sizeof_struct fld pos. Proof. intros until ty. induction fld; simpl. congruence. destruct (ident_eq id i); intros. inv H. inv H0. split. apply align_le. apply alignof_pos. apply sizeof_struct_incr. exploit IHfld; eauto. intros [A B]. split; auto. eapply Zle_trans; eauto. apply Zle_trans with (align pos (alignof t)). apply align_le. apply alignof_pos. generalize (sizeof_pos t). omega. Qed. Lemma field_offset_in_range: forall id fld ofs ty, field_offset id fld = OK ofs → field_type id fld = OK ty → 0 <= ofs /\ ofs + sizeof ty <= sizeof_struct fld 0. Proof. intros. eapply field_offset_rec_in_range. unfold field_offset in H; eauto. eauto. Qed. (** Second, two distinct fields do not overlap *) Lemma field_offset_no_overlap: forall id1 ofs1 ty1 id2 ofs2 ty2 fld, field_offset id1 fld = OK ofs1 → field_type id1 fld = OK ty1 → field_offset id2 fld = OK ofs2 → field_type id2 fld = OK ty2 → id1 <> id2 → ofs1 + sizeof ty1 <= ofs2 \/ ofs2 + sizeof ty2 <= ofs1. Proof. intros until ty2. intros fld0 A B C D NEQ. assert (forall fld pos, field_offset_rec id1 fld pos = OK ofs1 -> field_type id1 fld = OK ty1 -> field_offset_rec id2 fld pos = OK ofs2 -> field_type id2 fld = OK ty2 -> ofs1 + sizeof ty1 <= ofs2 \/ ofs2 + sizeof ty2 <= ofs1). induction fld; intro pos; simpl. congruence. destruct (ident_eq id1 i); destruct (ident_eq id2 i). congruence. subst i. intros. inv H; inv H0. exploit field_offset_rec_in_range. eexact H1. eauto. tauto. subst i. intros. inv H1; inv H2. exploit field_offset_rec_in_range. eexact H. eauto. tauto. intros. eapply IHfld; eauto. apply H with fld0 0; auto. Qed. (** Third, if a struct is a prefix of another, the offsets of fields in common is the same. *) Fixpoint fieldlist_app (fld1 fld2: fieldlist) {struct fld1} : fieldlist := match fld1 with | Fnil ⇒ fld2 | Fcons id ty fld ⇒ Fcons id ty (fieldlist_app fld fld2) end. Lemma field_offset_prefix: forall id ofs fld2 fld1, field_offset id fld1 = OK ofs → field_offset id (fieldlist_app fld1 fld2) = OK ofs. Proof. intros until fld2. assert (forall fld1 pos, field_offset_rec id fld1 pos = OK ofs -> field_offset_rec id (fieldlist_app fld1 fld2) pos = OK ofs). induction fld1; intros pos; simpl. congruence. destruct (ident_eq id i); auto. intros. unfold field_offset; auto. Qed. *) (* * The [access_mode] function describes how a variable of the given type must be accessed: - [By_value ch]: access by value, i.e. by loading from the address of the variable using the memory chunk [ch]; - [By_reference]: access by reference, i.e. by just returning the address of the variable; - [By_nothing]: no access is possible, e.g. for the [void] type. We currently do not support 64-bit integers and 128-bit floats, so these have an access mode of [By_nothing]. *) inductive mode: Type[0] ≝ | By_value: memory_chunk → mode | By_reference: region → mode | By_nothing: mode. definition access_mode : type → mode ≝ λty. match ty with [ Tint i s ⇒ match i with [ I8 ⇒ match s with [ Signed ⇒ By_value Mint8signed | Unsigned ⇒ By_value Mint8unsigned ] | I16 ⇒ match s with [ Signed ⇒ By_value Mint16signed | Unsigned ⇒ By_value Mint16unsigned ] | I32 ⇒ By_value Mint32 ] | Tfloat f ⇒ match f with [ F32 ⇒ By_value Mfloat32 | F64 ⇒ By_value Mfloat64 ] | Tvoid ⇒ By_nothing | Tpointer r _ ⇒ By_value (Mpointer r) | Tarray r _ _ ⇒ By_reference r | Tfunction _ _ ⇒ By_reference Code | Tstruct _ fList ⇒ By_nothing | Tunion _ fList ⇒ By_nothing | Tcomp_ptr r _ ⇒ By_value (Mpointer r) ]. (* * Classification of arithmetic operations and comparisons. The following [classify_] functions take as arguments the types of the arguments of an operation. They return enough information to resolve overloading for this operator applications, such as ``both arguments are floats'', or ``the first is a pointer and the second is an integer''. These functions are used to resolve overloading both in the dynamic semantics (module [Csem]) and in the compiler (module [Cshmgen]). *) inductive classify_add_cases : Type[0] ≝ | add_case_ii: classify_add_cases (**r int , int *) | add_case_ff: classify_add_cases (**r float , float *) | add_case_pi: type → classify_add_cases (**r ptr or array, int *) | add_case_ip: type → classify_add_cases (**r int, ptr or array *) | add_default: classify_add_cases. (**r other *) definition classify_add ≝ λty1: type. λty2: type. (* match ty1, ty2 with [ Tint _ _, Tint _ _ ⇒ add_case_ii | Tfloat _, Tfloat _ ⇒ add_case_ff | Tpointer ty, Tint _ _ ⇒ add_case_pi ty | Tarray ty _, Tint _ _ ⇒ add_case_pi ty | Tint _ _, Tpointer ty ⇒ add_case_ip ty | Tint _ _, Tarray ty _ ⇒ add_case_ip ty | _, _ ⇒ add_default ]. *) match ty1 with [ Tint _ _ ⇒ match ty2 with [ Tint _ _ ⇒ add_case_ii | Tpointer _ ty ⇒ add_case_ip ty | Tarray _ ty _ ⇒ add_case_ip ty | _ ⇒ add_default ] | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ add_case_ff | _ ⇒ add_default ] | Tpointer _ ty ⇒ match ty2 with [Tint _ _ ⇒ add_case_pi ty | _ ⇒ add_default ] | Tarray _ ty _ ⇒ match ty2 with [Tint _ _ ⇒ add_case_pi ty | _ ⇒ add_default ] | _ ⇒ add_default ]. inductive classify_sub_cases : Type[0] ≝ | sub_case_ii: classify_sub_cases (**r int , int *) | sub_case_ff: classify_sub_cases (**r float , float *) | sub_case_pi: type → classify_sub_cases (**r ptr or array , int *) | sub_case_pp: type → classify_sub_cases (**r ptr or array , ptr or array *) | sub_default: classify_sub_cases . (**r other *) definition classify_sub ≝ λty1: type. λty2: type. (* match ty1, ty2 with | Tint _ _ , Tint _ _ ⇒ sub_case_ii | Tfloat _ , Tfloat _ ⇒ sub_case_ff | Tpointer ty , Tint _ _ ⇒ sub_case_pi ty | Tarray ty _ , Tint _ _ ⇒ sub_case_pi ty | Tpointer ty , Tpointer _ ⇒ sub_case_pp ty | Tpointer ty , Tarray _ _⇒ sub_case_pp ty | Tarray ty _ , Tpointer _ ⇒ sub_case_pp ty | Tarray ty _ , Tarray _ _ ⇒ sub_case_pp ty | _ ,_ ⇒ sub_default end. *) match ty1 with [ Tint _ _ ⇒ match ty2 with [ Tint _ _ ⇒ sub_case_ii | _ ⇒ sub_default ] | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ sub_case_ff | _ ⇒ sub_default ] | Tpointer _ ty ⇒ match ty2 with [ Tint _ _ ⇒ sub_case_pi ty | Tpointer _ _ ⇒ sub_case_pp ty | Tarray _ _ _ ⇒ sub_case_pp ty | _ ⇒ sub_default ] | Tarray _ ty _ ⇒ match ty2 with [ Tint _ _ ⇒ sub_case_pi ty | Tpointer _ _ ⇒ sub_case_pp ty | Tarray _ _ _ ⇒ sub_case_pp ty | _ ⇒ sub_default ] | _ ⇒ sub_default ]. inductive classify_mul_cases : Type[0] ≝ | mul_case_ii: classify_mul_cases (**r int , int *) | mul_case_ff: classify_mul_cases (**r float , float *) | mul_default: classify_mul_cases . (**r other *) definition classify_mul ≝ λty1: type. λty2: type. match ty1 with [ Tint _ _ ⇒ match ty2 with [ Tint _ _ ⇒ mul_case_ii | _ ⇒ mul_default ] | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ mul_case_ff | _ ⇒ mul_default ] | _ ⇒ mul_default ]. (* match ty1,ty2 with | Tint _ _, Tint _ _ ⇒ mul_case_ii | Tfloat _ , Tfloat _ ⇒ mul_case_ff | _,_ ⇒ mul_default end. *) inductive classify_div_cases : Type[0] ≝ | div_case_I32unsi: classify_div_cases (**r unsigned int32 , int *) | div_case_ii: classify_div_cases (**r int , int *) | div_case_ff: classify_div_cases (**r float , float *) | div_default: classify_div_cases. (**r other *) definition classify_32un_aux ≝ λT:Type[0].λi.λs.λr1:T.λr2:T. match i with [ I32 ⇒ match s with [ Unsigned ⇒ r1 | _ ⇒ r2 ] | _ ⇒ r2 ]. definition classify_div ≝ λty1: type. λty2: type. match ty1 with [ Tint i1 s1 ⇒ match ty2 with [ Tint i2 s2 ⇒ classify_32un_aux ? i1 s1 div_case_I32unsi (classify_32un_aux ? i2 s2 div_case_I32unsi div_case_ii) | _ ⇒ div_default ] | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ div_case_ff | _ ⇒ div_default ] | _ ⇒ div_default ]. (* definition classify_div ≝ λty1: type. λty2: type. match ty1,ty2 with | Tint I32 Unsigned, Tint _ _ ⇒ div_case_I32unsi | Tint _ _ , Tint I32 Unsigned ⇒ div_case_I32unsi | Tint _ _ , Tint _ _ ⇒ div_case_ii | Tfloat _ , Tfloat _ ⇒ div_case_ff | _ ,_ ⇒ div_default end. *) inductive classify_mod_cases : Type[0] ≝ | mod_case_I32unsi: classify_mod_cases (**r unsigned I32 , int *) | mod_case_ii: classify_mod_cases (**r int , int *) | mod_default: classify_mod_cases . (**r other *) definition classify_mod ≝ λty1:type. λty2:type. match ty1 with [ Tint i1 s1 ⇒ match ty2 with [ Tint i2 s2 ⇒ classify_32un_aux ? i1 s1 mod_case_I32unsi (classify_32un_aux ? i2 s2 mod_case_I32unsi mod_case_ii) | _ ⇒ mod_default ] | _ ⇒ mod_default ]. (* Definition classify_mod (ty1: type) (ty2: type) := match ty1,ty2 with | Tint I32 Unsigned , Tint _ _ ⇒ mod_case_I32unsi | Tint _ _ , Tint I32 Unsigned ⇒ mod_case_I32unsi | Tint _ _ , Tint _ _ ⇒ mod_case_ii | _ , _ ⇒ mod_default end . *) inductive classify_shr_cases :Type[0] ≝ | shr_case_I32unsi: classify_shr_cases (**r unsigned I32 , int *) | shr_case_ii :classify_shr_cases (**r int , int *) | shr_default : classify_shr_cases . (**r other *) definition classify_shr ≝ λty1: type. λty2: type. match ty1 with [ Tint i1 s1 ⇒ match ty2 with [ Tint _ _ ⇒ classify_32un_aux ? i1 s1 shr_case_I32unsi shr_case_ii | _ ⇒ shr_default ] | _ ⇒ shr_default ]. (* Definition classify_shr (ty1: type) (ty2: type) := match ty1,ty2 with | Tint I32 Unsigned , Tint _ _ ⇒ shr_case_I32unsi | Tint _ _ , Tint _ _ ⇒ shr_case_ii | _ , _ ⇒ shr_default end. *) inductive classify_cmp_cases : Type[0] ≝ | cmp_case_I32unsi: classify_cmp_cases (**r unsigned I32 , int *) | cmp_case_ii: classify_cmp_cases (**r int, int*) | cmp_case_pp: classify_cmp_cases (**r ptr|array , ptr|array*) | cmp_case_ff: classify_cmp_cases (**r float , float *) | cmp_default: classify_cmp_cases . (**r other *) definition classify_cmp ≝ λty1:type. λty2:type. match ty1 with [ Tint i1 s1 ⇒ match ty2 with [ Tint i2 s2 ⇒ classify_32un_aux ? i1 s1 cmp_case_I32unsi (classify_32un_aux ? i2 s2 cmp_case_I32unsi cmp_case_ii) | _ ⇒ cmp_default ] | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ cmp_case_ff | _ ⇒ cmp_default ] | Tpointer _ _ ⇒ match ty2 with [ Tpointer _ _ ⇒ cmp_case_pp | Tarray _ _ _ ⇒ cmp_case_pp | _ ⇒ cmp_default ] | Tarray _ _ _ ⇒ match ty2 with [ Tpointer _ _ ⇒ cmp_case_pp | Tarray _ _ _ ⇒ cmp_case_pp | _ ⇒ cmp_default ] | _ ⇒ cmp_default ]. (* Definition classify_cmp (ty1: type) (ty2: type) := match ty1,ty2 with | Tint I32 Unsigned , Tint _ _ ⇒ cmp_case_I32unsi | Tint _ _ , Tint I32 Unsigned ⇒ cmp_case_I32unsi | Tint _ _ , Tint _ _ ⇒ cmp_case_ipip | Tfloat _ , Tfloat _ ⇒ cmp_case_ff | Tpointer _ , Tint _ _ ⇒ cmp_case_ipip | Tarray _ _ , Tint _ _ ⇒ cmp_case_ipip | Tpointer _ , Tpointer _ ⇒ cmp_case_ipip | Tpointer _ , Tarray _ _ ⇒ cmp_case_ipip | Tarray _ _ ,Tpointer _ ⇒ cmp_case_ipip | Tarray _ _ ,Tarray _ _ ⇒ cmp_case_ipip | _ , _ ⇒ cmp_default end. *) inductive classify_fun_cases : Type[0] ≝ | fun_case_f: typelist → type → classify_fun_cases (**r (pointer to) function *) | fun_default: classify_fun_cases . (**r other *) definition classify_fun ≝ λty: type. match ty with [ Tfunction args res ⇒ fun_case_f args res | Tpointer _ ty' ⇒ match ty' with [ Tfunction args res ⇒ fun_case_f args res | _ ⇒ fun_default ] | _ ⇒ fun_default ]. (* * Translating Clight types to Cminor types, function signatures, and external functions. *) definition typ_of_type : type → typ ≝ λt. match t with [ Tvoid ⇒ ASTint I32 Unsigned | Tint sz sg ⇒ ASTint sz sg | Tfloat sz ⇒ ASTfloat sz | Tpointer r _ ⇒ ASTptr r | Tarray r _ _ ⇒ ASTptr r | Tfunction _ _ ⇒ ASTptr Code | _ ⇒ ASTint I32 Unsigned (* structs and unions shouldn't be converted? *) ]. definition opttyp_of_type : type → option typ ≝ λt. match t with [ Tvoid ⇒ None ? | Tint sz sg ⇒ Some ? (ASTint sz sg) | Tfloat sz ⇒ Some ? (ASTfloat sz) | Tpointer r _ ⇒ Some ? (ASTptr r) | Tarray r _ _ ⇒ Some ? (ASTptr r) | Tfunction _ _ ⇒ Some ? (ASTptr Code) | _ ⇒ None ? (* structs and unions shouldn't be converted? *) ]. let rec typlist_of_typelist (tl: typelist) : list typ ≝ match tl with [ Tnil ⇒ nil ? | Tcons hd tl ⇒ typ_of_type hd :: typlist_of_typelist tl ]. definition signature_of_type : typelist → type → signature ≝ λargs. λres. mk_signature (typlist_of_typelist args) (opttyp_of_type res). definition external_function : ident → typelist → type → external_function ≝ λid. λtargs. λtres. mk_external_function id (signature_of_type targs tres).