include "ASM/Util.ma". include "ASM/JMCoercions.ma". let rec foldl_strong_internal (A: Type[0]) (P: list A → Type[0]) (l: list A) (H: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd])) (prefix: list A) (suffix: list A) (acc: P prefix) on suffix: l = prefix @ suffix → P(prefix @ suffix) ≝ match suffix return λl'. l = prefix @ l' → P (prefix @ l') with [ nil ⇒ λprf. ? | cons hd tl ⇒ λprf. ? ]. [ > (append_nil ?) @ acc | applyS (foldl_strong_internal A P l H (prefix @ [hd]) tl ? ?) [ @ (H prefix hd tl prf acc) | applyS prf ] ] qed. definition foldl_strong ≝ λA: Type[0]. λP: list A → Type[0]. λl: list A. λH: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd]). λacc: P [ ]. foldl_strong_internal A P l H [ ] l acc (refl …). let rec foldr_strong_internal (A:Type[0]) (P: list A → Type[0]) (l: list A) (H: ∀prefix,hd,tl. l = prefix @ [hd] @ tl → P tl → P (hd::tl)) (prefix: list A) (suffix: list A) (acc: P [ ]) on suffix : l = prefix@suffix → P suffix ≝ match suffix return λl'. l = prefix @ l' → P (l') with [ nil ⇒ λprf. acc | cons hd tl ⇒ λprf. H prefix hd tl prf (foldr_strong_internal A P l H (prefix @ [hd]) tl acc ?) ]. applyS prf qed. lemma foldr_strong: ∀A:Type[0]. ∀P: list A → Type[0]. ∀l: list A. ∀H: ∀prefix,hd,tl. l = prefix @ [hd] @ tl → P tl → P (hd::tl). ∀acc:P [ ]. P l ≝ λA,P,l,H,acc. foldr_strong_internal A P l H [ ] l acc (refl …). lemma pair_destruct: ∀A,B,a1,a2,b1,b2. pair A B a1 a2 = 〈b1,b2〉 → a1=b1 ∧ a2=b2. #A #B #a1 #a2 #b1 #b2 #EQ destruct /2/ qed.