include "basics/types.ma". definition option_map : ∀A,B:Type[0]. (A → B) → option A → option B ≝ λA,B,f,o. match o with [ None ⇒ None B | Some a ⇒ Some B (f a) ]. lemma option_map_none : ∀A,B,f,x. option_map A B f x = None B → x = None A. #A #B #f * [ // | #a #E whd in E:(??%?); destruct ] qed. lemma option_map_some : ∀A,B,f,x,v. option_map A B f x = Some B v → ∃y. x = Some ? y ∧ f y = v. #A #B #f * [ #v normalize #E destruct | #y #v normalize #E %{y} destruct % // ] qed. lemma refute_none_by_refl : ∀A,B:Type[0]. ∀P:A → B. ∀Q:B → Type[0]. ∀x:option A. ∀H:x = None ? → False. (∀v. x = Some ? v → Q (P v)) → Q (match x return λy.x = y → ? with [ Some v ⇒ λ_. P v | None ⇒ λE. match H E in False with [ ] ] (refl ? x)). #A #B #P #Q * [ #H cases (H (refl ??)) | #a #H #p normalize @p @refl ] qed.