include "basics/logic.ma". include "common/AST.ma". include "common/CostLabel.ma". include "common/FrontEndOps.ma". include "common/Registers.ma". include "ASM/Vector.ma". include "common/Graphs.ma". inductive statement : Type[0] ≝ | St_skip : label → statement | St_cost : costlabel → label → statement | St_const : register → constant → label → statement | St_op1 : unary_operation → register → register → label → statement (* destination source *) | St_op2 : binary_operation → register → register → register → label → statement (* destination source1 source2 *) | St_load : memory_chunk → register → register → label → statement | St_store : memory_chunk → register → register → label → statement | St_call_id : ident → list register → option register → label → statement | St_call_ptr : register → list register → option register → label → statement | St_tailcall_id : ident → list register → statement | St_tailcall_ptr : register → list register → statement | St_cond : register → label → label → statement | St_jumptable : register → list label → statement | St_return : statement . definition labels_P : (label → Prop) → statement → Prop ≝ λP,s. match s with [ St_skip l ⇒ P l | St_cost _ l ⇒ P l | St_const _ _ l ⇒ P l | St_op1 _ _ _ l ⇒ P l | St_op2 _ _ _ _ l ⇒ P l | St_load _ _ _ l ⇒ P l | St_store _ _ _ l ⇒ P l | St_call_id _ _ _ l ⇒ P l | St_call_ptr _ _ _ l ⇒ P l | St_tailcall_id _ _ ⇒ True | St_tailcall_ptr _ _ ⇒ True | St_cond _ l1 l2 ⇒ P l1 ∧ P l2 | St_jumptable _ ls ⇒ All ? P ls | St_return ⇒ True ]. lemma labels_P_mp : ∀P,Q. (∀l. P l → Q l) → ∀s.labels_P P s → labels_P Q s. #P #Q #H * /3/ #r #l #l' * /3/ qed. definition labels_present : graph statement → statement → Prop ≝ λg,s. labels_P (present ?? g) s. definition graph_closed : graph statement → Prop ≝ λg. ∀l,s. lookup ?? g l = Some ? s → labels_present g s. record internal_function : Type[0] ≝ { f_labgen : universe LabelTag ; f_reggen : universe RegisterTag ; f_result : option (register × typ) ; f_params : list (register × typ) ; f_locals : list (register × typ) ; f_stacksize : nat ; f_graph : graph statement ; f_closed : graph_closed f_graph ; f_entry : Σl:label. present ?? f_graph l ; f_exit : Σl:label. present ?? f_graph l }. (* Note that the global variables will be initialised by the code in main by this stage, so the only initialisation data is the amount of space to allocate. *) definition RTLabs_program ≝ program (λ_.fundef internal_function) nat.