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Abstract We discuss the problem of building a compiler which can [lift in a provably correct
way informations on the execution cost of the object code to cost annotations on the source
code. To this end, we need a clear and flexible picture of: (i) the meaning of cost annotations,
(ii) the method to prove them sound and precise, and (iii) the way such proofs can be composed.
We propose two approaches to these three questions which we name direct and labelling. As
a first step, we examine their application to a toy compiler. For this simple framework, we
provide a completely formal development which has been partly checked with the Coq proof
assistant. This formal study suggests that the labelling approach, unlike the direct one, has
good compositionality and scalability properties. In order to provide further evidence for this
claim, we report our successful experience in implementing and testing the labelling approach
on top of a prototype compiler written in ocaml for (a large fragment of) the C language.
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1 Introduction

The formal description and certification of software components is reaching a certain level of
maturity with impressing case studies ranging from compilers to kernels of operating systems.
A well-documented example is the proof of functional correctness of a moderately optimising
compiler from a large subset of the C language to a typical assembly language of the kind used
in embedded systems [8].

In the framework of the Certified Complexity (CerCo) project [2], we aim to refine this line
of work by focusing on the issue of the execution cost of the compiled code. Specifically, we aim
to build a formally verified C compiler that given a source program produces automatically
a functionally equivalent object code plus an annotation of the source code which is a sound
and precise description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded applications; these
programs are eventually compiled to binaries executable on specific processors. The current
state of the art in commercial products such as Scade [3, 6] is that the reaction time of the
program is estimated by means of abstract interpretation methods (such as those developed
by AbsInt [1, 5]) that operate on the binaries. These methods rely on a specific knowledge
of the architecture of the processor and may require explicit annotations of the binaries to
determine the number of times a loop is iterated (see, e.g., [13] for a survey of the state of the
art).

In this context, our aim is to produce a functionally correct compiler which can lift in a
provably correct way the pieces of information on the execution cost of the binary code to cost
annotations on the source C code. Eventually, we plan to manipulate the cost annotations
with automatic tools such as Frama — C [4].

In order to carry on our project, we need a clear and flexible picture of: (i) the meaning
of cost annotations, (ii) the method to prove them sound and precise, and (iii) the way such
proofs can be composed. Our purpose here is to propose two methodologies addressing these
three questions and to consider their concrete application to a simple toy compiler and to a
moderately optimising C compiler.

1.1 Meaning of cost annotations

The execution cost of the source programs we are interested in depends on their control
structure. Typically, the source programs are composed of mutually recursive procedures and
loops and their execution cost depends, up to some multiplicative constant, on the number of
times procedure calls and loop iterations are performed.

Producing a cost annotation of a source program amounts to:

e cnrich the program with a collection of global cost variables to measure resource con-
sumption (time, stack size, heap size,. . .)

e inject suitable code at some critical points (procedures, loops,...) to keep track of the
execution cost.

Thus producing a cost-annotation of a source program S amounts to build an annotated
program An(S) which behaves as S while self-monitoring its execution cost. In particular,
if we do not observe the cost variables then we expect the annotated program An(S) to be
functionally equivalent to S. Notice that in the proposed approach an annotated program is
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a program in the source language. Therefore the meaning of the cost annotations is automat-
ically defined by the semantics of the source language and tools developed to reason on the
source programs can be directly applied to the annotated programs too.

1.2 Soundness and precision of cost annotations

Suppose we have a functionally correct compiler C that associates with a program .S in the
source language a program C(.5) in the object language. Further suppose we have some obvious
way of defining the execution cost of an object code. For instance, we have a good estimate of
the number of cycles needed for the execution of each instruction of the object code. Now the
annotation of the source program An(S) is sound if its prediction of the execution cost is an
upper bound for the ‘real’ execution cost. Moreover, we say that the annotation is precise if
the difference between the predicted and real execution costs is bounded by a constant which
depends on the program.

1.3 Compositionality

In order to master the complexity of the compilation process (and its verification), the com-
pilation function C must be regarded as the result of the composition of a certain number of
program transformations C = C o --- o C;. When building a system of cost annotations on
top of an existing compiler a certain number of problems arise. First, the estimated cost of
executing a piece of source code is determined only at the end of the compilation process.
Thus while we are used to define the compilation functions C; in increasing order (from left to
right), the annotation function An is the result of a progressive abstraction from the object to
the source code (from right to left). Second, we must be able to foresee in the source language
the looping and branching points of the object code. Missing a loop may lead to unsound cost
annotations while missing a branching point may lead to rough cost predictions. This means
that we must have a rather good idea of the way the source code will eventually be compiled
to object code. Third, the definition of the annotation of the source code depends heavily on
contextual information. For instance, the cost of the compiled code associated with a simple
expression such as x + 1 will depend on the place in the memory hierarchy where the variable
x is allocated.

1.4 Direct approach to cost annotations

A first ‘direct’ approach to the problem of building cost annotations is summarised by the
following diagram.

C C
Ly ——= Ly o = Ly
lAm J{Am lA”k+1
L4 Lo L1

With respect to our previous discussion, L; is the source language with the related an-
notation function An; while Lgy1 is the object language with a related annotation Ang,1.
This annotation of the object code is supposed to be truly straightforward and it is taken as
an ‘axiomatic’ definition of the ‘real’ execution cost of the program. The languages L;, for
2 < i < k, are intermediate languages which are also equipped with increasingly ‘realistic’
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annotation functions. Suppose we denote with S the source program, with C(S) the compiled
program, and that we write (P,s) | s’ to mean that the (source or object) program P in
the state s terminates successfully in the state s’. The soundness proof of the compilation
function guarantees that if (S,s) | s’ then (C(S),s) | s’. In the direct approach, the proof of
soundness of the cost annotations amounts to lift the proof of functional equivalence of the
source program and the object code to a proof of ‘quasi-equivalence’ of the respective instru-
mented codes. Suppose we write s[c/cost] for a state that associates ¢ with the cost variable
cost. Then what we want to show is that whenever (Anq(S), s[¢/cost]) || §'[¢/cost] we have
that (Angy1(C(S)), s[d/cost]) | §'[d'/cost] and |d' — d| < |¢ — ¢| + k. This means that the
increment in the annotated source program bounds up to an additive constant the increment
in the annotated object program. We will also say that the cost annotation is precise if we can
also prove that | — ¢| < |d' — d|, i.e., the ‘estimated’ cost is not too far away from the ‘real’
one. We will see that while in theory one can build sound and precise annotation functions,
in practice definitions and proofs become unwieldy.

1.5 Labelling approach to cost annotations

The ‘labelling’ approach to the problem of building cost annotations is summarized in the
following diagram.

Ly
IT
e Ch eriq10C = Cioer;
Ll,f — LQ,E e s L]g+1,£ errol = idr,
\
ﬁl‘ﬂ \ ery ierg J{emﬂ_l Any = IoL
\ // Cl ck
Li—— 1Ly e ——= L

For each language L; considered in the compilation process, we define an extended labelled
language L;, and an extended operational semantics. The labels are used to mark certain
points of the control. The semantics makes sure that whenever we cross a labelled control
point a labelled and observable transition is produced.

For each labelled language there is an obvious function er; erasing all labels and producing a
program in the corresponding unlabelled language. The compilation functions C; are extended
from the unlabelled to the labelled language so that they enjoy commutation with the erasure
functions. Moreover, we lift the soundness properties of the compilation functions from the
unlabelled to the labelled languages and transition systems.

A labelling L of the source language L, is just a function such that ery, o £ is the identity
function. An instrumentation I of the source labelled language L, is a function replacing
the labels with suitable increments of, say, a fresh cost variable. Then an annotation Anq
of the source program can be derived simply as the composition of the labelling and the
instrumentation functions: Any =Z o L.

As for the direct approach, suppose s is some adequate representation of the state of a
program. Let S be a source program and suppose that its annotation satisfies the following
property:

(An1(S), s[c/cost]) | s'[c + 8§/ cost] (1)
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where § is some non-negative number. Then the definition of the instrumentation and the
fact that the soundness proofs of the compilation functions have been lifted to the labelled
languages allows to conclude that

(C(L(S)), s[c/cost]) I (s'[c/ cost], \) (2)

where C = Cj0---0C; and A is a sequence (or a multi-set) of labels whose ‘cost’ corresponds
to the number § produced by the annotated program. Then the commutation properties of
erasure and compilation functions allows to conclude that the erasure of the compiled labelled
code ery41(C(L(S))) is actually equal to the compiled code C(S) we are interested in. Given
this, the following question arises:

Under which conditions the sequence A, i.e., the increment J, is a sound and
possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in is some kind
of assembly code and its control flow can be easily represented as a control flow graph. The
fact that we have to prove the soundness of the compilation functions means that we have
plenty of pieces of information on the way the control flows in the compiled code, in particular
as far as procedure calls and returns are concerned. These pieces of information allow to build
a rather accurate representation of the control flow of the compiled code at run time.

The idea is then to perform two simple checks on the control flow graph. The first check is
to verify that all loops go through a labelled node. If this is the case then we can associate a
finite cost with every label and prove that the cost annotations are sound. The second check
amounts to verify that all paths starting from a label have the same cost. If this check is
successful then we can conclude that the cost annotations are precise.

1.6 A toy compiler

As a first case study for the two approaches to cost annotations we have sketched, we introduce
a toy compiler which is summarised by the following diagram.

Imp L>Vm o Mips

The three languages considered can be shortly described as follows: Imp is a very sim-
ple imperative language with pure expressions, branching and looping commands, Vm is an
assembly-like language enriched with a stack, and Mips is a Mips-like assembly language with
registers and main memory. The first compilation function C relies on the stack of the Vm
language to implement expression evaluation while the second compilation function C’ allo-
cates (statically) the base of the stack in the registers and the rest in main memory. This is
of course a naive strategy but it suffices to expose some of the problems that arise in defining
a compositional approach (cf. section 1.3).

1.7 A C compiler

As a second, more complex, case study we consider a C compiler we have built in ocaml whose
structure is summarised by the following diagram:

C — Clight — Cminor — RTLAbs (front end)

1
Mips « LIN « LTL + ERTL + RTL (back-end)
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The structure follows rather closely the one of the CompCert compiler. Notable differences
are that some compilation steps are fusioned, that the front-end goes till RTLAbs (rather
than Cminor) and that we target the Mips assembly language (rather than PowerPc). These
differences are contingent to the way we built the compiler. The compilation from C to Clight
relies on the CIL front-end [11]. The one from Clight to RTL has been programmed from scratch
and it is partly based on the Coq definitions available in the CompCert compiler. Finally,
the back-end from RTL to Mips is based on a compiler developed in ocaml for pedagogical
purposes [12]. The main optimisations it performs are common subexpression elimination,
liveness analysis and register allocation, and graph compression.

1.8 Organisation

The rest of the paper is organised as follows. Section 2 describes the 3 languages and the 2
compilation steps of the toy compiler. Section 3 describes the application of the direct approach
to the toy compiler and points out its limitations. Section 4 describes the application of the
labelling approach to the toy compiler. Section 5 provides some details on the structure of
the C compiler we have implemented. Section 6 reports our experience in implementing and
testing the labelling approach on the C compiler. Section 7 summarizes our contribution and
outlines some perspectives for future work. Section B sketches the proofs that have not been
mechanically checked in Coq.

2 A toy compiler
We formalise the toy compiler introduced in section 1.6.

2.1 Imp: language and semantics

The syntax of the Imp language is described below. This is a rather standard imperative
language with while loops and if-then-else.

id w=z|y]... (identifiers)

n u=0|-1]+1]... (integers)

v u=n|true| false (values)

e u=id|nlete (numerical expressions)
b u=e<e (boolean conditions)

S u=skip|id:=e|S;S|if bthen S else S|while bdo S (commands)

P :=prog S (programs)

Let s be a total function from identifiers to integers representing the state. If s is a state,
x an identifier, and n an integer then s[n/x] is the ‘updated’ state such that s[n/z|(z) = n

and s[n/x](y) = s(y) if = # y.

2.2 Big-step semantics

The big-step operational semantics of Imp programs is defined by the following judgements:

(e,s)dv (b,s) v (S,s) s (Ps)ls
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(e,8) bv (,8) (e,s) v (,8)
(v,8) v (z,8) | s(z) (e+es)l (v+z0) (e<e,s)l(v<z)

(B,S)U’U (Slas)‘U’Sl (5275,)“’8”
(skip,s) { s (x:=e,5) | s[v/a] (S1582,5) I s”

(b,s) J true (S,s) s (b,s) | false (S',s) | s
(if b then S else S';s) |} s’ (if b then S else S';s) |} s’

(b, s) | false (b,s) |} true (S;while b do S,s) || s’
(while b do S, s) | s (while b do S,s) | s’

(S,8) I s'
(prog S, s) I s'

Table 1: Big-step operational semantics of Imp

(z:=eK,s) —  (skip, K, s[v/z]) if (e,s) J v
(S;SI7K7S) - (S,S"K,S)
. , (S,K,s) if (b,s) | true
(if b then S else S, K,s) — { S K,s) if (bs) | false

. , (while b do S)- K,s) if (b,s) | true
(while b do 5, K, s) - { sklp, K,s) if (b, s) | false
(skip, S - K, s) - (S,K,s)

Table 2: Small-step operational semantics of Imp commands

and it is described in table 1. We assume that the addition v +z v’ is only defined if v and
v’ are integers and the comparison v <z v’ produces a value true or false only if v and v’ are
integers.

2.3 Small-step semantics

We also introduce an alternative small-step semantics of the Imp language. A continuation K
is a list of commands which terminates with a special symbol halt.

K :=halt| S - K
Table 2 defines a small-step semantics of Imp commands whose basic judgement has the shape:
(S, K,s) = (5, K',5) .

We define the semantics of a program prog S as the semantics of the command S with con-
tinuation halt. We derive a big step semantics from the small step one as follows:

(S,s) I ¢ if (S,halt,s) — --- — (skip, halt, s’) .
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Rule Cli]| =

Ct (i,0,8) = (i +1,n-0,s) cnst(n)

Ct (i,0,8) = (1 +1,s(x) - 0,5) var(z)

CkF (i,n-o,s) = (i+1,0,s[n/z]) setvar(z)
Ct(i,n-n-0,8) = (i+1,(n+zn') o,5) | add

Ct (i,0,8) = (i +k+1,0,s) branch(k)
Ct(iy,n-n-0,5) = (i+1,0,8) bge(k) and n <z n’
Ct (i,n-n-0,8) = (i+k+1,059) bge(k) and n >z n'’

Table 3: Operational semantics Vm programs

2.4 Vm: language and semantics

Following [9], we define a virtual machine Vm and its programming language. The machine

includes the following elements: (1) A fixed code C' (a possibly empty sequence of instructions),

(2) A program counter pc, (3) A store s (as for the source program), (4) A stack of integers o.
We will rely on the following instructions with the associated informal semantics:

cnst(n) push on the stack

var(x) push value x

setvar(x) pop value and assign it to x

add pop 2 values and push their sum

branch(k) jump with offset k

bge(k) pop 2 values and jump if greater or equal with offset k
halt stop computation

In the branching instructions, k is an integer that has to be added to the current program
counter in order to determine the following instruction to be executed. Given a sequence C,
we denote with |C| its length and with C[4] its i** element (the leftmost element being the 0%
element). The operational semantics of the instructions is formalised by rules of the shape:

Ct (i,0,8) — (j,0',8")

and it is fully described in table 3. Notice that Imp and Vm semantics share the same notion
of store. We write, e.g., n - o to stress that the top element of the stack exists and is n. We
will also write (C,s) || s if C'F (0,¢,5) = (i,€, ') and C[i] = halt.

Code coming from the compilation of Imp programs has specific properties that are used
in the following compilation step when values on the stack are allocated either in registers or
in main memory. In particular, it turns out that for every instruction of the compiled code
it is possible to predict statically the height of the stack whenever the instruction is executed.
We now proceed to define a simple notion of well-formed code and show that it enjoys this
property. In the following section, we will define the compilation function from Imp to Vm
and show that it produces well-formed code.

Definition 1 We say that a sequence of instructions C' is well formed if there is a function
h:{0,...,|C|} = N which satisfies the conditions listed in table 4 for 0 <i < |C|—1. In this
case we write C : h.

The conditions defining the predicate C : h are strong enough to entail that h correctly
predicts the stack height and to guarantee the uniqueness of h up to the initial condition.
Proposition 2 (1) IfC:h, C+ (i,0,5) = (4,0', '), and h(i) = |o| then h(j) = |o'|.

(2) If C : h, C: b and h(0) = h/(0) then h =h'.
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Cli]| = Conditions for C : h

cnst(n) or var(z) | h(i+1) = h(z) +1

add h(i) > 2, h(i+1)=h(i)—1

setvar(x) h(i)=1, h(i+1)=0

branch(k) 0<i+k+1<|C|, h(i)=h(i+1)=h(i+k+1)=0
bge(k) 0<i+k+1<|C], h(i)=2, h(i+1)=h(GE+k+1)=0
halt i=|Cl—1, h(i)=h(i+1)=0

Table 4: Conditions for well-formed code
C(z) =var(z)  C(n)=cnst(n) Cle+e')=C(e)-C(e)-add
Cle < € k) =C(e) - C(e') - bge(k)
Clz=e) =C(e) - setvar(x)  C(S;S) =C(S) C(S)

C(if b then S else S") = C(b,k) - C(S) - (branch(k")) - C(S")
where: k= s2(S)+1, k' =s2(9)

C(while b do S) = C(b, k) - C(S) - branch(k")
where: k= sz(S)+1, &k =—(sz(b)+sz(5)+1)

C(prog S) = C(S) - halt
Table 5: Compilation from Imp to Vm

2.5 Compilation from Imp to Vm

In table 5, we define compilation functions C from Imp to Vm which operate on expressions,
boolean conditions, statements, and programs. We write sz(e), sz(b), sz(S) for the number of
instructions the compilation function associates with the expression e, the boolean condition
b, and the statement S, respectively.

2.6 Soundness of compilation for the big-step semantics

We follow [9] for the proof of correctness of the compilation function with respect to the
big-step semantics (see also [10] for a much older reference).

Proposition 3 The following properties hold:
(1) If (e,s) J v then C-C(e) - C' + (i,0,5) = (j,v - 0,5) where i = |C| and j = |C - C(e)|.

(2) If (b, s) || true then C-C(b, k)-C' & (i,0,5) = (j+k,0,5) wherei = |C| and j = |C-C(b, k)|.
(3) If (b,s) || false then C-C(b,k)-C" F (i,0,8) = (j,0,8) where i = |C| and j = |C-C(b, k)|.
(4) If (S,s) |} s' then C-C(S)-C"F (i,0,5) = (j,0,5") where i =|C| and j = |C - C(e)|.

2.7 Soundness of compilation for the small-step semantics

We prove soundness with respect to the small step semantics too. To this end, given a Vm

code C, we define an ‘accessibility relation’ <, as the least binary relation on {0,...,|C| —1}
such that:
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Cli] = branch(k) (i+k+1)5j

i i

We also introduce a ternary relation R(C,i, K) which relates a Vm code C, a number
i € {0,...,]C| — 1} and a continuation K. The intuition is that relative to the code C, the
instruction ¢ can be regarded as having continuation K. Formally, the relation R is defined
as the least one that satisfies the following conditions.

C

i~i C=C1-C(S)-Ca
i< j  Clj] = halt i =1Ci| j=1|Ci-C(S)| R(C,j,K)
R(C, i, halt) R(C,i,S - K)

We can then state the correctness of the compilation function as follows.

Proposition 4 If (S, K,s) — (S, K',s') and R(C,i,S - K) then C \ (i,0,s) = (j,0,5") and
R(C,j,S" - K').

2.8 Compiled code is well-formed

As announced, we can prove that the result of the compilation is a well-formed code.
Proposition 5 For any expression e, statement S, and program P the following holds:

(1) For any n € N there is a unique h such that C(e) : h, h(0) = n, and h(|C(e)|) = h(0) + 1.

(2) For any S, there is a unique h such that C(S) : h, h(0) =0, and h(|C(e)|) = 0.
(3) There is a unique h such that C(P) : h.

2.9 Mips: language and semantics

We consider a Mips-like machine [7] which includes the following elements: (1) a fixed code
M (a sequence of instructions), (2) a program counter pe, (3) a finite set of registers including

the registers A, B, and Ry, ..., Ry_1, and (4) an (infinite) main memory which maps locations
to integers.
We denote with R, R, ... registers, with [,I’,... locations and with m,m’,... memories

which are total functions from registers and locations to (unbounded) integers. We will rely
on the following instructions with the associated informal semantics:

loadi R,n store value n in the register R

load R,! store contents of location [ in the register R

store R, store contents of register R in the location [

add R, R, R’ add contents of R’, R” and store it in R

branch k jump with offset k

bge R, R, k jump with offset k if contents R greater or equal than contents R’
halt stop computation

We denote with M a list of instructions. The operational semantics is formalised in table
6 by rules of the shape:
M (i,m) — (j,m)

where M is a list of Mips instructions, 7, j are natural numbers and m,m’ are memories. We
write (M, m) |} m’ if M (0,m) = (j,m') and M[j] = halt.
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Rule Mli] =

M+ (i,m) — (i + 1,m[n/R]) loadi R,n

MFE (i,m) = (i + 1,m[m(l)/R)]) load R,

M (i,m) — (i+1,m[m(R)/l])) store R, !

Mt (i,m) = (i + 1,m[m(R') + m(R")/R]) | add R, R', R"”

ME(i,m)— (i+k+1,m) branch k

M F (i,m) = (i + 1,m) bge R, R',k and m(R) <z m(R’)
Mt (i,m) = (i+k+1,m) bge R, R',k and m(R) >z m(R')

Table 6: Operational semantics Mips programs

2.10 Compilation from Vm to Mips

In order to compile Vm programs to Mips programs we make the following hypotheses. (1)
For every Vm program variable x we reserve an address [, (2) For every natural number
h > b, we reserve an address [, (the addresses l,,lp,... are all distinct), (3) We store the
first b elements of the stack o in the registers Ry, ..., Ry—1 and the remaining (if any) at the
addresses lp, lp+1, - - ..

We say that the memory m represents the stack o and the store s, and write m ||-o, s, if
the following conditions are satisfied: (1) s(z) = m(l;), and (2) if 0 < i < |o| then

L m(R) ifi<b
“M_{m(zi) if i > b

The compilation function C’ from Vm to Mips is described in table 7. It operates on a well-
formed Vm code C whose last instruction is halt. Hence, by proposition 5(3), there is a unique
h such that C : h. We denote with C'(C) the concatenation C'(0,C)---C'(|C| —1,C). Given a
well formed Vm code C with ¢ < |C| we denote with p(i, C') the position of the first instruction
in C’(C) which corresponds to the compilation of the instruction with position 7 in C. This is
defined as:!

p(i,C) = Bo<j<id(z, C), (3)
where the function d(i, C) is defined as follows:
d(i, C) = |C'(i, )] . (4)

Hence d(i,C) is the number of Mips instructions associated with the i instruction of the
(well-formed) C' code.
The functional correctness of the compilation function can then be stated as follows.

Proposition 6 Let C : h be a well formed code. If C' \ (i,0,8) = (j,0',s") with h(i) = |o]
and m ||-0, s then C'(C) + (p(i,C),m) = (p(4,C),m') and m'|~o’,s'.
3 Direct approach for the toy compiler

We apply the direct approach discussed in section 1.4 to the toy compiler which results in the
following diagram:

!There is an obvious circularity in this definition that can be easily eliminated by defining first the function
d following the case analysis in table 7, then the function p as in (3), and finally the function C’ as in table 7.
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Cli] = C'(i
cnst(n) Ioad| R, n ifh="h()<b
" Ioadl A,n) - (store A,l,) otherwise
(@) (load Ry, s ifh="h()<b
vane Ioad A,lg) - (store A 1) otherwise
(add Ry Q,Rh 2, Rp— 1) ifhzh(i)<(b—1)
" (load A, I 1 -(add Ry_2, Rn_2, A) if h=h(i)=(b—1)
2 (load A,1n_1) - (load B, lh_») if ho=h(i) > (b—1)
(add A, B, A) - (store A, ln_2)
setvar(z) (store Rp—1 lz) ifh="h(i)<b
Ioad A, lp—1) - (store A,ly) ifh=h()>Db
branch(k) | (branch k') if k' =p(i+k+1,C)—p(i+1,0)
(bge Rh_2, Rn_1,K) if h=h(i) < (b—1)
bgek) (load A,ln_1) - (bge Rn_2, A, ) if h=h(i) = (b—1)
€ (load A,l,_2) - (load B,l;_1) - (bge A, B,k') if h="h(i) > (b—1) and
EF=pi+k+1,C)—pi+1,0)
halt halt

Table 7: Compilation from Vm to Mips

Imp L>Vm <, Mips

lAnlmp lAan lAnMips

Imp Vm Mips

3.1 Mips and Vm cost annotations

The definition of the cost annotation Anmips(M) for a Mips code M goes as follows assuming
that all the Mips instructions have cost 1.

1. We select fresh locations .y, 14, g not used in M.

2. Before each instruction in M we insert the following list of 8 instructions whose effect is
to increase by 1 the contents of location [ yg:

(store A,l4) - (store B,lg) - (loadi A,1) - (load B,lcost)-
(add A, A, B) - (store A,lcost) - (load A,l4) - (load B,lp) .

3. We update the offset of the branching instructions according to the map k — (9 - k).

The definition of the cost annotation Anyy,(C) for a well-formed Vm code C' such that
C' : h goes as follows.

1. We select a fresh cost variable not used in C.
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] = | cnst(n) or var(x) add setvar(z) branch(k) bge(k) halt
i) = | 2 4 2 1 3 1

Table 8: Upper bounds on the cost of Vm instructions

2. Before the instruction i in C, we insert the following list of 4 instructions whose effect is
to increase the cost variable by the maximum number x(C/[i]) of instructions associated
with C[i] (as specified in table 8):

(cnst(x(C14)))) - (var(cost)) - (add) - (setvar(cost)) .

3. We update the offset of the branching instructions according to the map k — (5 - k).

To summarise, the situation is that the instruction ¢ of the Vm code C' corresponds to: the
instruction 5 - i + 4 of the annotated Vm code Anyny,(C), the instruction p(i, C') of the Mips
code C'(C), and the instruction 9 - p(i,C') + 8 of the instrumented Mips code Anmips(C'(C)).

The following lemma describes the effect of the injected sequences of instructions.

Lemma 7 The following properties hold:

(1) If M is a Mips instruction then Cy - Anips(M) - Co = (|C1|, m[c/lcost]) — (|C1| + 8, m[c+
1/lcost7 m(A)/lAv m(B)/lBD

(2) If C is a Vm instruction then Cy - Anym(C) - Cy - (|C1], 0, s[c/ cost]) = (|C1| + 4, 0, s[c +
k(C[i])/ cost]), where i = |C].

The simulation proposition 6 is extended to the annotated codes as follows where we write
—F for the relation obtained by composing k times the reduction relation —.

Proposition 8 Let C : h be a well-formed code. If Anym(C) = (5-i,0,58) =5 (5-j,0',5),
m|~o,s, and h(i) = |o| then Anmips(C'(C)) F (9 - p(i,C),m) = (9 - p(j,C),m"), with
m/[s'(cost) [lcost] |0, 8" and

m (leost) — M(leost) < 8'(cost) — s(cost) .

3.2 Imp cost annotation

The definition of the cost annotation Animp(P) for an Imp program P is defined in table 9 and
it relies on an auxiliary function x which provides an upper bound on the cost of executing
the various operators of the language. For the sake of simplicity, this annotation introduces
two main approrimations:

e [t over-approximates the cost of an if_then_else by taking the maximum cost of the cost
of the two branches.

o It always considers the worst case where the data in the stack resides in the main memory.

We will discuss in section 3.5 to what extent these approximations can be removed.
Next we formulate the soundness of the Imp annotation with respect to the Vm annotation
along the pattern of proposition 3.
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Animp(prog S) cost := cost + K(S); Animp(S)

Animp (skip) = skip

Animp(z 1= €) =z:=e

A”“mp( ) = Anlmp(s)? Anlmp(S/)

Animp(if b then S else S’) = (if b then Animp(S)

else Animp(S"))

Anjmp(while b do S) = (while b do cost := cost + k(b) + k(S) + 1; Animp(5))
k(skip) =0 k(z :=e) = k(e) + k(setvar)
k(S;8") = k(S) + K(S") k(if b then S else S") = k(b) + maz(k(S) + x(branch), k(S"))
k(while b do S) = k(b)
k(e <€) =rk(e) +r(e') + r(bge) r(e+e')=r(e)+r(e)+ r(add)
r(n) = k(cnst) k(x) = K(var)

Table 9: Annotation for Imp programs
Proposition 9 The following properties hold.
(1) If (e,s) |} v then
C - Anym(C(e)) - C" F (i,0,5[c/ cost]) = (j,v - 0, s[c + k(e)/ cost])

where i = |C|, j = |C - Anvm(C(e))].
(2) If (b,s) | true then

C - Anym(C(b,k)) - C" F (i, 0, 8]c/cost]) = (5 k + j, 0, s[c + k(b)/ cost])

where i = |C|, j = |C - Anym(C(b, k))|.
(3) If (b,s) | false then

C - Anym(C(b,k)) - C" F (i, 0,8[c/cost]) = (§, 0, s[c + r(D)/ cost])

where i = |C|, j = |C - Anym(C(b, k))|.
(4) If (Animp(S), slc/ cost]) I s'[¢/ cost] then

C - Anym(C(S)) - C" + (i, 0,5[d/ cost]) = (j, 0, s'[d’/ cost])
where i = |C], j = |C - Anym(C(S))|, and (d' —d) < (¢ — ¢) + K(S).

3.3 Composition

The soundness of the cost annotations can be composed so as to obtain the soundness of the
cost annotations of the source program relatively to the one of the object code.

Proposition 10 If (Anmp(P), s[0/cost]) | s'[c'/cost] and m |—€, 5[0/lcost] then
(Anmips(C'(C(P))),m) 4 m/

where m' (leost) < ¢ and m'[d [1cost] [|-€, '[!/ cost].
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3.4 Coq development

We have formalised and mechanically checked in C0OQ the application of the direct approach
to the toy compiler (but for propositions 8 and 10 for which we provide a ‘paper proof’ in
the appendix). By current standards, this is a small size development including 1000 lines of
specifications and 4000 lines of proofs. Still there are a couple of points that deserve to be
mentioned. First, we did not find a way of re-using the soundness proof of the compiler in a
modular way. As a matter of fact, the soundness proof of the annotations is intertwined with
the soundness proof of the compiler. Second, the manipulation of the cost variables in the
annotated programs entails a significant increase in the size of the proofs. In particular, the
soundness proof for the compilation function C from Imp to Vm available in [9] is roughly 7
times smaller than the soundness proof of the annotation function of the Imp code relatively
to the one of the Vm code.

3.5 Limitations of the direct approach

As mentioned in section 3.2, the annotation function for the source language introduces some
over-approximation thus failing to be precise. On one hand, it is easy to modify the definitions
in table 9 so that they compute the cost of each branch of an if_then_else separately rather
than taking the maximum cost of the two branches. On the other hand, it is rather difficult
to refine the annotation function so that it accounts for the memory hierarchy in the Mips
machine; one needs to pass to the function x an ‘hidden parameter’ which corresponds to the
stack height. This process of pushing hidden parameters into the definition of the annotation is
error prone and it seems unlikely to work in practice for a realistic compiler. We programmed
sound (but not precise) cost annotations for the C compiler introduced in section 1.7 and
found that the approach is difficult to test because an over-approximation of the cost at some
point may easily compensate an under-approximation somewhere else. By contrast, in the
labelling approach introduced in section 1.5, we manipulate costs at an abstract level as labels
and produce numerical values only at the very end of the construction.

4 Labelling approach for the toy compiler

We apply the labelling approach introduced in section 1.5 to the toy compiler which results
in the following diagram.

Imp

IT eryvmoC = Co €T mp

Impé L> sz i> MipSé €T Mips © ¢ = C O €r'Vm

1) €T lmp © L = 1dmp
E( jerlmp \Lervm / lerMips Anlmp _ Tol

Imp € > Vm—E Mips

4.1 Labelled Imp

We extend the syntax so that statements and boolean conditions in while loops can be labelled.
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lb
S

l:b (labelled boolean conditions)
...|£:S|while b do S (labelled commands)

For instance ¢ : (while ¢ : (n < ) do £ : S) is a labelled command. Also notice that the
definition allows labels in commands to be nested as in £ : (¢' : (z := e)), though this feature
is not really used. The evaluation predicate |} on labelled boolean conditions is extended as
follows:

(b,s) Y v
(:b,5) ¥ (v, 0) (5)

So a labelled boolean condition evaluates into a pair composed of a boolean value and a
label. The small step semantics of statements defined in table 2 is extended as follows.

(t: S, K,s) L (S,K,s)

. ¢ (S, (while Ib do S); K,s) if (Ib,s) | (true, )
(while lb do S, K. 5) — { (skip, K., ) if (1b, s) | (false, ¢)

We denote with X\, \,... finite sequences of labels. In particular, we denote with € the
empty sequence and identify an unlabelled transition with a transition labelled with e. Then
the small step reduction relation we have defined on statements becomes a labelled transition
system. There is an obvious erasure function erjm, from the labelled language to the unlabelled
one which is the identity on expressions, removes labels from labelled boolean conditions and
is the identity on unlabelled ones, and traverses commands removing all labels. We derive a
labelled big-step semantics as follows:

(S,5) U (s, A) if (S, halt,s) 25 -+ 225 (skip, halt, s’) and A = Ay -+ Ay .

4.2 Labelled Vm

We introduce a new instruction nop(¢) whose semantics is defined as follows:

Ct (i,o,8) 5 (i+1,0,8)  if C[i] = nop(¢) .

The erasure function ery,, amounts to remove from a Vm code C all the nop(¢) instructions
and recompute jumps accordingly. Specifically, let n(C, 1, j) be the number of nop instructions
in the interval [¢, j]. Then, assuming C[i] = branch(k) we replace the offset k with an offset &’
determined as follows:

o { k=n(Ciit k) if k>0
T\ k+n(Ci+1+ki) ifk<0
The compilation function C is extended to Imp, by defining:

C(L:bk) = (nop(d))-C(bk) C(€:S) = (nop(£))-C(S) .

Proposition 11 For all commands S in Imp, we have that:
(1) ervm(C(S5)) = C(erimp(S5))-
(2) If (S,s) b (s',A) then (C(S),s) b (', A).
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Remark 12 In the current formulation, a sequence of transitions A in the source code must
be simulated by the same sequence of transitions in the object code. However, in the actual
computation of the costs, the order of the labels occurring in the sequence is immaterial.
Therefore one may consider a more relaxed notion of simulation where A is a multi-set of
labels.

4.3 Labelled Mips

The labelled extension of Mips is similar to the one of Vm. We add an instruction nop ¢ whose
semantics is defined as follows:

Mb (i,m) 5 (i4+1,m) if M[i] = (nop ¢) .

The erasure function erwips is also similar to the one of Vm as it amounts to remove from
a Mips code all the (nop ¢) instructions and recompute jumps accordingly. The compilation
function C’ is extended to Vmy by simply translating nop(¢) as (nop £):

C'(i,C) = (nop £) if C[i] = nop(¥)

The evaluation predicate for labelled Mips is defined as (M, m) { (m/,\) if M = (0,m) 2,

An

-2 (5,m’), A= A1+ -+ A\, and M[j] = halt. The following proposition relates Vm, code and
its compilation and it is similar to proposition 11.

Proposition 13 Let C be a Vmy code. Then:

(1) ermips(C'(C)) = C'(ervm(C)).
(2) If (C,s) I (', \) and m||—¢, s then (C'(C),m) | (m';\) and m’ e, s’

4.4 Labellings and instrumentations

Assuming a function x which associates an integer number with labels and a distinct variable
cost which does not occur in the program P under consideration, we abbreviate with inc(¢)
the assignment cost := cost + £(¢). Then we define the instrumentation Z (relative to x and
cost) as follows.

Z:S) = inc(€); Z(S)
Z(while £:bdo S) = inc(£);while b do (Z(S); inc(f))

The function 7 just distributes over the other operators of the language. We extend the
function k on labels to sequences of labels by defining x(¢1,...,4,) = k(€1) + -+ + K(Ly).
The instrumented Imp program relates to the labelled one has follows.

Proposition 14 Let S be an Imp, command. If (Z(S), s[c/cost]) |} §'[c4+0/cost] then TN k(N) =
d and (S, slc/cost]) | (s'[¢/ cost], ).

Definition 15 A labelling is a function L from an unlabelled language to the corresponding
labelled one such that er\mp o L is the identity function on the Imp language.

Proposition 16 For any labelling function L, and Imp program P, the following holds:
ermips(C'(C(L(P))) = C'(C(P)) - (6)
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Proposition 17 Given a function k for the labels and a labelling function L, for all pro-
grams P of the source language if (Z(L(P)), s[c/cost]) | s'[c+ &/ cost] and m ||—-s[c/cost] then
(C(C(LP))),m) b (!, A), m |s'[c] cost] and x(A) = 5.

4.5 Sound and precise labellings

With any Mips, code M we can associate a directed and rooted (control flow) graph whose
nodes are the instruction positions {0,...,|M| — 1}, whose root is the node 0, and whose
directed edges correspond to the possible transitions between instructions. We say that a
node is labelled if it corresponds to an instruction nop 4.

Definition 18 A simple path in a Mips, code M is a directed finite path in the graph associ-
ated with M where the first node is labelled, the last node is the predecessor of either a labelled
node or a leaf, and all the other nodes are unlabelled.

Definition 19 A Mips, code M is soundly labelled if in the associated graph the root node 0
1s labelled and there are no loops that do not go through a labelled node.

In a soundly labelled graph there are finitely many simple paths. Thus, given a soundly
labelled Mips code M, we can associate with every label £ a number () which is the maximum
(estimated) cost of executing a simple path whose first node is labelled with ¢. We stress that
in the following we assume that the cost of a simple path is proportional to the number of
Mips instructions that are crossed in the path.

Proposition 20 If M is soundly labelled and (M,m) || (m', \) then the cost of the computa-
tion is bounded by k().

Thus for a soundly labelled Mips code the sequence of labels associated with a computation
is a significant information on the execution cost.

Definition 21 We say that a soundly labelled code is precise if for every label £ in the code,
the simple paths starting from a node labelled with ¢ have the same cost.

In particular, a code is precise if we can associate at most one simple path with every
label.

Proposition 22 If M is precisely labelled and (M, m) || (m’,X) then the cost of the compu-
tation is k().

The next point we have to check is that there are labelling functions (of the source code)
such that the compilation function does produce sound and possibly precise labelled Mips
code. To discuss this point, we introduce in table 10 two labelling functions £, and £, for the
Imp language where the operator new is meant to return fresh labels.

Proposition 23 For all Imp programs P:
(1) C'(C(Ls(P)) is a soundly labelled Mips code.
(2) C(C(LH(P)) is a soundly and precisely labelled Mips code.
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Ls(prog S) = prog £ : Ls(S)

L (skip) = skip

Li(x:=¢€) =z:=e€

L4(8;8") = Ls(5); Ls(S")

Ls(if b then S; else S2) = if b then L£5(S1) else £(S2)
Ls(while b do S) = while b do £: L,(S)

let £ =new in  prog £ : L,(S)

let £ =new in £ : (skip)

let £=new in (£:(x:=¢e)

Ly(S); Lp(S")

let £ = new in if £:bthen £,(S1) else £,(S2)
let £ = new in while £ : b do £L,(S5)

Ly (prog S)
L, (skip)
Lp(z:=e)
Ly(S;8")

L,(if b then S; else S)
Ly (while b do S)

Table 10: Two labellings for the Imp language

For an example of command which is not soundly labelled consider £ : while 0 < x do x :=
x + 1 which when compiled produces a loop that does not go through any label. On the other
hand, for an example of a program which is not precisely labelled consider (while £ : (0 <
x) do z := x + 1). In the compiled code, we find two simple paths associated with the label ¢
whose cost will be quite different in general.

Once a sound and possibly precise labelling £ has been designed, we can determine the
cost of each label and define an instrumentation Z whose composition with £ will produce the
desired cost annotation.

Definition 24 Given a labelling function L for the source language Imp and a program P in
the Imp language, we define an annotation for the source program as follows:

Animp(P) = I(L(P)) .

Proposition 25 If P is a program and C'(C(L(P))) is a sound (sound and precise) labelling
then (Animp(P), slc/cost]) | s'[c + &/ cost] and m ||-s[c/cost] entails that (C'(C(P)),m) | m/,
m’ |l-s'[c/ cost] and the cost of the execution is bound (is exactly) §.

To summarise, producing sound and precise labellings is mainly a matter of designing the
labelled source language so that the labelling is sufficiently fine grained. For instance, in the
toy compiler, the fact that boolean conditions are labelled is instrumental to precision while
the labelling of expressions turns out to be unnecessary.

Besides soundness and precision, a third criteria to evaluate labellings is that they do not
introduce too many unnecessary labels. We call this property economy. There are two reasons
for this requirement. On one hand we would like to minimise the number of labels so that
the source program is not cluttered by too many cost annotations and on the other hand we
would like to maximise the length of the simple paths because in a non-trivial processor the
longer the sequence of instructions we consider the more accurate is the estimation of their
execution cost (on a long sequence certain costs are amortized). In practice, it seems that one
can produce first a sound and possibly precise labelling and then apply heuristics to eliminate
unnecessary labels.
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5 A C compiler

This section gives an informal overview of the compiler, in particular it highlights the main
features of the intermediate languages, the purpose of the compilation steps, and the optimi-
sations.

5.1 Clight

Clight is a large subset of the C language that we adopt as the source language of our compiler.
It features most of the types and operators of C. It includes pointer arithmetic, pointers to
functions, and struct and union types, as well as all C control structures. The main difference
with the C language is that Clight expressions are side-effect free, which means that side-effect
operators (=,+=++,...) and function calls within expressions are not supported. Given a C
program, we rely on the CIL tool [11] to deal with the idiosyncrasy of C concrete syntax and
to produce an equivalent program in Clight abstract syntax. We refer to the CompCert project
[8] for a formal definition of the Clight language. Here we just recall in figure 5.1 its syntax
which is classically structured in expressions, statements, functions, and whole programs. In
order to limit the implementation effort, our current compiler for Clight does not cover the
operators relating to the floating point type float. So, in a nutshell, the fragment of C we
have implemented is Clight without floating point.

5.2  Cminor

Cminor is a simple, low-level imperative language, comparable to a stripped-down, typeless
variant of C. Again we refer to the CompCert project for its formal definition and we just recall
in figure 5.2 its syntax which as for Clight is structured in expressions, statements, functions,
and whole programs.

Translation of Clight to Cminor. As in Cminor stack operations are made explicit, one has
to know which variables are stored in the stack. This information is produced by a static
analysis that determines the variables whose address may be ‘taken’. Also space is reserved
for local arrays and structures. In a second step, the proper compilation is performed: it
consists mainly in translating Clight control structures to the basic ones available in Cminor.

5.3 RTLAbs

RTLADbs is the last architecture independent language in the compilation process. It is a rather
straightforward abstraction of the architecture-dependent RTL intermediate language available
in the CompCert project and it is intended to factorize some work common to the various
target assembly languages (e.g. optimizations) and thus to make retargeting of the compiler
a simpler matter.

We stress that in RTLAbs the structure of Cminor expressions is lost and that this may have
a negative impact on the following instruction selection step. Still, the subtleties of instruction
selection seem rather orthogonal to our goals and we deem the possibility of retargeting easily
the compiler more important than the efficiency of the generated code.
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Expressions:

Statements:

Switch cases:

Variable declarations:

Functions:

Programs:

sSw

dcl ::

Fd ::

id

| n

| sizeof(T)
| op1 a

| @ op2 a

| *a

| a.id

| &a

| (T)a

| aa:a

skip

|la=a

| a = a(a”)

| a(a”)

| s;s

| if a then s else s
| switch a sw
| while a do s
| do s while a
| for(s,a,s) s
| break

| continue

| return a”

| goto 1bl

| bl : s

default : s
| case n: s;sw

(r id)*

7 id(dcl){dcl; s}
| extern 7 id(dcl)

dcl; Fd*;main = id

variable identifier

integer constant

size of a type

unary arithmetic operation
binary arithmetic operation
pointer dereferencing

field access

taking the address of

type cast

conditional expression

empty statement
assignment

function call

procedure call

sequence

conditional

multi-way branch

“while” loop

“do” loop

“for” loop

exit from current loop

next iteration of the current loop
return from current function
branching

labelled statement

default case
labelled case

type and name

internal function
external function

global variables, functions, entry point

Figure 1: Syntax of the Clight language

24
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Signatures:

Expressions:

Statements:

Switch tables:

Functions:

Programs:

sig 1=

thl .=

sig int (int|void)

id

| n

| addrsymbol(id)
| addrstack(d)

| op1 a

| op2 a a

| xla]

| a?a:a

skip

|id=a

| kla] = a

| id" = a(@) : sig

| tailcall a(d) : sig
| return(a’)

| 858

| if @ then s else s
| loop s

| block s

| exit n

| switch a tbl

| 10l : s

| goto lbl

default:exit(n)
| case i: exit(n);tbl

internal sig ididn s

| external id sig

prog (id = data)* (id = Fd)* id

25

arguments and result

local variable

integer constant

address of global symbol
address within stack data
unary arithmetic operation
binary arithmetic operation
memory read

conditional expression

empty statement

assignment

memory write

function call

function tail call

function return

sequence

conditional

infinite loop

block delimiting exit constructs
terminate the (n + 1) enclosing block
multi-way test and exit

labelled statement

jump to a label

internal function: signature, parameters,
local variables, stack size and body
external function

global variables, functions and entry point

Figure 2: Syntax of the Cminor language
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return_type == int | void signature == (int =)* return_type
memg = int8s|int8u | intl6s | intl6u | int32 fun_ref = fun_name | psd_reg
instruction = | skip — node no instruction)

| psd_reg := op(psd-reg™) — node
| psd_reg :== &var_name — node
| psd_reg := &locals[n] — node address of a local)

| psd_reg := fun_name — node address of a function)

(
(operation)
(
E
| psd_reg := memq(psd_reg[psd_reg]) — node Ememory load)
(
(
(
(

address of a global)

| memq(psd_reg[psd_reg]) := psd_reg — node memory store)

| psd_reg := fun_ref (psd_reg®) : signature — node function call)

| fun_ref (psd_reg™) : signature function tail call)
| test op(psd_reg™) — node, node

| return psd_reg? return)

fun_def == fun_name(psd_reg®) : signature
result :psd_reg?
locals :psd_reg™
stack :n
entry :node
exit :node
(node :instruction)*

init_datum = reserve(n) | int8(n) | intl6(n) | int32(n) init_data = init_datum™
global_decl = var var_name{init_data} fun_decl = extern fun_name(signature) | fun_def
program = global_decl™
fun_decl”

Table 11: Syntax of the RTLAbs language

Syntax. In RTLAbs, programs are represented as control flow graphs (CFGs for short).
We associate with the nodes of the graphs instructions reflecting the Cminor commands. As
usual, commands that change the control flow of the program (e.g. loops, conditionals) are
translated by inserting suitable branching instructions in the CFG. The syntax of the language
is depicted in table 11. Local variables are now represented by pseudo registers that are
available in unbounded number. The grammar rule op that is not detailed in table 11 defines
usual arithmetic and boolean operations (+, xor, <, etc.) as well as constants and conversions
between sized integers.

Translation of Cminor to RTLAbs. Translating Cminor programs to RTLAbs programs
mainly consists in transforming Cminor commands in CFGs. Most commands are sequen-
tial and have a rather straightforward linear translation. A conditional is translated in a
branch instruction; a loop is translated using a back edge in the CFG.
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size o=

Byte | HalfWord | Word

fun_ref =

27

fun_name | psd_reg

instruction = | skip — node (no instruction)
| psd_reg :== n — node (constant)
| psd_reg := unop(psd_reg) — node (unary operation)
| psd_reg := binop(psd_reg, psd_reg) — node (binary operation)
| psd_reg := &globals[n] — node (address of a global)
| psd_reg := &locals[n] — node (address of a local)
| psd_reg := fun_name — node (address of a function)
| psd_reg := size(psd_reg[n]) — node (memory load)
| size(psd_regn]) := psd_reg — node (memory store)
| psd_reg := fun_ref (psd_reg*) — node (function call)
| fun_ref (psd_reg™) (function tail call)
| test uncon(psd-reg) — node, node (branch unary condition)
| test bincon(psd_reg, psd_reg) — node, node (branch binary condition)
| return psd_reg? (return)
fun_def == fun_name(psd_reg") program = globals:n
result :psd_reg? Sfun_def™
locals :psd_reg™
stack :n
entry :node
exit :node
(node :instruction)*
Table 12: Syntax of the RTL language
5.4 RTL

As in RTLAbs, the structure of RTL programs is based on CFGs. RTL is the first architecture-
dependant intermediate language of our compiler which, in its current version, targets the
Mips assembly language.

Syntax. RTL is very close to RTLAbs. It is based on CFGs and explicits the Mips instruc-
tions corresponding to the RTLAbs instructions. Type information disappears: everything is
represented using 32 bits integers. Moreover, each global of the program is associated to an
offset. The syntax of the language can be found in table 12. The grammar rules unop, binop,
uncon, and bincon, respectively, represent the sets of unary operations, binary operations,
unary conditions and binary conditions of the Mips language.

Translation of RTLAbs to RTL. This translation is mostly straightforward. A RTLAbs
instruction is often directly translated to a corresponding Mips instruction. There are a few
exceptions: some RTLAbs instructions are expanded in two or more Mips instructions. When
the translation of a RTLAbs instruction requires more than a few simple Mips instruction, it
is translated into a call to a function defined in the preamble of the compilation result.

5.5 ERTL

As in RTL, the structure of ERTL programs is based on CFGs. ERTL explicits the calling
conventions of the Mips assembly language.
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size = Byte| HalfWord | Word fun_ref = fun_name | psd_reg

instruction = | skip — node
| NewFrame — node
| DelFrame — node
| psd_reg := stack[slot,n] — node
| stack[slot, n] := psd_reg — node
| hdw_reg := psd_reg — node
| psd_reg := hdw_reg — node
| psd_reg :== n — node
| psd_reg := unop(psd_reg) — node
| psd_reg := binop(psd_reg, psd_reg) — node
| psd_reg := fun_name — node
| psd_reg := size(psd_reg[n]) — node
| size(psd_reg[n]) := psd_reg — node
| fun_ref (n) — node
| fun_ref (n)
| test uncon(psd_reg) — node, node
| test bincon(psd_reg, psd_-reg) — node, node

no instruction)

frame creation)

frame deletion)

stack load)

stack store)

pseudo to hardware)
hardware to pseudo)
constant)

unary operation)

binary operation)
address of a function)
memory load)

memory store)

function call)

function tail call)
branch unary condition)
branch binary condition)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

| return b return)
fun_def == fun_name(n) program = globals: n
locals :psd_reg™ Sfun_def™
stack
entry :node

(node :instruction)™
Table 13: Syntax of the ERTL language

Syntax. The syntax of the language is given in table 13. The main difference between RTL
and ERTL is the use of hardware registers. Parameters are passed in specific hardware registers;
if there are too many parameters, the remaining are stored in the stack. Other conventionally
specific hardware registers are used: a register that holds the result of a function, a register
that holds the base address of the globals, a register that holds the address of the top of the
stack, and some registers that need to be saved when entering a function and whose values
are restored when leaving a function. Following these conventions, function calls do not list
their parameters anymore; they only mention their number. Two new instructions appear
to allocate and deallocate on the stack some space needed by a function to execute. Along
with these two instructions come two instructions to fetch or assign a value in the parameter
sections of the stack; these instructions cannot yet be translated using regular load and store
instructions because we do not know the final size of the stack area of each function. At last,
the return instruction has a boolean argument that tells whether the result of the function
may later be used or not (this is exploited for optimizations).

Translation of RTL to ERTL. The work consists in expliciting the conventions previously
mentioned. These conventions appear when entering, calling and leaving a function, and when
referencing a global variable or the address of a local variable.

Optimizations. A liveness analysis is performed on ERTL to replace unused instructions by
a skip. An instruction is tagged as unused when it performs an assignment on a register that
will not be read afterwards. Also, the result of the liveness analysis is exploited by a register



CerCo, FP7-ICT-2009-C-243881 29

size = Byte| HalfWord | Word fun_ref = fun_name | hdw_reg

no instruction)
frame creation)
frame deletion)
constant)

instruction = | skip = node (
| NewFrame — node (
| DelFrame — node (
| hdw_reg := n — node (
| hdw_reg := unop(hdw_reg) — node (unary operation)
| hdw_reg := binop(hdw_reg, hdw_reg) — node (binary operation)
| hdw_reg := fun_name — node (address of a function)
| hdw_reg := size(hdw_reg[n]) — node (memory load)
| size(hdw_reg[n]) := hdw_reg — node (memory store)
| fun_ref () — node (function call)
| fun_ref () (function tail call)
| test uncon(hdw_reg) — node, node (branch unary condition)
| test bincon(hdw_reg, hdw_reg) — node, node (branch binary condition)
(

| return return)
fun_def == fun_name(n) program = globals: n
locals :n fun_def™
stack n
entry :node

(node :instruction)*
Table 14: Syntax of the LTL language

allocation algorithm whose result is to efficiently associate a physical location (a hardware
register or an address in the stack) to each pseudo register of the program.

5.6 LTL

As in ERTL, the structure of LTL programs is based on CFGs. Pseudo registers are not used
anymore; instead, they are replaced by physical locations (a hardware register or an address
in the stack).

Syntax. Except for a few exceptions, the instructions of the language are those of ERTL
with hardware registers replacing pseudo registers. Calling and returning conventions were
explicited in ERTL; thus, function calls and returns do not need parameters in LTL. The
syntax is defined in table 14.

Translation of ERTL to LTL. The translation relies on the results of the liveness analysis
and of the register allocation. Unused instructions are eliminated and each pseudo register is
replaced by a physical location. In LTL, the size of the stack frame of a function is known;
instructions intended to load or store values in the stack are translated using regular load and
store instructions.

Optimizations. A graph compression algorithm removes empty instructions generated by
previous compilation passes and by the liveness analysis.
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size = Byte| HalfWord | Word fun_ref = fun_name | hdw_reg

frame creation)
frame deletion)
constant)

unary operation)
binary operation)

instruction = | NewFrame (
| DelFrame (
| hdw_reg :=n (
| hdw_reg := unop(hdw _reg) (
| hdw_reg := binop(hdw_reg, hdw_reg) (
| hdw_reg := fun_name (address of a function)
| hdw_reg := size(hdw_reg[n]) (memory load)
| size(hdw_reg[n]) := hdw_reg (memory store)
| call fun_ref (function call)
| tailcall fun_ref (function tail call)
| uncon(hdw_reg) — node (branch unary condition)
| bincon(hdw_reg, hdw_reg) — node (branch binary condition)
(
(
(

| mips_label : Mips label)
| goto mips_label goto)
| return return)
fun_def == fun_name(n) program = globals: n
locals :n Sfun_def™
instruction™

Table 15: Syntax of the LIN language

5.7 LIN

In LIN, the structure of a program is no longer based on CFGs. Every function is represented
as a sequence of instructions.

Syntax. The instructions of LIN are very close to those of LTL. Program labels, gotos and
branch instructions handle the changes in the control flow. The syntax of LIN programs is
shown in table 15.

Translation of LTL to LIN. This translation amounts to transform in an efficient way the
graph structure of functions into a linear structure of sequential instructions.

5.8 Mips

Mips is a rather simple assembly language. As for other assembly languages, a program in Mips
is a sequence of instructions. The Mips code produced by the compilation of a Clight program
starts with a preamble in which some useful and non-primitive functions are predefined (e.g.
conversion from 8 bits unsigned integers to 32 bits integers). The subset of the Mips assembly
language that the compilation produces is defined in table 16.

Translation of LIN to Mips. This final translation is simple enough. Stack allocation and
deallocation are explicited and the function definitions are sequentialized.
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load == Ib|lhw|Iw store = sb|shw|sw fun_ref = fun_name | hdw_reg
instruction = | nop empty instruction)
| i hdw_reg,n constant)

| unop hdw_reg, hdw_reg

| binop hdw_reg, hdw_reg, hdw _reg
| la hdw_reg, fun_name

| load hdw_reg, n(hdw_reg)

| store hdw_reg, n(hdw_reg)

| call fun_ref

| uncon hdw_reg, node

| bincon hdw_reg, hdw_reg, node

unary operation)
binary operation)
address of a function)
memory load)

function call)
branch unary condition)
branch binary condition)

(
(
(
(
(
(
(memory store)
(
(
(
(
(
(

| mips_label : Mips label)
| j mips_label goto)
| return return)
program = globals: n
entry : mips_label”
instruction™

Table 16: Syntax of the Mips language
1. Label the input Clight program.
2. Compile the labelled Clight program in the labelled world. This produces a labelled Mips code.

3. For each label of the labelled Mips code, compute the cost of the instructions under its scope and generate
a label-cost mapping. An unlabelled Mips code — the result of the compilation — is obtained by removing the
labels from the labelled Mips code.

4. Add a fresh cost variable to the labelled Clight program and replace the labels by an increment of this cost

variable according to the label-cost mapping. The result is an annotated Clight program with no label.

Table 17: Building the annotation of a Clight program in the labelling approach

6 Labelling approach for the C compiler

This section informally describes the labelled extensions of the languages in the compilation
chain, the way the labels are propagated by the compilation functions, the labelling of the
source code, the hypotheses on the control flow of the labelled Mips code and the verification
that we perform on it, the way we build the instrumentation, and finally the way the labelling
approach has been tested. The process of annotating a Clight program using the labelling
approach is summarized in table 17 and is detailed in the following sections.

6.1 Labelled Clight and labelled Cminor

Both the Clight and Cminor languages are extended in the same way by labelling both state-
ments and expressions (by comparison, in the toy language Imp we just labelled statements
and boolean conditions). The labelling of expressions aims to capture precisely their execution
cost. Indeed, Clight and Cminor include expressions such as aj?as; a3 whose evaluation cost
depends on the boolean value a;.

As both languages are extended in the same way, the extended compilation does nothing
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more than sending Clight labelled statements and expressions to Cminor labelled statements
and expressions.

6.2 Labels in RTLAbs and the back-end languages

The labelled version of RTLAbs and the languages in the back-end language simply consists
in adding a new instruction whose semantics is to emit a label without modifying the state.
For the CFG based languages (RTLAbs to LTL), this new instruction is emit label — node.
For LIN and Mips, it is emit label. The translation of these label instructions is immediate. In
Mips, we also rely on a reserved label begin_function to pinpoint the beginning of a function
code (cf. section 6.3.6).

6.3 Labelling of the source language

The goal here is to add labels in the source program that cover every reachable instruction of
the program and avoid unlabelled loops; this can be seen as a soundness property. Another
important point is precision, meaning that a label might cover several paths to the next
labels only if those paths have equal costs. Several labellings might satisfy the soundness and
precision conditions, but from an engineering point of view, a labelling that makes obvious
which instruction is under the scope of which label would be better. There is a thin line to
find between too many labels — which may obfuscate the code — and too few labels — which
makes it harder to see which instruction is under the scope of which label. The balance leans
a bit towards the ecomomy of labels because the cost of executing an assembly instruction
often depends on its context (for instance by the status of the cache memory). We explain
our labelling by considering the constructions of Clight and their compilation to Mips.

6.3.1 Sequential instructions

A sequence of Clight instructions that compile to sequential Mips code, such as a sequence of
assignments, can be handled by a single label which covers the unique execution path. The
example below illustrates the labelling of ‘sequential’ Clight instructions.

Clight Labelling, 1 abelled Clight  -S27P1%"°™ Y abelled Mips
i= 0; _cost: emit _cost
tab[i] = x; i=0; 1i  $vo, 4
X++; tab[i] = x; mul $v0, $zero, $vO
X++; add $v0, $al, $vO
sw  $a0, 0($v0)
1i  $vo, 1

add $a0, $a0, $vO

6.3.2 Ternary expressions

Most Clight expressions compile to sequential Mips code. There is one exception: ternary
expressions that introduce a branching in the control flow. Because of the precision condition,
we must associate a label with each branch.
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Labelling Compilation
_—

Clight Labelled Clight Labelled Mips

b ? x+1 : b ? (_costl: x+1) : beq $a0, $zero, c_false
y (-cost2: y) emit _costl
1i $vo, 1
add $vO0, $al, $vO
J exit
c_false:
emit _cost2
move $v0, $a2
exit:

Related cases. The two Clight boolean operations && and || have a lazy semantics: de-
pending on the evaluation of the first argument, the second one might be evaluated or not.
There is an obvious translation to ternary expressions. For instance, the expression x && y
is translated into the expression x7(y?1:0) :0. Our compiler performs this translation before
computing the labelling.

6.3.3 Conditionals

Conditionals are another way to introduce a branching. As for ternary expressions, the la-
belling of a conditional consists in adding a starting label to the labelling of each branch.

Clight Labelling, [ abelled Clight -Z27P1%%™ 1 abelled Mips
if (b) { if (b) { beq $a0, $zero, c_false
x =1; _cost1: emit _costl
o} x = 1; i $vo, 1
else { e} ..
x = 2; else { j exit
} _cost2: c_false:
x = 2; emit _cost2
} i $vo, 2

exit:

6.3.4 Loops

Loops in Clight are guarded by a condition. Following the arguments of the previous cases,
we add two labels when encountering a loop construct: one label to start the loop’s body, and
one label when exiting the loop. This is enough to guarantee that the loop in the compiled
code goes through a label.

Clight Labelling, [ abelled Clight 2222 Tabelled Mips
while (b) { while (b) { loop:
i++; _costl: beq $a0, $zero, exit
e} i++; emit _costl
x =i, . 1i  $vo, 1
_cost2: add $al, $al, $vO
X = 1i; e
j loop
exit:

emit _cost2
move $a2, $al
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6.3.5 Program Labels and Gotos

In Clight, program labels and gotos are intraprocedural. Their only effect on the control flow
of the resulting assembly code is to potentially introduce an unguarded loop. This loop must
contain at least one cost label in order to satisfy the soundness condition, which we ensure by
adding a cost label right after a program label.

Clight Labelling, [ abelled Clight 2224949 T abelled Mips

1bl: 1bl: 1bl:

i++; _cost: emit _cost

o i++; 1i $vo, 1

goto 1bl; add $a0, $a0, $vO

goto 1bl; .
J 1bl

6.3.6 Function calls

Function calls in Mips are performed by indirect jumps, the address of the callee being in
a register. In the general case, this address cannot be inferred statically. Even though the
destination point of a function call is unknown, when the considered Mips code has been
produced by our compiler, we know for a fact that this function ends with a return statement
that transfers the control back to the instruction following the function call in the caller. As
a result, we treat function calls according to the following principles: (1) the instructions of
a function are covered by the labels inside this function, (2) we assume a function call always
returns and runs the instruction following the call.

Principle (1) entails in particular that each function must contain at least one label. To
ensure this, we simply add a starting label in every function definition. The example below
illustrates this point:

Clight Labelling, | abelled Clight 227212 [abelled Mips
void £ () { void £ O { f_start:
£’s body _cost: Frame Creation
} £’s body Initializations
} emit _cost

£’s body
Frame Deletion
return

We notice that some instructions in Mips will be inserted before the first label is emit-
ted. These instructions relate to the frame creation and/or variable initializations, and are
composed of sequential instructions (no branching). To deal with this issue, we take the con-
vention that the instructions that precede the first label in a function code are actually under
the scope of the first label.

Principle (2) is of course an over-approximation of the program behaviour as a function
might fail to return because of an infinite loop. In this case, the proposed labelling remains
correct: it just assumes that the instructions following the function call will be executed, and
takes their cost into consideration. The final computed cost is still an over-approximation of
the actual cost.
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6.4 Verifications on the object code

The labelling previously described has been designed so that the compiled Mips code satisfies
the soundness and precision conditions. However, we do not need to prove this, instead we
have to devise an algorithm that checks the conditions on the compiled code. The algorithm
assumes a correct management of function calls in the compiled code. In particular, when
we call a function we always jump to the first instruction of the corresponding code segment
and when we return we always jump to an an instruction that follows a call. We stress that
this is a reasonable hypothesis that is essentially subsumed by the proof that the object code
simulates the source code.

In our current implementation, we check the soundness and the precision conditions while
building at the same time the label-cost mapping. To this end, the algorithm takes the
following main steps.

e First, for each function a control flow graph is built.

e For each graph, we check whether there is a unique label that is reachable from the root
by a unique path. This unique path corresponds to the instructions generated by the
calling conventions as discussed in section 6.3.6. We shift the occurrence of the label to
the root of the graph.

e By a strongly connected components algorithm, we check whether every loop in the
graphs goes through at least one label.

e We perform a (depth-first) search of the graph. Whenever we reach a labelled node,
we perform a second (depth-first) search that stops at labelled nodes and computes an
upper on the cost of the occurrence of the label. Of course, when crossing a branching
instruction, we take the maximum cost of the branches. When the second search stops
we update the current cost of the label-cost mapping (by taking a maximum) and we
continue the first search.

e Warning messages are emitted whenever the maximum is taken between two different
values as in this case the precision condition may be violated.

6.5 Building the cost annotation

Once the label-cost mapping is computed, instrumenting the labelled source code is an easy
task. A fresh global variable which we call cost variable is added to the source program with
the purpose of holding the cost value and it is initialised at the very beginning of the main
program. Then, every label is replaced by an increment of the cost variable according to the
label-cost mapping. Following this replacement, the cost labels disappear and the result is a
Clight program with annotations in the form of assignments.

There is one final problem: labels inside expressions. As we already mentioned, Clight does
not allow writing side-effect instructions — such as cost increments — inside expressions. To
cope with this restriction, we produce first an instrumented C program — with side-effects in
expressions — that we translate back to Clight using CIL. This process is summarized below.

Labelled Clight } Instrumentation,  Tpstrumented C  —=  Instrumented Clight

label-cost mapping
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6.6 Testing

It is desirable to test the coherence of the labelling from Clight to Mips. To this end, each
labelled language comes with an interpreter that produces the trace of the labels encountered
during the computation. Then, one naive approach is to test the equality of the traces pro-
duced by the program at the different stages of the compilation. Our current implementation
passes this kind of tests. For some optimisations that may re-order computations, a weaker
condition could be considered which consists in abstracting the traces as multi-sets of labels
before comparing them.

7 Conclusion and future work

We have discussed the problem of building a compiler which can [lift in a provably correct
way pieces of information on the execution cost of the object code to cost annotations on the
source code. To this end, we have introduced the so called direct and labelling approaches and
discussed their formal application to a toy compiler. Based on this experience, we have argued
that the second approach has better scalability properties. To substantiate this claim, we have
reported on our successful experience in implementing and testing the labelling approach on
top of a prototype compiler written in ocaml for a large fragment of the C language which can
be shortly described as Clight without floating point.

We discuss next a few directions for future work. First, we plan to test the current compiler
on the kind of C code produced for embedded applications, a typical example being the C code
produced by the compilation of synchronous languages such as Lustre or Esterel. Starting from
the annotated C code, we expect to produce automatically meaningful information on, say, the
reaction time of a given synchronous program. Second, we plan to port the current compiler
to commercial assembly languages. In particular, it would be interesting to target one of the
assembly languages covered by the AbsInt tool so as to obtain more realistic estimations of the
execution cost of sequences of instructions. Third, we plan to formalise and validate in the
Calculus of Inductive Constructions the prototype implementation of the labelling approach
for the C compiler described in section 5. This requires a major implementation effort which
will be carried on in collaboration with our partners of the CerCo project [2]. Fourth, we
plan to study the applicability of the labelling approach to other optimisation techniques in
the realm of the C compilers technology such as loop optimisations, and to other languages
which rely on rather distinct compilation technologies such as a language of the ML family.
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A Assessment of the deliverable within the CerCo project

Following the extensive experiments described in the previous sections, we now feel confident
about the possibility of scaling our approach to a realistic, mildly optimizing, complexity
preserving? compiler for a target architecture of the kind described in the proposal. While
we believe that our approach should scale to a retargetable compiler, in the timeframe of the
European Project and according to the project work-plan we only commit to the investigation
of a compiler having a single target processor.

In particular, we will target the 8051 (also known as 8052 or MCS51) family of processors.
The 8051 is an 8 bit CISC microprocessor introduced in the 1980 by Intel, very popular and
still manufactured by a host of companies, many European. It is widely used in embedded
systems and, thanks to its predictable behaviour and execution cost, it will allow us to compute
fully accurate measurement of the actual computational complexity of O(1) assembly program
slices®, to be manifested at the C level.

With respect to the test-cases previously described, in particular the C compiler for MIPS,
the main difficulty introduced by the 8051 is the non uniform concrete memory model: the
processor has different types of memory (on-chip RAM, external RAM, on-chip and/or external
ROM) that can be accessed using different access modes and pointer types. Moreover, memory
mapped I/0 is heavily used in the design of the chip, to the point that all registers (apart
from the inaccessible program counter) are seen as memory locations and have their own
memory address. To complete the picture, the different memories are split into regions that
may overlap, and the same accessing mode can point to different regions (or even to memory
mapped registers) according to the value of the pointer. Finally, the amount of memory
available is quite limited, with a stack which is at most 80 bytes wide and different speeds
and opcode sizes to access different memory areas. For this reasons, compilers that target
8051 processors usually abound in directives to drive the tool in assigning memory locations
to values.

Hence, because of the peculiar choice of target processor, in the next six months of the
CerCo project and partly as an extension of the original work-plan we will:

e Extend the memory model used so far (and taken from CompCert) to accurately de-
scribe the different memory types and regions of the 8051, as well as to obey to the
volatile directive used to map memory mapped regions to program variables. This
work will be done as part of Tasks T2.3 and T4.1 and the outcome will be described in
Deliverables D2.2 and D4.1 where we will also provide a formalization in Matita of the
executable semantics of the extended memory model. In case we decide to adopt the
same memory model for all compilation phases, as it is done in CompCert, the memory
model extension will also span over Task T3.1, requiring close cooperation between the
front-end formalization (lead by Edinburgh) and the back-end formalization (lead by
Bologna).

e Devise language extensions (possibly inspired by the variable modifiers of the SDCC
compiler) to let the user suggest or force the compiler to put data into particular memory
regions. Similarly, we could refine the pointer types of ANSI C into classes of pointer
types pointing to particular regions, in order to reflect the difference in sizes of pointers

2In the sense of the project proposal.
3In the sense of the project proposal.
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to different regions (8 bits to address internal RAM and memory mapped registers; 8
bits to address bits in the bit memory or in registers using an ad-hoc addressing mode;
16 bits for code memory and external memory; 24 bits for generic pointers). All of
these language extensions, if any, must be reflected all over the compilation chain, with
modifications to the intermediate languages and/or memory model. This work will
be done as part of Tasks T2.3, T3.1 and T4.1 and the outcome will be described in
Deliverables D2.2, D3.1, D3.3, D4.1, D4.3 where we will provide executable semantics
in Matita of the source, target and intermediate languages.

In order to remain compatible with the project schedule, we will first focus on compiling
standard Clight without floating points to the 8051, adding the language extensions in
a second moment, within Task T2.3.

e Modify and extend the experimental compiler from Clight (without floating point) to
MIPS in order to target the 8051 architecture (Task T2.3, Deliverable D2.2).

But for the modifications required by the selection of the target processor (8051), we plan
to rely as much as possible on the architecture and the the intermediate languages described
in this deliverable D2.1.
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B Proofs

B.1 Notation

Let & be a family of reduction relations where ¢ ranges over the set of labels and €. Then we

define:
o (5)* ift=ce
(S)*0 L o(S)*  otherwise
where as usual R* denote the reflexive and transitive closure of the relation R and o denotes
the composition of relations.

B.2 Proof of proposition 4
The following properties are useful.

Lemma 26 (1) The relation S, is transitive.
(2) IfiS% j and R(C,j, K) then R(C,i,K).

The first property can be proven by induction on the definition of < and the second by

induction on the structure of K. Next we can focus on the proposition. The notation C' el
means that ¢ = |C|. Suppose that:

(S,K,s) = (S',K',s') (1) and R(C,:,S-K) (2).
From (2), we know that there exist ¢’ and " such that:

11
7

iSi 3, c=0tes)" ¢y (4), and R(C,i".K) (5)
and from (3) it follows that:

CF (iyo,8) = (i',0,8) (3).
We are looking for j such that:

Ct (i,0,8) = (j,0,8") (6), and R(C,5,8 -K') (7).
We proceed by case analysis on S. We just detail the case of the conditional command as the
the remaining cases have similar proofs. If S = if e; < ey then S else Sy then (4) is rewritten
as follows:

C =1 " Cler) - Clez).bge(k) “ C(S1) " branch(ks) < C(S2) - Ch
where ¢ = a + k1 and i = ¢+ ky. We distinguish two cases according to the evaluation of
the boolean condition. We describe the case (e; < e2) || true. We set j = a.

e The instance of (1) is (S, K, s) — (51, K, s).

e The reduction required in (6) takes the form C + (i,0,5) = (i, 0,5) — (a,0,5'), and it
follows from (3'), the fact that (e; < e3) | true, and proposition 3(2).

e Property (7), follows from lemma 26(2), fact (5), and the following proof tree:

b S i" R(C,i",K)
R(C,b, K
R(C,j, 51 K)

. C .
J~J




CerCo, FP7-ICT-2009-C-243881 41

B.3 Proof of proposition 8

We recall that the compiled code C’'(C) does not read or write the locations lpst, [4, and Ig.
Then we note the following properties.
(@) If Anym(C) - (5-4,0,5) =° (5-4,0',8) then C F (i,0,5) — (4,0, 5'[s(cost)/ cost]).
(b) If M F (i,m) — (j,m') then Anmips(M) F (9-i,m) = (9 §,m/ [m(lcost) + 1/lcost, m(A)/la, m(B)/15]).
Using (a) and the hypothesis, we derive:
CF (i,0,5) — (j, o', s'[s(cost)/ cost])

Then, by proposition 6 and the hypothesis on m we derive:

C'(C) F (p(i,C),m) = (p(4,C),m') and m' ||- o', '[s(cost) / cost] (7)
We perform a case analysis on the instruction C[i] and h(i) to derive:

Anmips(C'(C)) F (9 - (i, C),m) = (9 - p(j, C), m [m(lcost) + d(i, C) /leost, 2/1a, y/1B])

where x and y are respectively the value of 4 and [p in the last intermediate configuration.

The memory realisation. The final memory state is: m/[m(lcost)+d(i, C)/lcost, /14, y/1B].
Then we have to verify:
(m/[m(lcost) + (@, C) [leost, /14, y/18))[8' (cost) [lcost] |- 0", 8"

This is equivalent to:

m'[s'(cost) /leost, /14,y /18] =o', 5" .
Since the realisation predicate does not depend on the locations 4 and [p, we can conclude
using the second part of (7).

The inequation. To conclude, we verify the inequation:

m' [m(Leost) 4+ d(iy C) Leost, T /La, y /18] (Leost) — M(Leost) < 8" (cost) — s(cost) .

By rewriting, we get: d(i,C) < s'(cost) — s(cost). This follows by case analysis of C[i] and
h(i) since, by definition, Any,, uses the worst possible value of d(i, C). O

B.4 Proof of proposition 10

We have P = prog S and by definition, Animp(P) = cost := cost + k(S); Animp(S). With
our simulation hypothesis, we derive (Animp(S), s[k(S)/cost]) || §'[¢/cost]. Using the propo-
sition 9 with C = C' = ¢, d = 0 and o = ¢, we have:
Anvm(C(S)) F (0, ¢,5[0/ cost]) = (| Anvm(C(P))|, €, s'[d'/ cost]) ,
where d' < (¢ — k(S)) + k(S) = . By definition, C(P) = C(S) - halt and |Any,(C(P))| =
5-|C(P)|. We can rewrite the simulation:
Anym(C(P)) F (0,¢, 5[0/ cost]) = (5 - |C(P)|,e,8'[d [ cost]) .
By proposition 5, there is a decoration h such that C(P) : h and h(0) = 0. By iterating

proposition 8, we derive:

Anniips (C'(C(P))) = (9 p(0,C(P)),m) = (9 p(IC(P)],C(P)),m") ,
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with m/[d’ [l cost] || —€, §'[d'/ cost] and m/(Ipst) < d'. We know that the last instruction of C(P) is
an halt, therefore the last instruction of C'(C(P)) is also an halt. By definition, p(|C(P)|,C(P))
is the position after this instruction. That gives us:

(Anmips(C'(C(P))),m) 4 m .
And by transitivity we have: m/(lzs) < d' < . |
B.5 Proof of proposition 11

(1) By induction on the structure of the command S.
(2) By iterating the following proposition.

Proposition 27 If (S, K, s) L (S",K',s") and R(C,i,S - K) witht = £ ort = € then C
(i,0,s) SN (4,0,8) and R(C,j,S" - K').

This is an extension of proposition 4 and it is proven in the same way with an additional
case for labelled commands. O
B.6 Proof of proposition 13
(1) The compilation of the Vm instruction nop(¢) is the Mips instruction (nop ).

(2) By iterating the following proposition.

Proposition 28 Let C : h be a well formed code. If C' + (i,0,s) L (j,0',8") with t = ¢ or
t =¢, h(i) = |o| and m |0, s then C'(C) F (p(i,C), m) L (p(4,C),m') and m' ||-o’, s

This is an extension of proposition 6 and it is proven in the same way with an additional
case for the nop instruction. O
B.7 Proof of proposition 14

In order to carry on the proof, one needs to develop a bit more the properties of the small-step
operational semantics. In particular, one needs to show that a continuation such as S- (S’ K)
is ‘observationally equivalent’ to the continuation (S;5") - K. O

B.8 Proof of proposition 16
By diagram chasing using propositions 11(1), 13(1), and the definition 15 of labelling. O

B.9 Proof of proposition 17

Suppose that:
(Z(L(P)),s[c/cost]) |} s'[c + 8§/ cost] and m ||—s[c/cost] .

Then, by proposition 14, for some A:

(L(P), s[c/cost]) I (s'[c/cost],\) and k(N) =6 .
Finally, by propositions 11(2) and 13(2) :

(C(C(LP))),m) b (', 2) and wt ||-s'[c/cost]
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B.10 Proof of proposition 20

If A\ = ¢1---4, then the computation is the concatenation of simple paths labelled with
l1,...,0,. Since k(¢;) bounds the cost of a simple path labelled with ¢;, the cost of the
overall computation is bounded by k(X)) = k(1) + - - - k(£y,). 0

B.11 Proof of proposition 22

Same proof as proposition 20, by replacing the word bounds by is exactly and the words
bounded by by exactly. O

B.12 Proof of proposition 23

In both labellings under consideration the root node is labelled. An obvious observation is that
only commands of the shape while b do S and while [b do S introduce loops in the compiled
code. In the second case, the compilation ensures that a label is placed in the loop. In the first
case, we notice that both labelling introduce a label in the loop (though at different places).
Thus all loops go through a label and the compiled code is always sound.

To show the precision of the second labelling £,,, we note the following property.

Lemma 29 A soundly labelled graph is precise if each label occurs at most once in the graph
and if the immediate successors of the bge nodes are either halt (no successor) or labelled
nodes.

Indeed, in a such a graph starting from a labelled node we can follow a unique path up
to a leaf, another labelled node, or a bge node. In the last case, the hypotheses in the lemma
29 guarantee that the two simple paths one can follow from the bge node have the same
length /cost. O

B.13 Proof of proposition 25

By applying consecutively proposition 17 and propositions 20 or 22. O
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