1 | include "basics/lists/list.ma". |
---|
2 | |
---|
3 | lemma All_append : ∀A,P,l,r. All A P l → All A P r → All A P (l@r). |
---|
4 | #A #P #l elim l |
---|
5 | [ // |
---|
6 | | #hd #tl #IH #r * #H1 #H2 #H3 % // @IH // |
---|
7 | ] qed. |
---|
8 | |
---|
9 | lemma All_append_l : ∀A,P,l,r. All A P (l@r) → All A P l. |
---|
10 | #A #P #l elim l |
---|
11 | [ // |
---|
12 | | #hd #tl #IH #r * #H1 #H2 % /2/ |
---|
13 | ] qed. |
---|
14 | |
---|
15 | lemma All_append_r : ∀A,P,l,r. All A P (l@r) → All A P r. |
---|
16 | #A #P #l elim l |
---|
17 | [ // |
---|
18 | | #h #t #IH #r * /2/ |
---|
19 | ] qed. |
---|
20 | |
---|
21 | (* An alternative form of All that can be easier to use sometimes. *) |
---|
22 | lemma All_alt : ∀A,P,l. |
---|
23 | (∀a,pre,post. l = pre@a::post → P a) → |
---|
24 | All A P l. |
---|
25 | #A #P #l #H lapply (refl ? l) change with ([ ] @ l) in ⊢ (???% → ?); |
---|
26 | generalize in ⊢ (???(??%?) → ?); elim l in ⊢ (? → ???(???%) → %); |
---|
27 | [ #pre #E % |
---|
28 | | #a #tl #IH #pre #E % |
---|
29 | [ @(H a pre tl E) |
---|
30 | | @(IH (pre@[a])) >associative_append @E |
---|
31 | ] |
---|
32 | ] qed. |
---|
33 | |
---|
34 | let rec All2 (A,B:Type[0]) (P:A → B → Prop) (la:list A) (lb:list B) on la : Prop ≝ |
---|
35 | match la with |
---|
36 | [ nil ⇒ match lb with [ nil ⇒ True | _ ⇒ False ] |
---|
37 | | cons ha ta ⇒ |
---|
38 | match lb with [ nil ⇒ False | cons hb tb ⇒ P ha hb ∧ All2 A B P ta tb ] |
---|
39 | ]. |
---|
40 | |
---|
41 | lemma All2_length : ∀A,B,P,la,lb. All2 A B P la lb → |la| = |lb|. |
---|
42 | #A #B #P #la elim la |
---|
43 | [ * [ // | #x #y * ] |
---|
44 | | #ha #ta #IH * [ * | #hb #tb * #H1 #H2 whd in ⊢ (??%%); >(IH … H2) @refl |
---|
45 | ] qed. |
---|
46 | |
---|
47 | lemma All2_mp : ∀A,B,P,Q,la,lb. (∀a,b. P a b → Q a b) → All2 A B P la lb → All2 A B Q la lb. |
---|
48 | #A #B #P #Q #la elim la |
---|
49 | [ * [ // | #h #t #_ * ] |
---|
50 | | #ha #ta #IH * [ // | #hb #tb #H * #H1 #H2 % [ @H @H1 | @(IH … H2) @H ] ] |
---|
51 | ] qed. |
---|
52 | |
---|
53 | let rec map_All (A,B:Type[0]) (P:A → Prop) (f:∀a. P a → B) (l:list A) (H:All A P l) on l : list B ≝ |
---|
54 | match l return λl. All A P l → ? with |
---|
55 | [ nil ⇒ λ_. nil B |
---|
56 | | cons hd tl ⇒ λH. cons B (f hd (proj1 … H)) (map_All A B P f tl (proj2 … H)) |
---|
57 | ] H. |
---|
58 | |
---|
59 | include "utilities/monad.ma". |
---|
60 | |
---|
61 | definition Append : ∀A.Aop ? (nil A) ≝ λA.mk_Aop ? ? (append ?) ? ? ?. |
---|
62 | // qed. |
---|
63 | |
---|
64 | definition List ≝ MakeMonadProps |
---|
65 | list |
---|
66 | (λX,x.[x]) |
---|
67 | (λX,Y,l,f.\fold [append ?, [ ]]_{x ∈ l} (f x)) |
---|
68 | ???. normalize |
---|
69 | [ / by / |
---|
70 | | #X#m elim m normalize // |
---|
71 | | #X#Y#Z #m #f#g |
---|
72 | elim m normalize [//] |
---|
73 | #x#l' #Hi |
---|
74 | <(fold_sum ?? (f x) ? [ ] (Append ?)) |
---|
75 | >Hi // |
---|
76 | ] qed. |
---|
77 | |
---|
78 | unification hint 0 ≔ X ; |
---|
79 | N ≟ max_def List, M ≟ m_def N |
---|
80 | (*---------------------------*)⊢ |
---|
81 | list X ≡ monad M X. |
---|