1 | include "basics/types.ma". |
---|
2 | include "basics/list.ma". |
---|
3 | include "common/Graphs.ma". |
---|
4 | include "common/Order.ma". |
---|
5 | include "common/Registers.ma". |
---|
6 | |
---|
7 | include "utilities/adt/table_adt.ma". |
---|
8 | include "utilities/adt/priority_set_adt.ma". |
---|
9 | include "utilities/adt/set_adt.ma". |
---|
10 | include "utilities/adt/set_table_adt.ma". |
---|
11 | include "utilities/adt/register_table.ma". |
---|
12 | |
---|
13 | (* definition vertex_set ≝ set vertex. *) |
---|
14 | definition vertex_priority_set ≝ priority_set vertex. |
---|
15 | definition vertex_set_table ≝ set_table vertex (set vertex). |
---|
16 | definition Register_set_table ≝ set_table vertex (set Register). |
---|
17 | definition Register_set ≝ set Register. |
---|
18 | |
---|
19 | record graph: Type[0] ≝ |
---|
20 | { |
---|
21 | g_regmap : register_table; |
---|
22 | g_ivv : vertex_set_table; |
---|
23 | g_ivh : Register_set_table; |
---|
24 | g_pvv : vertex_set_table; |
---|
25 | g_pvh : Register_set_table; |
---|
26 | g_degree : vertex_priority_set; |
---|
27 | g_nmr : vertex_priority_set |
---|
28 | }. |
---|
29 | |
---|
30 | definition set_ivv ≝ |
---|
31 | λgraph. |
---|
32 | λivv: vertex_set_table. |
---|
33 | let regmap ≝ g_regmap graph in |
---|
34 | let ivh ≝ g_ivh graph in |
---|
35 | let pvv ≝ g_pvv graph in |
---|
36 | let pvh ≝ g_pvh graph in |
---|
37 | let degree ≝ g_degree graph in |
---|
38 | let nmr ≝ g_nmr graph in |
---|
39 | mk_graph |
---|
40 | regmap ivv ivh pvv pvh degree nmr. |
---|
41 | |
---|
42 | definition set_ivh ≝ |
---|
43 | λgraph. |
---|
44 | λivh: Register_set_table. |
---|
45 | let regmap ≝ g_regmap graph in |
---|
46 | let ivv ≝ g_ivv graph in |
---|
47 | let pvv ≝ g_pvv graph in |
---|
48 | let pvh ≝ g_pvh graph in |
---|
49 | let degree ≝ g_degree graph in |
---|
50 | let nmr ≝ g_nmr graph in |
---|
51 | mk_graph |
---|
52 | regmap ivv ivh pvv pvh degree nmr. |
---|
53 | |
---|
54 | definition set_degree ≝ |
---|
55 | λgraph. |
---|
56 | λdegree: vertex_priority_set. |
---|
57 | let regmap ≝ g_regmap graph in |
---|
58 | let ivv ≝ g_ivv graph in |
---|
59 | let ivh ≝ g_ivh graph in |
---|
60 | let pvv ≝ g_pvv graph in |
---|
61 | let pvh ≝ g_pvh graph in |
---|
62 | let nmr ≝ g_nmr graph in |
---|
63 | mk_graph |
---|
64 | regmap ivv ivh pvv pvh degree nmr. |
---|
65 | |
---|
66 | definition set_nmr ≝ |
---|
67 | λgraph. |
---|
68 | λnmr: vertex_priority_set. |
---|
69 | let regmap ≝ g_regmap graph in |
---|
70 | let ivv ≝ g_ivv graph in |
---|
71 | let ivh ≝ g_ivh graph in |
---|
72 | let pvv ≝ g_pvv graph in |
---|
73 | let pvh ≝ g_pvh graph in |
---|
74 | let degree ≝ g_degree graph in |
---|
75 | mk_graph |
---|
76 | regmap ivv ivh pvv pvh degree nmr. |
---|
77 | |
---|
78 | definition sg_neighboursv ≝ |
---|
79 | λgraph: graph. |
---|
80 | λv: vertex. |
---|
81 | set_tbl_find … v (g_ivv graph). |
---|
82 | |
---|
83 | definition sg_existsvv ≝ |
---|
84 | λgraph. |
---|
85 | λv1. |
---|
86 | λv2. |
---|
87 | match sg_neighboursv graph v2 with |
---|
88 | [ None ⇒ false (* XXX: ok? *) |
---|
89 | | Some neigh ⇒ set_member ? eq_nat v1 neigh |
---|
90 | ]. |
---|
91 | |
---|
92 | definition sg_neighboursh ≝ |
---|
93 | λgraph. |
---|
94 | λv. |
---|
95 | set_tbl_find ? ? v (g_ivh graph). |
---|
96 | |
---|
97 | definition sg_existsvh ≝ |
---|
98 | λgraph. |
---|
99 | λv. |
---|
100 | λh. |
---|
101 | match sg_neighboursh graph v with |
---|
102 | [ None ⇒ false (* XXX: ok? *) |
---|
103 | | Some neigh ⇒ set_member ? eq_Register h neigh |
---|
104 | ]. |
---|
105 | |
---|
106 | definition sg_degree ≝ |
---|
107 | λgraph. |
---|
108 | λv. |
---|
109 | match sg_neighboursv graph v with |
---|
110 | [ None ⇒ None ? |
---|
111 | | Some neigh ⇒ |
---|
112 | match sg_neighboursh graph v with |
---|
113 | [ None ⇒ None ? |
---|
114 | | Some neigh' ⇒ Some ? ((set_size … neigh) + (set_size … neigh')) |
---|
115 | ] |
---|
116 | ]. |
---|
117 | |
---|
118 | definition sg_hwregs ≝ |
---|
119 | λgraph: graph. |
---|
120 | let union ≝ λkey: vertex. set_union ? in |
---|
121 | set_tbl_fold vertex ? ? union (g_ivh graph) (set_empty Register). |
---|
122 | |
---|
123 | axiom sg_iter: Type[0]. (* XXX: todo when i can be bothered *) |
---|
124 | |
---|
125 | definition sg_mkvvi ≝ |
---|
126 | λgraph. |
---|
127 | λv1. |
---|
128 | λv2. |
---|
129 | set_ivv graph (set_tbl_homo_mkbiedge … v1 v2 (g_ivv graph)). |
---|
130 | |
---|
131 | definition sg_mkvv ≝ |
---|
132 | λgraph. |
---|
133 | λv1. |
---|
134 | λv2. |
---|
135 | if eq_nat v1 v2 then |
---|
136 | graph |
---|
137 | else if sg_existsvv graph v1 v2 then |
---|
138 | graph |
---|
139 | else |
---|
140 | sg_mkvvi graph v1 v2. |
---|
141 | |
---|
142 | definition sg_rmvv ≝ |
---|
143 | λgraph. |
---|
144 | λv1. |
---|
145 | λv2. |
---|
146 | set_ivv graph (set_tbl_homo_rmbiedge … v1 v2 (g_ivv graph)). |
---|
147 | |
---|
148 | definition sg_rmvvifx ≝ |
---|
149 | λgraph. |
---|
150 | λv1. |
---|
151 | λv2. |
---|
152 | if sg_existsvv graph v1 v2 then |
---|
153 | sg_rmvv graph v1 v2 |
---|
154 | else |
---|
155 | graph. |
---|
156 | |
---|
157 | definition sg_mkvhi ≝ |
---|
158 | λgraph. |
---|
159 | λv. |
---|
160 | λh. |
---|
161 | set_ivh graph (set_tbl_update … v (set_insert … h) (g_ivh graph)). |
---|
162 | |
---|
163 | definition sg_mkvh ≝ |
---|
164 | λgraph. |
---|
165 | λv. |
---|
166 | λh. |
---|
167 | if sg_existsvh graph v h then |
---|
168 | graph |
---|
169 | else |
---|
170 | sg_mkvhi graph v h. |
---|
171 | |
---|
172 | definition sg_rmvh ≝ |
---|
173 | λgraph. |
---|
174 | λv. |
---|
175 | λh. |
---|
176 | set_ivh graph (set_tbl_update … v (set_remove … h) (g_ivh graph)). |
---|
177 | |
---|
178 | definition sg_rmvhifx ≝ |
---|
179 | λgraph. |
---|
180 | λv. |
---|
181 | λh. |
---|
182 | if sg_existsvh graph v h then |
---|
183 | sg_rmvh graph v h |
---|
184 | else |
---|
185 | graph. |
---|
186 | |
---|
187 | definition sg_coalesce ≝ |
---|
188 | λg. |
---|
189 | λx. |
---|
190 | λy. |
---|
191 | match sg_neighboursv g x with |
---|
192 | [ None ⇒ None ? |
---|
193 | | Some neigh ⇒ |
---|
194 | let graph ≝ set_fold ? graph (λw. λg. |
---|
195 | sg_mkvv (sg_rmvv g x w) y w) neigh g |
---|
196 | in |
---|
197 | match sg_neighboursh g x with |
---|
198 | [ None ⇒ None ? |
---|
199 | | Some neigh ⇒ |
---|
200 | let graph ≝ set_fold ? ? (λh. λg. |
---|
201 | sg_mkvh (sg_rmvh g x h) y h) neigh g |
---|
202 | in |
---|
203 | Some … graph |
---|
204 | ] |
---|
205 | ]. |
---|
206 | |
---|
207 | definition sg_coalesceh ≝ |
---|
208 | λg. |
---|
209 | λx. |
---|
210 | λh. |
---|
211 | match sg_neighboursv g x with |
---|
212 | [ None ⇒ None ? |
---|
213 | | Some neigh ⇒ |
---|
214 | let graph ≝ set_fold ? graph (λw. λg. |
---|
215 | sg_mkvh (sg_rmvv g x w) w h) neigh g |
---|
216 | in |
---|
217 | match sg_neighboursh g x with |
---|
218 | [ None ⇒ None ? |
---|
219 | | Some neigh ⇒ |
---|
220 | let graph ≝ set_fold ? ? (λk. λg. |
---|
221 | sg_rmvh graph x k) neigh g |
---|
222 | in |
---|
223 | Some … graph |
---|
224 | ] |
---|
225 | ]. |
---|
226 | |
---|
227 | definition sg_remove ≝ |
---|
228 | λg. |
---|
229 | λx. |
---|
230 | match sg_neighboursv g x with |
---|
231 | [ None ⇒ None ? |
---|
232 | | Some neigh ⇒ |
---|
233 | let graph ≝ |
---|
234 | set_fold … (λw. λgraph. |
---|
235 | sg_rmvv graph x w) neigh g |
---|
236 | in |
---|
237 | match sg_neighboursh graph x with |
---|
238 | [ None ⇒ None ? |
---|
239 | | Some neigh ⇒ |
---|
240 | let graph ≝ set_fold … (λh. λg. |
---|
241 | sg_rmvh g x h) neigh graph |
---|
242 | in |
---|
243 | Some ? graph |
---|
244 | ] |
---|
245 | ]. |
---|
246 | |
---|
247 | definition ig_mkvvi ≝ |
---|
248 | λgraph. |
---|
249 | λv1. |
---|
250 | λv2. |
---|
251 | let graph ≝ sg_mkvvi graph v1 v2 in |
---|
252 | let graph ≝ sg_rmvvifx graph v1 v2 in |
---|
253 | let degree' ≝ pset_increment ? v1 (repr 1) (pset_increment ? v2 (repr 1) (g_degree graph)) in |
---|
254 | let nmr' ≝ pset_incrementifx ? v1 (repr 1) (pset_incrementifx ? v2 (repr 1) (g_nmr graph)) in |
---|
255 | set_degree (set_nmr graph nmr') degree'. |
---|
256 | |
---|
257 | definition ig_rmvv ≝ |
---|
258 | λgraph. |
---|
259 | λv1. |
---|
260 | λv2. |
---|
261 | let graph ≝ sg_rmvv graph v1 v2 in |
---|
262 | let degree' ≝ pset_increment ? v1 (neg (repr 1)) (pset_increment ? v2 (neg (repr 1)) (g_degree graph)) in |
---|
263 | let nmr' ≝ pset_incrementifx ? v1 (neg (repr 1)) (pset_incrementifx ? v2 (neg (repr 1)) (g_nmr graph)) in |
---|
264 | set_degree (set_nmr graph nmr') degree'. |
---|
265 | |
---|
266 | definition ig_mkvhi ≝ |
---|
267 | λgraph. |
---|
268 | λv. |
---|
269 | λh. |
---|
270 | let graph ≝ sg_mkvhi graph v h in |
---|
271 | let graph ≝ sg_rmvhifx graph v h in |
---|
272 | let degree ≝ pset_increment ? v (repr 1) (g_degree graph) in |
---|
273 | let nmr ≝ pset_incrementifx ? v (repr 1) (g_nmr graph) in |
---|
274 | set_degree (set_nmr graph nmr) degree. |
---|
275 | |
---|
276 | definition ig_rmvh ≝ |
---|
277 | λgraph. |
---|
278 | λv. |
---|
279 | λh. |
---|
280 | let graph ≝ sg_rmvh graph v h in |
---|
281 | let degree ≝ pset_increment ? v (neg (repr 1)) (g_degree graph) in |
---|
282 | let nmr ≝ pset_incrementifx ? v (neg (repr 1)) (g_nmr graph) in |
---|
283 | set_degree (set_nmr graph nmr) degree. |
---|
284 | |
---|
285 | definition pref_nmr ≝ |
---|
286 | λgraph. |
---|
287 | λv. |
---|
288 | match sg_neighboursv graph v with |
---|
289 | [ None ⇒ false (* XXX: ok? *) |
---|
290 | | Some neigh ⇒ |
---|
291 | match sg_neighboursh graph v with |
---|
292 | [ None ⇒ false |
---|
293 | | Some neigh' ⇒ |
---|
294 | andb (set_is_empty ? neigh) (set_is_empty ? neigh') |
---|
295 | ] |
---|
296 | ]. |
---|
297 | |
---|
298 | definition pref_mkcheck ≝ |
---|
299 | λgraph. |
---|
300 | λv. |
---|
301 | if pref_nmr graph v then |
---|
302 | let nmr' ≝ pset_remove ? v (g_nmr graph) in |
---|
303 | set_nmr graph nmr' |
---|
304 | else |
---|
305 | graph. |
---|
306 | |
---|
307 | definition pref_mkvvi ≝ |
---|
308 | λgraph. |
---|
309 | λv1. |
---|
310 | λv2. |
---|
311 | if sg_existsvv graph v1 v2 then |
---|
312 | graph |
---|
313 | else |
---|
314 | let graph ≝ pref_mkcheck graph v1 in |
---|
315 | let graph ≝ pref_mkcheck graph v2 in |
---|
316 | sg_mkvvi graph v1 v2. |
---|
317 | |
---|
318 | definition pref_mkvhi ≝ |
---|
319 | λgraph. |
---|
320 | λv. |
---|
321 | λh. |
---|
322 | if sg_existsvh graph v h then |
---|
323 | graph |
---|
324 | else |
---|
325 | let graph ≝ pref_mkcheck graph v in |
---|
326 | sg_mkvhi graph v h. |
---|
327 | |
---|
328 | (* XXX: look at this carefully *) |
---|
329 | definition pref_rmcheck ≝ |
---|
330 | λgraph. |
---|
331 | λv. |
---|
332 | if pref_nmr graph v then |
---|
333 | match pset_lookup ? v (g_degree graph) with |
---|
334 | [ None ⇒ graph (* XXX: ok? *) |
---|
335 | | Some pref ⇒ |
---|
336 | let nmr ≝ pset_insert ? v pref (g_nmr graph) in |
---|
337 | set_nmr graph nmr |
---|
338 | ] |
---|
339 | else |
---|
340 | graph. |
---|
341 | |
---|
342 | definition pref_rmvv ≝ |
---|
343 | λgraph. |
---|
344 | λv1. |
---|
345 | λv2. |
---|
346 | let graph ≝ sg_rmvv graph v1 v2 in |
---|
347 | let graph ≝ pref_rmcheck graph v1 in |
---|
348 | let graph ≝ pref_rmcheck graph v2 in |
---|
349 | graph. |
---|
350 | |
---|
351 | definition pref_rmvh ≝ |
---|
352 | λgraph. |
---|
353 | λv. |
---|
354 | λh. |
---|
355 | let graph ≝ sg_rmvh graph v h in |
---|
356 | let graph ≝ pref_rmcheck graph v in |
---|
357 | graph. |
---|
358 | |
---|
359 | definition ig_ipp ≝ sg_neighboursv. |
---|
360 | definition ig_iph ≝ sg_neighboursh. |
---|
361 | definition ig_ppp ≝ sg_neighboursv. |
---|
362 | definition ig_pph ≝ sg_neighboursh. |
---|
363 | definition ig_degree ≝ λgraph. λv. pset_lookup ? v (g_degree graph). |
---|
364 | definition ig_lowest ≝ λgraph. pset_lowest ? (g_degree graph). |
---|
365 | definition ig_lowest_non_move_related ≝ λgraph. pset_lowest ? (g_nmr graph). |
---|
366 | definition ig_fold ≝ λA: Type[0]. λf: vertex → A → A. λgraph. λaccu. |
---|
367 | rt_fold … (λv. λ_. λaccu. f v accu) (g_regmap graph) accu. |
---|
368 | |
---|
369 | definition ig_minimum: ∀a: Type[0]. (a → a → order) → (vertex → a) → graph → option vertex ≝ |
---|
370 | λa: Type[0]. |
---|
371 | λcompare: a → a → order. |
---|
372 | λf: vertex → a. |
---|
373 | λgraph. |
---|
374 | let folded ≝ ig_fold … (λw. λaccu. |
---|
375 | let dw ≝ f w in |
---|
376 | match accu with |
---|
377 | [ None ⇒ Some … 〈dw, w〉 |
---|
378 | | Some dv_v ⇒ |
---|
379 | let 〈dv, v〉 ≝ dv_v in |
---|
380 | match compare dw dv with |
---|
381 | [ order_lt ⇒ Some … 〈dw, w〉 |
---|
382 | | _ ⇒ accu |
---|
383 | ] |
---|
384 | ]) graph (None …) |
---|
385 | in |
---|
386 | match folded with |
---|
387 | [ None ⇒ None … |
---|
388 | | Some ignore_v ⇒ |
---|
389 | let 〈ignore, v〉 ≝ ignore_v in |
---|
390 | Some … v |
---|
391 | ]. |
---|
392 | |
---|
393 | definition ig_ppedge ≝ vertex × vertex. |
---|
394 | |
---|
395 | definition ig_pppick ≝ λgraph. λp. set_tbl_pick … (g_pvv graph) p. |
---|
396 | |
---|
397 | definition ig_phedge ≝ vertex × Register. |
---|
398 | |
---|
399 | definition ig_phpick ≝ λgraph. λp. set_tbl_pick … (g_pvh graph) p. |
---|
400 | |
---|
401 | definition ig_create ≝ |
---|
402 | λregs. |
---|
403 | let 〈ignore_int, table'', priority''〉 ≝ |
---|
404 | foldr … (λr. λv_table_priority'. |
---|
405 | let 〈v, table', priority'〉 ≝ v_table_priority' in |
---|
406 | let table'' ≝ rt_add r v table' in |
---|
407 | let priority'' ≝ pset_insert ? v 0 priority' in |
---|
408 | 〈v + 1, table'', priority''〉) 〈0, rt_empty …, pset_empty …〉 regs |
---|
409 | in |
---|
410 | mk_graph table'' (set_tbl_empty …) (set_tbl_empty …) (set_tbl_empty …) |
---|
411 | (set_tbl_empty …) priority'' priority''. |
---|
412 | definition ig_lookup ≝ λgraph. λr. rt_backward r (g_regmap graph). |
---|
413 | definition ig_registers ≝ λgraph. λv. rt_forward v (g_regmap graph). |
---|
414 | definition ig_mkipp ≝ |
---|
415 | λgraph. |
---|
416 | λregs1. |
---|
417 | λregs2. |
---|
418 | set_fold … (λr1. λgraph. |
---|
419 | let v1 ≝ ig_lookup graph r1 in |
---|
420 | set_fold … (λr2. λgraph. |
---|
421 | sg_mkvv graph v1 (ig_lookup graph r2) |
---|
422 | ) regs2 graph |
---|
423 | ) regs1 graph. |
---|
424 | definition ig_mkiph ≝ |
---|
425 | λgraph. |
---|
426 | λregs. |
---|
427 | λhwregs. |
---|
428 | set_fold … (λr. λgraph. |
---|
429 | let v ≝ ig_lookup graph r in |
---|
430 | set_fold … (λh. λgraph. |
---|
431 | sg_mkvh graph v h |
---|
432 | ) hwregs graph |
---|
433 | ) regs graph. |
---|
434 | definition ig_mki ≝ |
---|
435 | λgraph. |
---|
436 | λregs1_hwregs1. |
---|
437 | λregs2_hwregs2. |
---|
438 | let 〈regs1, hwregs1〉 ≝ regs1_hwregs1 in |
---|
439 | let 〈regs2, hwregs2〉 ≝ regs2_hwregs2 in |
---|
440 | let graph ≝ ig_mkipp graph regs1 regs2 in |
---|
441 | let graph ≝ ig_mkiph graph regs1 hwregs2 in |
---|
442 | let graph ≝ ig_mkiph graph regs2 hwregs1 in |
---|
443 | graph. |
---|
444 | definition ig_mkppp ≝ |
---|
445 | λgraph. |
---|
446 | λr1. |
---|
447 | λr2. |
---|
448 | let v1 ≝ ig_lookup graph r1 in |
---|
449 | let v2 ≝ ig_lookup graph r2 in |
---|
450 | let graph ≝ sg_mkvv graph v1 v2 in |
---|
451 | graph. |
---|
452 | definition ig_mkpph ≝ |
---|
453 | λgraph. |
---|
454 | λr. |
---|
455 | λh. |
---|
456 | let v ≝ ig_lookup graph r in |
---|
457 | let graph ≝ sg_mkvh graph v h in |
---|
458 | graph. |
---|
459 | (* |
---|
460 | (* XXX: precondition: |
---|
461 | x \not\eq y |
---|
462 | existsvv graph x y == false i.e. coalesce interfering edges *) |
---|
463 | definition ig_coalesce ≝ |
---|
464 | λgraph. |
---|
465 | λx. |
---|
466 | λy. |
---|
467 | let graph ≝ sg_coalesce graph x y in |
---|
468 | |
---|
469 | let coalesce graph x y = |
---|
470 | |
---|
471 | assert (x <> y); (* attempt to coalesce one vertex with itself *) |
---|
472 | assert (not (interference#existsvv graph x y)); (* attempt to coalesce two interfering vertices *) |
---|
473 | |
---|
474 | (* Perform coalescing in the two subgraphs. *) |
---|
475 | |
---|
476 | let graph = interference#coalesce graph x y in |
---|
477 | let graph = preference#coalesce graph x y in |
---|
478 | |
---|
479 | (* Remove [x] from all tables. *) |
---|
480 | |
---|
481 | { |
---|
482 | graph with |
---|
483 | regmap = RegMap.coalesce x y graph.regmap; |
---|
484 | ivh = Vertex.Map.remove x graph.ivh; |
---|
485 | pvh = Vertex.Map.remove x graph.pvh; |
---|
486 | degree = PrioritySet.remove x graph.degree; |
---|
487 | nmr = PrioritySet.remove x graph.nmr; |
---|
488 | } |
---|
489 | |
---|
490 | axiom ig_mkppp: interference_graph → register → register → interference_graph. |
---|
491 | axiom ig_mkpph: interference_graph → register → Register → interference_graph. |
---|
492 | axiom ig_coalesce: interference_graph → vertex → vertex → interference_graph. |
---|
493 | axiom ig_coalesceh: interference_graph → vertex → Register → interference_graph. |
---|
494 | axiom ig_remove: interference_graph → vertex → interference_graph. |
---|
495 | axiom ig_freeze: interference_graph → vertex → interference_graph. |
---|
496 | axiom ig_restrict: interference_graph → (vertex → bool) → interference_graph. |
---|
497 | axiom ig_droph: interference_graph → interference_graph. |
---|
498 | axiom ig_lookup: interference_graph → register → vertex. |
---|
499 | axiom ig_registers: interference_graph → vertex → list register. |
---|
500 | axiom ig_degree: interference_graph → vertex → nat. |
---|
501 | axiom ig_lowest: interference_graph → option (vertex × nat). |
---|
502 | axiom ig_lowest_non_move_related: interference_graph → option (vertex × nat). |
---|
503 | axiom ig_minimum: ∀A: Type[0]. ∀ord: A → A → order. (vertex → A) → |
---|
504 | interference_graph → option vertex. |
---|
505 | axiom ig_fold: ∀A: Type[0]. (vertex → A → A) → interference_graph → A → A. |
---|
506 | axiom ig_ipp: interference_graph → vertex → vertex_set. |
---|
507 | axiom ig_iph: interference_graph → vertex → list Register. |
---|
508 | axiom ig_ppp: interference_graph → vertex → vertex_set. |
---|
509 | axiom ig_pph: interference_graph → vertex → list Register. |
---|
510 | definition ig_ppedge ≝ vertex × vertex. |
---|
511 | axiom ig_pppick: interference_graph → (ig_ppedge → bool) → option ig_ppedge. |
---|
512 | definition ig_phedge ≝ vertex × Register. |
---|
513 | axiom ig_phpick: interference_graph → (ig_phedge → bool) → option ig_phedge. |
---|
514 | *) |
---|