1 | include "joint/Joint.ma". |
---|
2 | include "utilities/bindLists.ma". |
---|
3 | |
---|
4 | (* inductive block_step (p : stmt_params) (globals : list ident) : Type[0] ≝ |
---|
5 | | block_seq : joint_seq p globals → block_step p globals |
---|
6 | | block_skip : label → block_step p globals. |
---|
7 | |
---|
8 | definition if_seq : ∀p,globals.∀A:Type[2].block_step p globals → A → A → A ≝ |
---|
9 | λp,g,A,s.match s with |
---|
10 | [ block_seq _ ⇒ λx,y.x |
---|
11 | | _ ⇒ λx,y.y |
---|
12 | ]. |
---|
13 | |
---|
14 | definition stmt_of_block_step : ∀p : stmt_params.∀globals. |
---|
15 | ∀s : block_step p globals.if_seq … s (succ p) unit → joint_statement p globals ≝ |
---|
16 | λp,g,s.match s return λx.if_seq ??? x ?? → joint_statement ?? with |
---|
17 | [ block_seq s' ⇒ λnxt.sequential … s' nxt |
---|
18 | | block_skip l ⇒ λ_.GOTO … l |
---|
19 | ]. |
---|
20 | |
---|
21 | definition seq_to_block_step_list : ∀p : stmt_params.∀globals. |
---|
22 | list (joint_seq p globals) → |
---|
23 | list (block_step p globals) ≝ λp,globals.map ?? (block_seq ??). |
---|
24 | |
---|
25 | coercion block_step_from_seq_list : ∀p : stmt_params.∀globals. |
---|
26 | ∀l:list (joint_seq p globals). |
---|
27 | list (block_step p globals) ≝ |
---|
28 | seq_to_block_step_list |
---|
29 | on _l:list (joint_seq ??) |
---|
30 | to list (block_step ??). |
---|
31 | |
---|
32 | definition is_inr : ∀A,B.A + B → bool ≝ λA,B,x.match x with |
---|
33 | [ inl _ ⇒ true |
---|
34 | | inr _ ⇒ false |
---|
35 | ]. |
---|
36 | definition is_inl : ∀A,B.A + B → bool ≝ λA,B,x.match x with |
---|
37 | [ inl _ ⇒ true |
---|
38 | | inr _ ⇒ false |
---|
39 | ]. |
---|
40 | |
---|
41 | definition skip_block ≝ λp,globals,A. |
---|
42 | (list (block_step p globals)) × A.*) |
---|
43 | |
---|
44 | (* move *) |
---|
45 | let rec bind_new_P R X (P : X → Prop) (b : bind_new R X) on b : Prop ≝ |
---|
46 | match b with |
---|
47 | [ bret x ⇒ P x |
---|
48 | | bnew f ⇒ ∀x.bind_new_P … P (f x) |
---|
49 | ]. |
---|
50 | |
---|
51 | definition BindNewP : ∀R.MonadPred (BindNew R) ≝ |
---|
52 | λR.mk_MonadPred (BindNew R) (bind_new_P R) ???. |
---|
53 | [ #X #P #x #K @K |
---|
54 | | #X #Y #Pin #Pout #m elim m -m |
---|
55 | [ #x #H #f #G @G @H |
---|
56 | | #g #IH #H #f #G #x @IH [ @H | @G ] |
---|
57 | ] |
---|
58 | | #X #P #Q #H #m elim m -m |
---|
59 | [ #x #Px @H @Px |
---|
60 | | #g #IH #Pg #x @IH @Pg |
---|
61 | ] |
---|
62 | ] |
---|
63 | qed. |
---|
64 | |
---|
65 | definition not_empty : ∀X.list X → Prop ≝ λX,l.match l with [ nil ⇒ False | _ ⇒ True ]. |
---|
66 | |
---|
67 | definition split_on_last : ∀X.list X → option ((list X) × X) ≝ |
---|
68 | λX.foldr … |
---|
69 | (λel,acc.match acc with |
---|
70 | [ None ⇒ Some ? 〈[ ], el〉 |
---|
71 | | Some pr ⇒ Some ? 〈el :: \fst pr, \snd pr〉 |
---|
72 | ]) (None ?). |
---|
73 | |
---|
74 | lemma split_on_last_inv : ∀X,l. |
---|
75 | match split_on_last X l with |
---|
76 | [ None ⇒ l = [ ] |
---|
77 | | Some pr ⇒ l = \fst pr @ [ \snd pr] |
---|
78 | ]. |
---|
79 | #X #l elim l -l normalize nodelta [ // ] |
---|
80 | #hd #tl |
---|
81 | change with (match split_on_last ? tl in option with [ _ ⇒ ?]) in |
---|
82 | match (split_on_last ? (hd :: tl)); cases (split_on_last ??) |
---|
83 | normalize nodelta [2: * #pref #last ] #EQ >EQ normalize % qed. |
---|
84 | |
---|
85 | lemma split_on_last_hit : ∀X,pref,last. |
---|
86 | split_on_last X (pref @ [last]) = Some ? 〈pref, last〉. |
---|
87 | #X #pref elim pref -pref normalize [//] |
---|
88 | #hd #tl #IH #last >IH % qed. |
---|
89 | |
---|
90 | (* the label input is to accomodate ERTLptr pass |
---|
91 | the postfix is for the case CALL ↦ instrs* ; CALL; instrs* *) |
---|
92 | definition step_block ≝ |
---|
93 | λp,globals.list (code_point p → joint_seq p globals) × |
---|
94 | (code_point p → joint_step p globals) × |
---|
95 | (list (joint_seq p globals)). |
---|
96 | |
---|
97 | definition fin_block ≝ λp,globals.(list (joint_seq p globals))×(joint_fin_step p). |
---|
98 | |
---|
99 | (*definition seq_to_skip_block : |
---|
100 | ∀p,g,A.seq_block p g A → skip_block p g A |
---|
101 | ≝ λp,g,A,b.〈\fst b, \snd b〉. |
---|
102 | |
---|
103 | coercion skip_from_seq_block : |
---|
104 | ∀p,g,A.∀b : seq_block p g A.skip_block p g A ≝ |
---|
105 | seq_to_skip_block on _b : seq_block ??? to skip_block ???.*) |
---|
106 | |
---|
107 | definition bind_step_block ≝ λp.λglobals. |
---|
108 | bind_new register (step_block p globals). |
---|
109 | |
---|
110 | unification hint 0 ≔ p, g; |
---|
111 | P ≟ step_block p g |
---|
112 | (*---------------------------------------*)⊢ |
---|
113 | bind_step_block p g ≡ bind_new register P. |
---|
114 | |
---|
115 | definition bind_fin_block ≝ λp : stmt_params.λglobals. |
---|
116 | bind_new register (fin_block p globals). |
---|
117 | |
---|
118 | unification hint 0 ≔ p : stmt_params, g; |
---|
119 | P ≟ fin_block p g |
---|
120 | (*---------------------------------------*)⊢ |
---|
121 | bind_fin_block p g ≡ bind_new register P. |
---|
122 | |
---|
123 | definition bind_seq_list ≝ λp : stmt_params.λglobals. |
---|
124 | bind_new register (list (joint_seq p globals)). |
---|
125 | unification hint 0 ≔ p : stmt_params, g; |
---|
126 | S ≟ joint_seq p g, |
---|
127 | L ≟ list S |
---|
128 | (*---------------------------------------*)⊢ |
---|
129 | bind_seq_list p g ≡ bind_new register L. |
---|
130 | |
---|
131 | definition add_dummy_variance : ∀X,Y : Type[0].list Y → list (X → Y) ≝ λX,Y.map … (λx.λ_.x). |
---|
132 | |
---|
133 | definition ensure_step_block : ∀p : params.∀globals. |
---|
134 | list (joint_seq p globals) → step_block p globals ≝ |
---|
135 | λp,g,l. |
---|
136 | match l return λ_.step_block ?? with |
---|
137 | [ nil ⇒ 〈[ ], λ_.NOOP ??, [ ]〉 |
---|
138 | | cons hd tl ⇒ 〈[ ], λ_.hd, tl〉 |
---|
139 | ]. |
---|
140 | |
---|
141 | coercion step_block_from_seq_list nocomposites : |
---|
142 | ∀p : params.∀g.∀l : list (joint_seq p g).step_block p g ≝ |
---|
143 | ensure_step_block on _l : list (joint_seq ??) to step_block ??. |
---|
144 | |
---|
145 | (*definition bind_skip_block ≝ λp : stmt_params.λglobals,A. |
---|
146 | bind_new (localsT p) (skip_block p globals A). |
---|
147 | unification hint 0 ≔ p : stmt_params, g, A; |
---|
148 | B ≟ skip_block p g A, R ≟ localsT p |
---|
149 | (*---------------------------------------*)⊢ |
---|
150 | bind_skip_block p g A ≡ bind_new R B. |
---|
151 | |
---|
152 | definition bind_seq_to_skip_block : |
---|
153 | ∀p,g,A.bind_seq_block p g A → bind_skip_block p g A ≝ |
---|
154 | λp,g,A.m_map ? (seq_block p g A) (skip_block p g A) |
---|
155 | (λx.x). |
---|
156 | |
---|
157 | coercion bind_skip_from_seq_block : |
---|
158 | ∀p,g,A.∀b:bind_seq_block p g A.bind_skip_block p g A ≝ |
---|
159 | bind_seq_to_skip_block on _b : bind_seq_block ??? to bind_skip_block ???.*) |
---|
160 | (* |
---|
161 | definition block_classifier ≝ |
---|
162 | λp,g.λb : other_block p g. |
---|
163 | seq_or_fin_step_classifier ?? (\snd b). |
---|
164 | *) |
---|
165 | (*definition seq_block_from_seq_list : |
---|
166 | ∀p : stmt_params.∀g.list (joint_seq p g) → seq_block p g (joint_step p g) ≝ |
---|
167 | λp,g,l.let 〈pre,post〉 ≝ split_on_last … (NOOP ??) l in 〈pre, (post : joint_step ??)〉. |
---|
168 | |
---|
169 | definition bind_seq_block_from_bind_seq_list : |
---|
170 | ∀p : stmt_params.∀g.bind_new (localsT p) (list (joint_seq p g)) → |
---|
171 | bind_seq_block p g (joint_step p g) ≝ λp.λg.m_map … (seq_block_from_seq_list …). |
---|
172 | |
---|
173 | definition bind_seq_block_step : |
---|
174 | ∀p,g.bind_seq_block p g (joint_step p g) → |
---|
175 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
176 | λp,g.inl …. |
---|
177 | coercion bind_seq_block_from_step : |
---|
178 | ∀p,g.∀b:bind_seq_block p g (joint_step p g). |
---|
179 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
180 | bind_seq_block_step on _b : bind_seq_block ?? (joint_step ??) to |
---|
181 | bind_seq_block ?? (joint_step ??) + bind_seq_block ?? (joint_fin_step ?). |
---|
182 | |
---|
183 | definition bind_seq_block_fin_step : |
---|
184 | ∀p,g.bind_seq_block p g (joint_fin_step p) → |
---|
185 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
186 | λp,g.inr …. |
---|
187 | coercion bind_seq_block_from_fin_step : |
---|
188 | ∀p,g.∀b:bind_seq_block p g (joint_fin_step p). |
---|
189 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
190 | bind_seq_block_fin_step on _b : bind_seq_block ?? (joint_fin_step ?) to |
---|
191 | bind_seq_block ?? (joint_step ??) + bind_seq_block ?? (joint_fin_step ?). |
---|
192 | |
---|
193 | definition seq_block_bind_seq_block : |
---|
194 | ∀p : stmt_params.∀g,A.seq_block p g A → bind_seq_block p g A ≝ λp,g,A.bret …. |
---|
195 | coercion seq_block_to_bind_seq_block : |
---|
196 | ∀p : stmt_params.∀g,A.∀b:seq_block p g A.bind_seq_block p g A ≝ |
---|
197 | seq_block_bind_seq_block |
---|
198 | on _b : seq_block ??? to bind_seq_block ???. |
---|
199 | |
---|
200 | definition joint_step_seq_block : ∀p : stmt_params.∀g.joint_step p g → seq_block p g (joint_step p g) ≝ |
---|
201 | λp,g,x.〈[ ], x〉. |
---|
202 | coercion joint_step_to_seq_block : ∀p : stmt_params.∀g.∀b : joint_step p g.seq_block p g (joint_step p g) ≝ |
---|
203 | joint_step_seq_block on _b : joint_step ?? to seq_block ?? (joint_step ??). |
---|
204 | |
---|
205 | definition joint_fin_step_seq_block : ∀p : stmt_params.∀g.joint_fin_step p → seq_block p g (joint_fin_step p) ≝ |
---|
206 | λp,g,x.〈[ ], x〉. |
---|
207 | coercion joint_fin_step_to_seq_block : ∀p : stmt_params.∀g.∀b : joint_fin_step p.seq_block p g (joint_fin_step p) ≝ |
---|
208 | joint_fin_step_seq_block on _b : joint_fin_step ? to seq_block ?? (joint_fin_step ?). |
---|
209 | |
---|
210 | definition seq_list_seq_block : |
---|
211 | ∀p:stmt_params.∀g.list (joint_seq p g) → seq_block p g (joint_step p g) ≝ |
---|
212 | λp,g,l.let pr ≝ split_on_last … (NOOP ??) l in 〈\fst pr, \snd pr〉. |
---|
213 | coercion seq_list_to_seq_block : |
---|
214 | ∀p:stmt_params.∀g.∀l:list (joint_seq p g).seq_block p g (joint_step p g) ≝ |
---|
215 | seq_list_seq_block on _l : list (joint_seq ??) to seq_block ?? (joint_step ??). |
---|
216 | |
---|
217 | definition bind_seq_list_bind_seq_block : |
---|
218 | ∀p:stmt_params.∀g.bind_new (localsT p) (list (joint_seq p g)) → bind_seq_block p g (joint_step p g) ≝ |
---|
219 | λp,g.m_map ??? (λx : list (joint_seq ??).(x : seq_block ???)). |
---|
220 | |
---|
221 | coercion bind_seq_list_to_bind_seq_block : |
---|
222 | ∀p:stmt_params.∀g.∀l:bind_new (localsT p) (list (joint_seq p g)).bind_seq_block p g (joint_step p g) ≝ |
---|
223 | bind_seq_list_bind_seq_block on _l : bind_new ? (list (joint_seq ??)) to bind_seq_block ?? (joint_step ??). |
---|
224 | *) |
---|
225 | |
---|
226 | notation > "x ~❨ B , l ❩~> y 'in' c" with precedence 56 for |
---|
227 | @{'block_in_code $c $x $B $l $y}. |
---|
228 | |
---|
229 | notation < "hvbox(x ~❨ B , break l ❩~> y \nbsp 'in' \nbsp break c)" with precedence 56 for |
---|
230 | @{'block_in_code $c $x $B $l $y}. |
---|
231 | |
---|
232 | notation > "x ~❨ B , l , r ❩~> y 'in' c" with precedence 56 for |
---|
233 | @{'bind_block_in_code $c $x $B $l $r $y}. |
---|
234 | |
---|
235 | notation < "hvbox(x ~❨ B , break l , break r ❩~> y \nbsp 'in' \nbsp break c)" with precedence 56 for |
---|
236 | @{'bind_block_in_code $c $x $B $l $r $y}. |
---|
237 | |
---|
238 | definition step_in_code ≝ |
---|
239 | λp,globals.λc : codeT p globals.λsrc : code_point p.λs : joint_step p globals. |
---|
240 | λdst : code_point p. |
---|
241 | ∃nxt.stmt_at … c src = Some ? (sequential … s nxt) ∧ |
---|
242 | point_of_succ … src nxt = dst. |
---|
243 | |
---|
244 | definition fin_step_in_code ≝ |
---|
245 | λp,globals.λc : codeT p globals.λsrc : code_point p.λs : joint_fin_step p. |
---|
246 | stmt_at … c src = Some ? (final … s). |
---|
247 | |
---|
248 | let rec seq_list_in_code p globals (c : codeT p globals) |
---|
249 | (src : code_point p) (B : list (joint_seq p globals)) |
---|
250 | (l : list (code_point p)) (dst : code_point p) on B : Prop ≝ |
---|
251 | match B with |
---|
252 | [ nil ⇒ l = [ ] ∧ src = dst |
---|
253 | | cons hd tl ⇒ |
---|
254 | ∃mid,rest.l = src :: rest ∧ |
---|
255 | step_in_code … c src hd mid ∧ |
---|
256 | seq_list_in_code … c mid tl rest dst |
---|
257 | ]. |
---|
258 | |
---|
259 | (* leaving it out because it can be misleading |
---|
260 | interpretation "step list in code" 'block_in_code c x B l y = (step_list_in_code ?? c x B l y). |
---|
261 | *) |
---|
262 | |
---|
263 | lemma seq_list_in_code_ne : ∀p,globals.∀c : codeT p globals.∀src,B,l,dst. |
---|
264 | not_empty ? B → |
---|
265 | seq_list_in_code … c src B l dst → |
---|
266 | ∃post.l = src :: post. |
---|
267 | #p #globals #c #src * [ #l #dst * ] #hd #tl #l #dst #_ * #mid * #post ** #EQl #_ #_ %{EQl} qed. |
---|
268 | (* #b lapply src -src elim b -b [ #src #l #dst * ] |
---|
269 | #hd * [2: #hd' #tl ] #IH #src * [1,3: #dst #_ * ] |
---|
270 | #mid * [ #dst #_ ** #EQ destruct #_ * |4: #mid' #tl #dst #_ ** #_ #_ * ] |
---|
271 | [2: #dst #_ ** #EQ destruct normalize nodelta #_ #_ %{[ ]} % ] |
---|
272 | #mid' #rest #dst #_ ** #EQ destruct #H1 #H2 |
---|
273 | cases (IH … I H2) #post normalize nodelta #EQ destruct %{(mid' :: post)} % |
---|
274 | qed. |
---|
275 | *) |
---|
276 | |
---|
277 | lemma seq_list_in_code_append : |
---|
278 | ∀p,globals.∀c : codeT p globals.∀src,B1,l1,mid,B2,l2,dst. |
---|
279 | seq_list_in_code … c src B1 l1 mid → |
---|
280 | seq_list_in_code … c mid B2 l2 dst → |
---|
281 | seq_list_in_code … c src (B1@B2) (l1@l2) dst. |
---|
282 | #p #globals #c #src #B1 lapply src -src elim B1 -B1 |
---|
283 | [ #src #l1 #mid #B2 #l2 #dst * #EQ1 #EQ2 destruct #H @H |
---|
284 | | #hd #tl #IH #src #l1 #mid #B2 #l2 #dst * #mid' * #rest ** |
---|
285 | #EQ destruct #H1 #H2 #H3 %{mid'} %{(rest@l2)} %{(IH … H2 H3)} %{H1} % |
---|
286 | ] |
---|
287 | qed. |
---|
288 | |
---|
289 | lemma seq_list_in_code_append_inv : |
---|
290 | ∀p,globals.∀c : codeT p globals.∀src,B1,B2,l,dst. |
---|
291 | seq_list_in_code … c src (B1@B2) l dst → |
---|
292 | ∃l1,mid,l2.l = l1 @ l2 ∧ seq_list_in_code … c src B1 l1 mid ∧ |
---|
293 | seq_list_in_code … c mid B2 l2 dst. |
---|
294 | #p #globals #c #src #B1 lapply src -src elim B1 -B1 |
---|
295 | [ #src #B2 #l #dst #H %{[ ]} %{src} %{l} %{H} % % % |
---|
296 | | #hd #tl #IH #src #B2 #l2 #dst * #mid * #rest ** #EQ destruct |
---|
297 | #H1 #H2 elim (IH … H2) #l1 * #mid' * #l2 ** #EQ destruct #G1 #G2 |
---|
298 | %{(src::l1)} %{mid'} %{l2} %{G2} %{(refl …)} % [| %[| %{G1} %{H1} % ]] |
---|
299 | ] |
---|
300 | qed. |
---|
301 | |
---|
302 | definition map_eval : ∀X,Y : Type[0].list (X → Y) → X → list Y ≝ λX,Y,l,x.map … (λf.f x) l. |
---|
303 | |
---|
304 | definition step_block_in_code ≝ |
---|
305 | λp,g.λc : codeT p g.λsrc.λb : step_block p g.λl,dst. |
---|
306 | let pref ≝ \fst (\fst b) in |
---|
307 | let stp ≝ \snd (\fst b) in |
---|
308 | let post ≝ \snd b in |
---|
309 | ∃l1,mid1,mid2,l2. |
---|
310 | l = l1 @ mid1 :: l2 ∧ |
---|
311 | seq_list_in_code ?? c src (map_eval … pref mid1) l1 mid1 ∧ |
---|
312 | step_in_code ?? c mid1 (stp mid1) mid2 ∧ |
---|
313 | seq_list_in_code ?? c mid2 post l2 dst. |
---|
314 | |
---|
315 | lemma map_compose : ∀X,Y,Z,f,g.∀l : list X.map Y Z f (map X Y g l) = map … (f∘g) l. |
---|
316 | #X #Y #Z #f #g #l elim l -l normalize // qed. |
---|
317 | |
---|
318 | lemma map_ext_eq : ∀X,Y,f,g.∀l : list X.(∀x.f x = g x) → map X Y f l = map X Y g l. |
---|
319 | #X #Y #f #g #l #H elim l -l normalize // qed. |
---|
320 | |
---|
321 | lemma map_id : ∀X.∀l : list X.map X X (λx.x) l = l. |
---|
322 | #X #l elim l -l normalize // qed. |
---|
323 | |
---|
324 | definition fin_block_in_code ≝ |
---|
325 | λp,g.λc:codeT p g.λsrc.λB : fin_block p g.λl.λdst : unit. |
---|
326 | ∃pref,mid.l = pref @ [mid] ∧ |
---|
327 | seq_list_in_code … c src (\fst B) pref mid ∧ fin_step_in_code … c mid (\snd B). |
---|
328 | |
---|
329 | interpretation "step block in code" 'block_in_code c x B l y = (step_block_in_code ?? c x B l y). |
---|
330 | interpretation "fin block in code" 'block_in_code c x B l y = (fin_block_in_code ?? c x B l y). |
---|
331 | |
---|
332 | lemma coerced_step_list_in_code : |
---|
333 | ∀p : params.∀g,c,src.∀b : list (joint_seq p g).∀l,dst. |
---|
334 | src ~❨b, l❩~> dst in c → |
---|
335 | match b with |
---|
336 | [ nil ⇒ step_in_code … c src (NOOP …) dst |
---|
337 | | _ ⇒ seq_list_in_code … c src b l dst |
---|
338 | ]. |
---|
339 | #p #g #c #src * [2: #hd #tl] |
---|
340 | #l #dst * #pref * #mid1 * #mid2 * #post *** #EQ * #EQ' #EQ'' |
---|
341 | #stp_in_code [ #tl_in | * #EQ''' #EQ''''] whd |
---|
342 | destruct |
---|
343 | [ % [| % [| %{tl_in} %{stp_in_code} % ]] |
---|
344 | | @stp_in_code |
---|
345 | ] |
---|
346 | qed. |
---|
347 | |
---|
348 | let rec bind_new_instantiates B X |
---|
349 | (x : X) (b : bind_new B X) (l : list B) on b : Prop ≝ |
---|
350 | match b with |
---|
351 | [ bret B ⇒ |
---|
352 | match l with |
---|
353 | [ nil ⇒ x = B |
---|
354 | | _ ⇒ False |
---|
355 | ] |
---|
356 | | bnew f ⇒ |
---|
357 | match l with |
---|
358 | [ nil ⇒ False |
---|
359 | | cons r l' ⇒ |
---|
360 | bind_new_instantiates B X x (f r) l' |
---|
361 | ] |
---|
362 | ]. |
---|
363 | |
---|
364 | lemma bind_new_instantiates_bind_inv : ∀B,X,Y,y. |
---|
365 | ∀b : bind_new B X.∀f : X → bind_new B Y.∀l. |
---|
366 | bind_new_instantiates B Y y (!y ← b; f y) l → |
---|
367 | ∃x,l1,l2.l = l1@l2 ∧ bind_new_instantiates B X x b l1 ∧ |
---|
368 | bind_new_instantiates B Y y (f x) l2. |
---|
369 | #B #X #Y #y #b elim b -b |
---|
370 | [ #x #f #l >m_return_bind #H %{x} %{[ ]} %{l} %{H} %% |
---|
371 | | #g #IH #f * [ * ] #hd #tl whd in ⊢ (%→?); #H |
---|
372 | cases (IH … H) #x * #l1 * #l2 ** #EQ #H1 #H2 %{x} %{(hd::l1)} %{l2} |
---|
373 | %{H2} %{H1} >EQ % |
---|
374 | ] |
---|
375 | qed. |
---|
376 | |
---|
377 | lemma bind_new_instantiates_bind : ∀B,X,Y,x,y. |
---|
378 | ∀b : bind_new B X.∀f : X → bind_new B Y.∀l1,l2. |
---|
379 | bind_new_instantiates B X x b l1 → |
---|
380 | bind_new_instantiates B Y y (f x) l2 → |
---|
381 | bind_new_instantiates B Y y (!y ← b; f y) (l1@l2). |
---|
382 | #B #X #Y #x #y #b elim b -b |
---|
383 | [ #x' #f * [2: #hd #tl ] #l2 * #H @H |
---|
384 | | #g #IH #f * [ #l2 * ] #hd #tl #l2 #H1 #H2 whd @IH assumption |
---|
385 | ] |
---|
386 | qed. |
---|
387 | |
---|
388 | definition bind_step_block_in_code ≝ |
---|
389 | λp,g.λc:codeT p g.λsrc.λB : bind_step_block p g.λlbls,regs.λdst. |
---|
390 | ∃b.bind_new_instantiates … b B regs ∧ src ~❨b, lbls❩~> dst in c. |
---|
391 | |
---|
392 | definition bind_fin_block_in_code ≝ |
---|
393 | λp,g.λc:codeT p g.λsrc.λB : bind_fin_block p g.λlbls,regs.λdst. |
---|
394 | ∃b.bind_new_instantiates … b B regs ∧ src ~❨b, lbls❩~> dst in c. |
---|
395 | |
---|
396 | interpretation "bound step block in code" 'bind_block_in_code c x B l r y = (bind_step_block_in_code ?? c x B l r y). |
---|
397 | interpretation "bound fin block in code" 'bind_block_in_code c x B l r y = (bind_fin_block_in_code ?? c x B l r y). |
---|
398 | |
---|
399 | (* generates ambiguity even if it shouldn't |
---|
400 | interpretation "seq block step in code" 'block_in_code c x B l y = (seq_block_step_in_code ?? c x B l y). |
---|
401 | interpretation "seq block fin step in code" 'block_in_code c x B l y = (seq_block_fin_step_in_code ?? c x B l y). |
---|
402 | *) |
---|
403 | |
---|
404 | (* |
---|
405 | |
---|
406 | definition seq_block_append : |
---|
407 | ∀p,g. |
---|
408 | ∀b1 : Σb.is_safe_block p g b. |
---|
409 | ∀b2 : seq_block p g. |
---|
410 | seq_block p g ≝ λp,g,b1,b2. |
---|
411 | 〈match b1 with |
---|
412 | [ mk_Sig instr prf ⇒ |
---|
413 | match \snd instr return λx.bool_to_Prop (is_inl … x) ∧ seq_or_fin_step_classifier … x = ? → ? with |
---|
414 | [ inl i ⇒ λprf.\fst b1 @ i :: \fst b2 |
---|
415 | | inr _ ⇒ λprf.⊥ |
---|
416 | ] prf |
---|
417 | ],\snd b2〉. |
---|
418 | cases prf #H1 #H2 assumption |
---|
419 | qed. |
---|
420 | |
---|
421 | definition other_block_append : |
---|
422 | ∀p,g. |
---|
423 | (Σb.block_classifier ?? b = cl_other) → |
---|
424 | other_block p g → |
---|
425 | other_block p g ≝ λp,g,b1,b2. |
---|
426 | 〈\fst b1 @ «\snd b1, pi2 … b1» :: \fst b2, \snd b2〉. |
---|
427 | |
---|
428 | definition seq_block_cons : ∀p : stmt_params.∀g.(Σs.step_classifier p g s = cl_other) → |
---|
429 | seq_block p g → seq_block p g ≝ |
---|
430 | λp,g,x,b.〈x :: \fst b,\snd b〉. |
---|
431 | definition other_block_cons : ∀p,g. |
---|
432 | (Σs.seq_or_fin_step_classifier p g s = cl_other) → other_block p g → |
---|
433 | other_block p g ≝ |
---|
434 | λp,g,x,b.〈x :: \fst b,\snd b〉. |
---|
435 | |
---|
436 | interpretation "seq block cons" 'cons x b = (seq_block_cons ?? x b). |
---|
437 | interpretation "other block cons" 'vcons x b = (other_block_cons ?? x b). |
---|
438 | interpretation "seq block append" 'append b1 b2 = (seq_block_append ?? b1 b2). |
---|
439 | interpretation "other block append" 'vappend b1 b2 = (other_block_append ?? b1 b2). |
---|
440 | |
---|
441 | definition step_to_block : ∀p,g. |
---|
442 | seq_or_fin_step p g → seq_block p g ≝ λp,g,s.〈[ ], s〉. |
---|
443 | |
---|
444 | coercion block_from_step : ∀p,g.∀s : seq_or_fin_step p g. |
---|
445 | seq_block p g ≝ step_to_block on _s : seq_or_fin_step ?? to seq_block ??. |
---|
446 | |
---|
447 | definition bind_seq_block_cons : |
---|
448 | ∀p : stmt_params.∀g,is_seq. |
---|
449 | (Σs.step_classifier p g s = cl_other) → bind_seq_block p g is_seq → |
---|
450 | bind_seq_block p g is_seq ≝ |
---|
451 | λp,g,is_seq,x.m_map ??? (λb.〈x::\fst b,\snd b〉). |
---|
452 | |
---|
453 | definition bind_other_block_cons : |
---|
454 | ∀p,g.(Σs.seq_or_fin_step_classifier p g s = cl_other) → bind_other_block p g → bind_other_block p g ≝ |
---|
455 | λp,g,x.m_map … (other_block_cons … x). |
---|
456 | |
---|
457 | let rec bind_pred_aux B X (P : X → Prop) (c : bind_new B X) on c : Prop ≝ |
---|
458 | match c with |
---|
459 | [ bret x ⇒ P x |
---|
460 | | bnew f ⇒ ∀b.bind_pred_aux B X P (f b) |
---|
461 | ]. |
---|
462 | |
---|
463 | let rec bind_pred_inj_aux B X (P : X → Prop) (c : bind_new B X) on c : |
---|
464 | bind_pred_aux B X P c → bind_new B (Σx.P x) ≝ |
---|
465 | match c return λx.bind_pred_aux B X P x → bind_new B (Σx.P x) with |
---|
466 | [ bret x ⇒ λprf.return «x, prf» |
---|
467 | | bnew f ⇒ λprf.bnew … (λx.bind_pred_inj_aux B X P (f x) (prf x)) |
---|
468 | ]. |
---|
469 | |
---|
470 | definition bind_pred ≝ λB. |
---|
471 | mk_InjMonadPred (BindNew B) |
---|
472 | (mk_MonadPred ? |
---|
473 | (bind_pred_aux B) |
---|
474 | ???) |
---|
475 | (λX,P,c_sig.bind_pred_inj_aux B X P c_sig (pi2 … c_sig)) |
---|
476 | ?. |
---|
477 | [ #X #P #Q #H #y elim y [ #x @H | #f #IH #G #b @IH @G] |
---|
478 | | #X #Y #Pin #Pout #m elim m [#x | #f #IH] #H #g #G [ @G @H | #b @(IH … G) @H] |
---|
479 | | #X #P #x #Px @Px |
---|
480 | | #X #P * #m elim m [#x | #f #IH] #H [ % | @bnew_proper #b @IH] |
---|
481 | ] |
---|
482 | qed. |
---|
483 | |
---|
484 | definition bind_seq_block_append : |
---|
485 | ∀p,g,is_seq.(Σb : bind_seq_block p g true.bind_pred ? (λb.step_classifier p g (\snd b) = cl_other) b) → |
---|
486 | bind_seq_block p g is_seq → bind_seq_block p g is_seq ≝ |
---|
487 | λp,g,is_seq,b1,b2. |
---|
488 | !«p, prf» ← mp_inject … b1; |
---|
489 | !〈post, last〉 ← b2; |
---|
490 | return 〈\fst p @ «\snd p, prf» :: post, last〉. |
---|
491 | |
---|
492 | definition bind_other_block_append : |
---|
493 | ∀p,g.(Σb : bind_other_block p g.bind_pred ? |
---|
494 | (λx.block_classifier ?? x = cl_other) b) → |
---|
495 | bind_other_block p g → bind_other_block p g ≝ |
---|
496 | λp,g,b1.m_bin_op … (other_block_append ??) (mp_inject … b1). |
---|
497 | |
---|
498 | interpretation "bind seq block cons" 'cons x b = (bind_seq_block_cons ??? x b). |
---|
499 | interpretation "bind other block cons" 'vcons x b = (bind_other_block_cons ?? x b). |
---|
500 | interpretation "bind seq block append" 'append b1 b2 = (bind_seq_block_append ??? b1 b2). |
---|
501 | interpretation "bind other block append" 'vappend b1 b2 = (bind_other_block_append ?? b1 b2). |
---|
502 | |
---|
503 | let rec instantiates_to B X |
---|
504 | (b : bind_new B X) (l : list B) (x : X) on b : Prop ≝ |
---|
505 | match b with |
---|
506 | [ bret B ⇒ |
---|
507 | match l with |
---|
508 | [ nil ⇒ x = B |
---|
509 | | _ ⇒ False |
---|
510 | ] |
---|
511 | | bnew f ⇒ |
---|
512 | match l with |
---|
513 | [ nil ⇒ False |
---|
514 | | cons r l' ⇒ |
---|
515 | instantiates_to B X (f r) l' x |
---|
516 | ] |
---|
517 | ]. |
---|
518 | |
---|
519 | lemma instantiates_to_bind_pred : |
---|
520 | ∀B,X,P,b,l,x.instantiates_to B X b l x → bind_pred B P b → P x. |
---|
521 | #B #X #P #b elim b |
---|
522 | [ #x * [ #y #EQ >EQ normalize // | #hd #tl #y *] |
---|
523 | | #f #IH * [ #y * | #hd #tl normalize #b #H #G @(IH … H) @G ] |
---|
524 | ] |
---|
525 | qed. |
---|
526 | |
---|
527 | lemma seq_block_append_proof_irr : |
---|
528 | ∀p,g,b1,b1',b2.pi1 ?? b1 = pi1 ?? b1' → |
---|
529 | seq_block_append p g b1 b2 = seq_block_append p g b1' b2. |
---|
530 | #p #g * #b1 #b1prf * #b1' #b1prf' #b2 #EQ destruct(EQ) % |
---|
531 | qed. |
---|
532 | |
---|
533 | lemma other_block_append_proof_irr : |
---|
534 | ∀p,g,b1,b1',b2.pi1 ?? b1 = pi1 ?? b1' → |
---|
535 | other_block_append p g b1 b2 = other_block_append p g b1' b2. |
---|
536 | #p #g * #b1 #b1prf * #b1' #b1prf' #b2 #EQ destruct(EQ) % |
---|
537 | qed. |
---|
538 | |
---|
539 | (* |
---|
540 | lemma is_seq_block_instance_append : ∀p,g,is_seq. |
---|
541 | ∀B1. |
---|
542 | ∀B2 : bind_seq_block p g is_seq. |
---|
543 | ∀l1,l2. |
---|
544 | ∀b1 : Σb.is_safe_block p g b. |
---|
545 | ∀b2 : seq_block p g. |
---|
546 | instantiates_to ? (seq_block p g) B1 l1 (pi1 … b1) → |
---|
547 | instantiates_to ? (seq_block p g) B2 l2 b2 → |
---|
548 | instantiates_to ? (seq_block p g) (B1 @ B2) (l1 @ l2) (b1 @ b2). |
---|
549 | #p #g * #B1 elim B1 -B1 |
---|
550 | [ #B1 | #f1 #IH1 ] |
---|
551 | #B1prf whd in B1prf; |
---|
552 | #B2 * [2,4: #r1 #l1' ] #l2 #b1 #b2 [1,4: *] |
---|
553 | whd in ⊢ (%→?); |
---|
554 | [ @IH1 |
---|
555 | | #EQ destruct(EQ) lapply b2 -b2 lapply l2 -l2 elim B2 -B2 |
---|
556 | [ #B2 | #f2 #IH2] * [2,4: #r2 #l2'] #b2 [1,4: *] |
---|
557 | whd in ⊢ (%→?); |
---|
558 | [ @IH2 |
---|
559 | | #EQ' whd destruct @seq_block_append_proof_irr % |
---|
560 | ] |
---|
561 | ] |
---|
562 | qed. |
---|
563 | |
---|
564 | lemma is_other_block_instance_append : ∀p,g. |
---|
565 | ∀B1 : Σb.bind_pred ? (λx.block_classifier p g x = cl_other) b. |
---|
566 | ∀B2 : bind_other_block p g. |
---|
567 | ∀l1,l2. |
---|
568 | ∀b1 : Σb.block_classifier p g b = cl_other. |
---|
569 | ∀b2 : other_block p g. |
---|
570 | instantiates_to ? (other_block p g) B1 l1 (pi1 … b1) → |
---|
571 | instantiates_to ? (other_block p g) B2 l2 b2 → |
---|
572 | instantiates_to ? (other_block p g) (B1 @@ B2) (l1 @ l2) (b1 @@ b2). |
---|
573 | #p #g * #B1 elim B1 -B1 |
---|
574 | [ #B1 | #f1 #IH1 ] |
---|
575 | #B1prf whd in B1prf; |
---|
576 | #B2 * [2,4: #r1 #l1' ] #l2 #b1 #b2 [1,4: *] |
---|
577 | whd in ⊢ (%→?); |
---|
578 | [ @IH1 |
---|
579 | | #EQ destruct(EQ) lapply b2 -b2 lapply l2 -l2 elim B2 -B2 |
---|
580 | [ #B2 | #f2 #IH2] * [2,4: #r2 #l2'] #b2 [1,4: *] |
---|
581 | whd in ⊢ (%→?); |
---|
582 | [ @IH2 |
---|
583 | | #EQ' whd destruct @other_block_append_proof_irr % |
---|
584 | ] |
---|
585 | ] |
---|
586 | qed. |
---|
587 | |
---|
588 | lemma other_fin_step_has_one_label : |
---|
589 | ∀p,g.∀s:(Σs.fin_step_classifier p g s = cl_other). |
---|
590 | match fin_step_labels ?? s with |
---|
591 | [ nil ⇒ False |
---|
592 | | cons _ tl ⇒ |
---|
593 | match tl with |
---|
594 | [ nil ⇒ True |
---|
595 | | _ ⇒ False |
---|
596 | ] |
---|
597 | ]. |
---|
598 | #p #g ** [#lbl || #ext] |
---|
599 | normalize |
---|
600 | [3: cases (ext_fin_step_flows p ext) |
---|
601 | [* [2: #lbl' * [2: #lbl'' #tl']]] normalize nodelta ] |
---|
602 | #EQ destruct % |
---|
603 | qed. |
---|
604 | |
---|
605 | definition label_of_other_fin_step : ∀p,g. |
---|
606 | (Σs.fin_step_classifier p g s = cl_other) → label ≝ |
---|
607 | λp,g,s. |
---|
608 | match fin_step_labels p ? s return λx.match x with [ nil ⇒ ? | cons _ tl ⇒ ?] → ? with |
---|
609 | [ nil ⇒ Ⓧ |
---|
610 | | cons lbl tl ⇒ λ_.lbl |
---|
611 | ] (other_fin_step_has_one_label p g s). |
---|
612 | |
---|
613 | (* |
---|
614 | definition point_seq_transition : ∀p,g.codeT p g → |
---|
615 | code_point p → code_point p → Prop ≝ |
---|
616 | λp,g,c,src,dst. |
---|
617 | match stmt_at … c src with |
---|
618 | [ Some stmt ⇒ match stmt with |
---|
619 | [ sequential sq nxt ⇒ |
---|
620 | point_of_succ … src nxt = dst |
---|
621 | | final fn ⇒ |
---|
622 | match fin_step_labels … fn with |
---|
623 | [ nil ⇒ False |
---|
624 | | cons lbl tl ⇒ |
---|
625 | match tl with |
---|
626 | [ nil ⇒ point_of_label … c lbl = Some ? dst |
---|
627 | | _ ⇒ False |
---|
628 | ] |
---|
629 | ] |
---|
630 | ] |
---|
631 | | None ⇒ False |
---|
632 | ]. |
---|
633 | |
---|
634 | lemma point_seq_transition_label_of_other_fin_step : |
---|
635 | ∀p,c,src.∀s : (Σs.fin_step_classifier p s = cl_other).∀dst. |
---|
636 | stmt_at ?? c src = Some ? s → |
---|
637 | point_seq_transition p c src dst → |
---|
638 | point_of_label … c (label_of_other_fin_step p s) = Some ? dst. |
---|
639 | #p #c #src ** [#lbl || #ext] #EQ1 |
---|
640 | #dst #EQ2 |
---|
641 | whd in match point_seq_transition; normalize nodelta |
---|
642 | >EQ2 normalize nodelta whd in ⊢ (?→??(????%)?); |
---|
643 | [#H @H | * ] |
---|
644 | lapply (other_fin_step_has_one_label ? «ext,?») |
---|
645 | cases (fin_step_labels p ? ext) normalize nodelta [*] |
---|
646 | #hd * normalize nodelta [2: #_ #_ *] * |
---|
647 | #H @H |
---|
648 | qed. |
---|
649 | |
---|
650 | lemma point_seq_transition_succ : |
---|
651 | ∀p,c,src.∀s,nxt.∀dst. |
---|
652 | stmt_at ?? c src = Some ? (sequential ?? s nxt) → |
---|
653 | point_seq_transition p c src dst → |
---|
654 | point_of_succ … src nxt = dst. |
---|
655 | #p #c #src #s #nxt #dst #EQ |
---|
656 | whd in match point_seq_transition; normalize nodelta |
---|
657 | >EQ normalize nodelta #H @H |
---|
658 | qed. |
---|
659 | *) |
---|
660 | |
---|
661 | definition if_other : ∀p,g.∀A : Type[2].seq_or_fin_step p g → A → A → A ≝ |
---|
662 | λp,g,A,c.match seq_or_fin_step_classifier p g c with |
---|
663 | [ cl_other ⇒ λx,y.x |
---|
664 | | _ ⇒ λx,y.y |
---|
665 | ]. |
---|
666 | |
---|
667 | definition other_step_in_code ≝ |
---|
668 | λp,g. |
---|
669 | λc : codeT p g. |
---|
670 | λsrc : code_point p. |
---|
671 | λs : seq_or_fin_step p g. |
---|
672 | match s return λx.if_other p g ? x (code_point p) unit → Prop with |
---|
673 | [ inl s'' ⇒ λdst.∃n.stmt_at … c src = Some ? (sequential … s'' n) ∧ ? |
---|
674 | | inr s'' ⇒ λdst.stmt_at … c src = Some ? (final … s'') ∧ ? |
---|
675 | ]. |
---|
676 | [ whd in dst; cases (seq_or_fin_step_classifier ???) in dst; |
---|
677 | normalize nodelta [1,2,3: #_ @True |*: #dst |
---|
678 | @(point_of_succ … src n = dst)] |
---|
679 | | whd in dst; |
---|
680 | lapply dst -dst |
---|
681 | lapply (refl … (seq_or_fin_step_classifier ?? (inr … s''))) |
---|
682 | cases (seq_or_fin_step_classifier ?? (inr … s'')) in ⊢ (???%→%); |
---|
683 | normalize nodelta |
---|
684 | [1,2,3: #_ #_ @True |
---|
685 | |*: #EQ #dst |
---|
686 | @(point_of_label … c (label_of_other_fin_step p g «s'', EQ») = Some ? dst) |
---|
687 | ] |
---|
688 | ] |
---|
689 | qed. |
---|
690 | |
---|
691 | definition if_other_sig : |
---|
692 | ∀p,g.∀B,C : Type[0].∀s : Σs.seq_or_fin_step_classifier p g s = cl_other. |
---|
693 | if_other p g ? s B C → B ≝ |
---|
694 | λp,g,B,C.?. |
---|
695 | ** #s whd in match (if_other ??????); |
---|
696 | cases (seq_or_fin_step_classifier ???) normalize nodelta #EQ destruct(EQ) |
---|
697 | #x @x |
---|
698 | qed. |
---|
699 | |
---|
700 | definition if_other_block_sig : |
---|
701 | ∀p,g.∀B,C : Type[0].∀b : Σb.block_classifier p g b = cl_other. |
---|
702 | if_other p g ? (\snd b) B C → B ≝ |
---|
703 | λp,g,B,C.?. |
---|
704 | ** #l #s |
---|
705 | #prf #x @(if_other_sig ???? «s, prf» x) |
---|
706 | qed. |
---|
707 | |
---|
708 | coercion other_sig_to_if nocomposites: |
---|
709 | ∀p,g.∀B,C : Type[0].∀s : Σs.seq_or_fin_step_classifier p g s = cl_other. |
---|
710 | ∀x : if_other p g ? s B C.B ≝ if_other_sig |
---|
711 | on _x : if_other ?? Type[0] ??? to ?. |
---|
712 | |
---|
713 | coercion other_block_sig_to_if nocomposites: |
---|
714 | ∀p,g.∀B,C : Type[0].∀s : Σs.block_classifier p g s = cl_other. |
---|
715 | ∀x : if_other p g ? (\snd s) B C.B ≝ if_other_block_sig |
---|
716 | on _x : if_other ?? Type[0] (\snd ?) ?? to ?. |
---|
717 | |
---|
718 | let rec other_list_in_code p g (c : codeT p g) |
---|
719 | src |
---|
720 | (b : list (Σs.seq_or_fin_step_classifier p g s = cl_other)) |
---|
721 | dst on b : Prop ≝ |
---|
722 | match b with |
---|
723 | [ nil ⇒ src = dst |
---|
724 | | cons hd tl ⇒ ∃mid. |
---|
725 | other_step_in_code p g c src hd mid ∧ other_list_in_code p g c mid tl dst |
---|
726 | ]. |
---|
727 | |
---|
728 | notation > "x ~❨ B ❩~> y 'in' c" with precedence 56 for |
---|
729 | @{'block_in_code $c $x $B $y}. |
---|
730 | |
---|
731 | notation < "hvbox(x ~❨ B ❩~> y \nbsp 'in' \nbsp break c)" with precedence 56 for |
---|
732 | @{'block_in_code $c $x $B $y}. |
---|
733 | |
---|
734 | interpretation "list in code" 'block_in_code c x B y = |
---|
735 | (other_list_in_code ?? c x B y). |
---|
736 | |
---|
737 | definition other_block_in_code : ∀p,g.codeT p g → |
---|
738 | code_point p → ∀b : other_block p g. |
---|
739 | if_other … (\snd b) (code_point p) unit → Prop ≝ |
---|
740 | λp,g,c,src,b,dst. |
---|
741 | ∃mid.src ~❨\fst b❩~> mid in c ∧ |
---|
742 | other_step_in_code p g c mid (\snd b) dst. |
---|
743 | |
---|
744 | interpretation "block in code" 'block_in_code c x B y = |
---|
745 | (other_block_in_code ?? c x B y). |
---|
746 | |
---|
747 | lemma other_list_in_code_append : ∀p,g.∀c : codeT p g. |
---|
748 | ∀x.∀b1 : list ?. |
---|
749 | ∀y.∀b2 : list ?.∀z. |
---|
750 | x ~❨b1❩~> y in c→ y ~❨b2❩~> z in c → x ~❨b1@b2❩~> z in c. |
---|
751 | #p#g#c#x#b1 lapply x -x |
---|
752 | elim b1 [2: ** #hd #hd_prf #tl #IH] #x #y #b2 #z |
---|
753 | [3: #EQ normalize in EQ; destruct #H @H] |
---|
754 | * #mid * normalize nodelta [ *#n ] #H1 #H2 #H3 |
---|
755 | whd normalize nodelta %{mid} |
---|
756 | %{(IH … H2 H3)} |
---|
757 | [ %{n} ] @H1 |
---|
758 | qed. |
---|
759 | |
---|
760 | lemma other_block_in_code_append : ∀p,g.∀c : codeT p g.∀x. |
---|
761 | ∀B1 : Σb.block_classifier p g b = cl_other. |
---|
762 | ∀y. |
---|
763 | ∀B2 : other_block p g. |
---|
764 | ∀z. |
---|
765 | x ~❨B1❩~> y in c → y ~❨B2❩~> z in c → |
---|
766 | x ~❨B1@@B2❩~> z in c. |
---|
767 | #p#g#c #x ** #hd1 *#tl1 #tl1prf |
---|
768 | #y * #hd2 #tl2 #z |
---|
769 | * #mid1 * #H1 #H2 |
---|
770 | * #mid2 * #G1 #G2 |
---|
771 | %{mid2} %{G2} |
---|
772 | whd in match (\fst ?); |
---|
773 | @(other_list_in_code_append … H1) |
---|
774 | %{y} %{H2 G1} |
---|
775 | qed. |
---|
776 | |
---|
777 | (* |
---|
778 | definition instr_block_in_function : |
---|
779 | ∀p : evaluation_params.∀fn : joint_internal_function (globals p) p. |
---|
780 | code_point p → |
---|
781 | ∀b : bind_other_block p. |
---|
782 | ? → Prop ≝ |
---|
783 | λp,fn,src,B,dst. |
---|
784 | ∃vars,B'. |
---|
785 | All ? (In ? (joint_if_locals … fn)) vars ∧ |
---|
786 | instantiates_to … B vars B' ∧ |
---|
787 | src ~❨B'❩~> dst in joint_if_code … fn. |
---|
788 | |
---|
789 | interpretation "bind block in function" 'block_in_code fn x B y = |
---|
790 | (instr_block_in_function ? fn x B y). |
---|
791 | |
---|
792 | lemma instr_block_in_function_trans : |
---|
793 | ∀p,fn,src. |
---|
794 | ∀B1 : ΣB.bind_pred ? (λb.block_classifier p b = cl_other) B. |
---|
795 | ∀mid. |
---|
796 | ∀B2 : bind_other_block p. |
---|
797 | ∀dst. |
---|
798 | src ~❨B1❩~> Some ? mid in fn → |
---|
799 | mid ~❨B2❩~> dst in fn → |
---|
800 | src ~❨B1@@B2❩~> dst in fn. |
---|
801 | #p#fn#src*#B1#B1prf#mid#B2#dst |
---|
802 | * #vars1 * #b1 ** #vars1_ok #b1B1 #b1_in |
---|
803 | * #vars2 * #b2 ** #vars2_ok #b2B2 #b2_in |
---|
804 | %{(vars1@vars2)} %{(«b1,instantiates_to_bind_pred … b1B1 B1prf» @@ b2)} |
---|
805 | /4 by All_append, conj, is_other_block_instance_append, other_block_in_code_append/ |
---|
806 | qed. |
---|
807 | *) |
---|
808 | *) |
---|
809 | *) |
---|