1 | include "joint/Joint_paolo.ma". |
---|
2 | include "utilities/bindLists.ma". |
---|
3 | |
---|
4 | inductive block_step (p : stmt_params) (globals : list ident) : Type[0] ≝ |
---|
5 | | block_seq : joint_seq p globals → block_step p globals |
---|
6 | | block_skip : label → block_step p globals. |
---|
7 | |
---|
8 | definition if_seq : ∀p,globals.∀A:Type[2].block_step p globals → A → A → A ≝ |
---|
9 | λp,g,A,s.match s with |
---|
10 | [ block_seq _ ⇒ λx,y.x |
---|
11 | | _ ⇒ λx,y.y |
---|
12 | ]. |
---|
13 | |
---|
14 | definition stmt_of_block_step : ∀p : stmt_params.∀globals. |
---|
15 | ∀s : block_step p globals.if_seq … s (succ p) unit → joint_statement p globals ≝ |
---|
16 | λp,g,s.match s return λx.if_seq ??? x ?? → joint_statement ?? with |
---|
17 | [ block_seq s' ⇒ λnxt.sequential … s' nxt |
---|
18 | | block_skip l ⇒ λ_.GOTO … l |
---|
19 | ]. |
---|
20 | |
---|
21 | definition seq_to_block_step_list : ∀p : stmt_params.∀globals. |
---|
22 | list (joint_seq p globals) → |
---|
23 | list (block_step p globals) ≝ λp,globals.map ?? (block_seq ??). |
---|
24 | |
---|
25 | coercion block_step_from_seq_list : ∀p : stmt_params.∀globals. |
---|
26 | ∀l:list (joint_seq p globals). |
---|
27 | list (block_step p globals) ≝ |
---|
28 | seq_to_block_step_list |
---|
29 | on _l:list (joint_seq ??) |
---|
30 | to list (block_step ??). |
---|
31 | |
---|
32 | definition is_inr : ∀A,B.A + B → bool ≝ λA,B,x.match x with |
---|
33 | [ inl _ ⇒ true |
---|
34 | | inr _ ⇒ false |
---|
35 | ]. |
---|
36 | definition is_inl : ∀A,B.A + B → bool ≝ λA,B,x.match x with |
---|
37 | [ inl _ ⇒ true |
---|
38 | | inr _ ⇒ false |
---|
39 | ]. |
---|
40 | |
---|
41 | definition skip_block ≝ λp,globals,A. |
---|
42 | (list (block_step p globals)) × A. |
---|
43 | |
---|
44 | definition seq_block ≝ λp : stmt_params.λglobals,A. |
---|
45 | (list (joint_seq p globals)) × A. |
---|
46 | |
---|
47 | definition seq_to_skip_block : |
---|
48 | ∀p,g,A.seq_block p g A → skip_block p g A |
---|
49 | ≝ λp,g,A,b.〈\fst b, \snd b〉. |
---|
50 | |
---|
51 | coercion skip_from_seq_block : |
---|
52 | ∀p,g,A.∀b : seq_block p g A.skip_block p g A ≝ |
---|
53 | seq_to_skip_block on _b : seq_block ??? to skip_block ???. |
---|
54 | |
---|
55 | definition bind_seq_block ≝ λp : stmt_params.λglobals,A. |
---|
56 | bind_new (localsT p) (seq_block p globals A). |
---|
57 | unification hint 0 ≔ p : stmt_params, g, X; |
---|
58 | R ≟ localsT p, |
---|
59 | P ≟ seq_block p g X |
---|
60 | (*---------------------------------------*)⊢ |
---|
61 | bind_seq_block p g X ≡ bind_new R P. |
---|
62 | |
---|
63 | definition bind_seq_list ≝ λp : stmt_params.λglobals. |
---|
64 | bind_new (localsT p) (list (joint_seq p globals)). |
---|
65 | unification hint 0 ≔ p : stmt_params, g; |
---|
66 | R ≟ localsT p, |
---|
67 | S ≟ joint_seq p g, |
---|
68 | L ≟ list S |
---|
69 | (*---------------------------------------*)⊢ |
---|
70 | bind_seq_list p g ≡ bind_new R L. |
---|
71 | |
---|
72 | definition bind_skip_block ≝ λp : stmt_params.λglobals,A. |
---|
73 | bind_new (localsT p) (skip_block p globals A). |
---|
74 | unification hint 0 ≔ p : stmt_params, g, A; |
---|
75 | B ≟ skip_block p g A, R ≟ localsT p |
---|
76 | (*---------------------------------------*)⊢ |
---|
77 | bind_skip_block p g A ≡ bind_new R B. |
---|
78 | |
---|
79 | definition bind_seq_to_skip_block : |
---|
80 | ∀p,g,A.bind_seq_block p g A → bind_skip_block p g A ≝ |
---|
81 | λp,g,A.m_map ? (seq_block p g A) (skip_block p g A) |
---|
82 | (λx.x). |
---|
83 | |
---|
84 | coercion bind_skip_from_seq_block : |
---|
85 | ∀p,g,A.∀b:bind_seq_block p g A.bind_skip_block p g A ≝ |
---|
86 | bind_seq_to_skip_block on _b : bind_seq_block ??? to bind_skip_block ???. |
---|
87 | (* |
---|
88 | definition block_classifier ≝ |
---|
89 | λp,g.λb : other_block p g. |
---|
90 | seq_or_fin_step_classifier ?? (\snd b). |
---|
91 | *) |
---|
92 | |
---|
93 | let rec split_on_last A (dflt : A) (l : list A) on l : (list A) × A ≝ |
---|
94 | match l with |
---|
95 | [ nil ⇒ 〈[ ], dflt〉 |
---|
96 | | cons hd tl ⇒ |
---|
97 | match tl with |
---|
98 | [ nil ⇒ 〈[ ], hd〉 |
---|
99 | | _ ⇒ |
---|
100 | let 〈pref, post〉 ≝ split_on_last A dflt tl in |
---|
101 | 〈hd :: pref, post〉 |
---|
102 | ] |
---|
103 | ]. |
---|
104 | |
---|
105 | lemma split_on_last_ok : |
---|
106 | ∀A,dflt,l. |
---|
107 | match l with |
---|
108 | [ nil ⇒ True |
---|
109 | | _ ⇒ l = (let 〈pre, post〉 ≝ split_on_last A dflt l in pre @ [post]) |
---|
110 | ]. |
---|
111 | #A #dflt #l elim l normalize nodelta |
---|
112 | [ % |
---|
113 | | #hd * [ #_ %] |
---|
114 | #hd' #tl #IH whd in match (split_on_last ???); >IH in ⊢ (??%?); |
---|
115 | elim (split_on_last ???) #a #b % |
---|
116 | ] |
---|
117 | qed. |
---|
118 | |
---|
119 | definition seq_block_from_seq_list : |
---|
120 | ∀p : stmt_params.∀g.list (joint_seq p g) → seq_block p g (joint_step p g) ≝ |
---|
121 | λp,g,l.let 〈pre,post〉 ≝ split_on_last … (NOOP ??) l in 〈pre, (post : joint_step ??)〉. |
---|
122 | |
---|
123 | definition bind_seq_block_from_bind_seq_list : |
---|
124 | ∀p : stmt_params.∀g.bind_new (localsT p) (list (joint_seq p g)) → |
---|
125 | bind_seq_block p g (joint_step p g) ≝ λp.λg.m_map … (seq_block_from_seq_list …). |
---|
126 | |
---|
127 | definition bind_seq_block_step : |
---|
128 | ∀p,g.bind_seq_block p g (joint_step p g) → |
---|
129 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
130 | λp,g.inl …. |
---|
131 | coercion bind_seq_block_from_step : |
---|
132 | ∀p,g.∀b:bind_seq_block p g (joint_step p g). |
---|
133 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
134 | bind_seq_block_step on _b : bind_seq_block ?? (joint_step ??) to |
---|
135 | bind_seq_block ?? (joint_step ??) + bind_seq_block ?? (joint_fin_step ?). |
---|
136 | |
---|
137 | definition bind_seq_block_fin_step : |
---|
138 | ∀p,g.bind_seq_block p g (joint_fin_step p) → |
---|
139 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
140 | λp,g.inr …. |
---|
141 | coercion bind_seq_block_from_fin_step : |
---|
142 | ∀p,g.∀b:bind_seq_block p g (joint_fin_step p). |
---|
143 | bind_seq_block p g (joint_step p g) + bind_seq_block p g (joint_fin_step p) ≝ |
---|
144 | bind_seq_block_fin_step on _b : bind_seq_block ?? (joint_fin_step ?) to |
---|
145 | bind_seq_block ?? (joint_step ??) + bind_seq_block ?? (joint_fin_step ?). |
---|
146 | |
---|
147 | definition seq_block_bind_seq_block : |
---|
148 | ∀p : stmt_params.∀g,A.seq_block p g A → bind_seq_block p g A ≝ λp,g,A.bret …. |
---|
149 | coercion seq_block_to_bind_seq_block : |
---|
150 | ∀p : stmt_params.∀g,A.∀b:seq_block p g A.bind_seq_block p g A ≝ |
---|
151 | seq_block_bind_seq_block |
---|
152 | on _b : seq_block ??? to bind_seq_block ???. |
---|
153 | |
---|
154 | definition joint_step_seq_block : ∀p : stmt_params.∀g.joint_step p g → seq_block p g (joint_step p g) ≝ |
---|
155 | λp,g,x.〈[ ], x〉. |
---|
156 | coercion joint_step_to_seq_block : ∀p : stmt_params.∀g.∀b : joint_step p g.seq_block p g (joint_step p g) ≝ |
---|
157 | joint_step_seq_block on _b : joint_step ?? to seq_block ?? (joint_step ??). |
---|
158 | |
---|
159 | definition joint_fin_step_seq_block : ∀p : stmt_params.∀g.joint_fin_step p → seq_block p g (joint_fin_step p) ≝ |
---|
160 | λp,g,x.〈[ ], x〉. |
---|
161 | coercion joint_fin_step_to_seq_block : ∀p : stmt_params.∀g.∀b : joint_fin_step p.seq_block p g (joint_fin_step p) ≝ |
---|
162 | joint_fin_step_seq_block on _b : joint_fin_step ? to seq_block ?? (joint_fin_step ?). |
---|
163 | |
---|
164 | definition seq_list_seq_block : |
---|
165 | ∀p:stmt_params.∀g.list (joint_seq p g) → seq_block p g (joint_step p g) ≝ |
---|
166 | λp,g,l.let pr ≝ split_on_last … (NOOP ??) l in 〈\fst pr, \snd pr〉. |
---|
167 | coercion seq_list_to_seq_block : |
---|
168 | ∀p:stmt_params.∀g.∀l:list (joint_seq p g).seq_block p g (joint_step p g) ≝ |
---|
169 | seq_list_seq_block on _l : list (joint_seq ??) to seq_block ?? (joint_step ??). |
---|
170 | |
---|
171 | definition bind_seq_list_bind_seq_block : |
---|
172 | ∀p:stmt_params.∀g.bind_new (localsT p) (list (joint_seq p g)) → bind_seq_block p g (joint_step p g) ≝ |
---|
173 | λp,g.m_map ??? (λx : list (joint_seq ??).(x : seq_block ???)). |
---|
174 | |
---|
175 | coercion bind_seq_list_to_bind_seq_block : |
---|
176 | ∀p:stmt_params.∀g.∀l:bind_new (localsT p) (list (joint_seq p g)).bind_seq_block p g (joint_step p g) ≝ |
---|
177 | bind_seq_list_bind_seq_block on _l : bind_new ? (list (joint_seq ??)) to bind_seq_block ?? (joint_step ??). |
---|
178 | |
---|
179 | (* |
---|
180 | |
---|
181 | definition seq_block_append : |
---|
182 | ∀p,g. |
---|
183 | ∀b1 : Σb.is_safe_block p g b. |
---|
184 | ∀b2 : seq_block p g. |
---|
185 | seq_block p g ≝ λp,g,b1,b2. |
---|
186 | 〈match b1 with |
---|
187 | [ mk_Sig instr prf ⇒ |
---|
188 | match \snd instr return λx.bool_to_Prop (is_inl … x) ∧ seq_or_fin_step_classifier … x = ? → ? with |
---|
189 | [ inl i ⇒ λprf.\fst b1 @ i :: \fst b2 |
---|
190 | | inr _ ⇒ λprf.⊥ |
---|
191 | ] prf |
---|
192 | ],\snd b2〉. |
---|
193 | cases prf #H1 #H2 assumption |
---|
194 | qed. |
---|
195 | |
---|
196 | definition other_block_append : |
---|
197 | ∀p,g. |
---|
198 | (Σb.block_classifier ?? b = cl_other) → |
---|
199 | other_block p g → |
---|
200 | other_block p g ≝ λp,g,b1,b2. |
---|
201 | 〈\fst b1 @ «\snd b1, pi2 … b1» :: \fst b2, \snd b2〉. |
---|
202 | |
---|
203 | definition seq_block_cons : ∀p : stmt_params.∀g.(Σs.step_classifier p g s = cl_other) → |
---|
204 | seq_block p g → seq_block p g ≝ |
---|
205 | λp,g,x,b.〈x :: \fst b,\snd b〉. |
---|
206 | definition other_block_cons : ∀p,g. |
---|
207 | (Σs.seq_or_fin_step_classifier p g s = cl_other) → other_block p g → |
---|
208 | other_block p g ≝ |
---|
209 | λp,g,x,b.〈x :: \fst b,\snd b〉. |
---|
210 | |
---|
211 | interpretation "seq block cons" 'cons x b = (seq_block_cons ?? x b). |
---|
212 | interpretation "other block cons" 'vcons x b = (other_block_cons ?? x b). |
---|
213 | interpretation "seq block append" 'append b1 b2 = (seq_block_append ?? b1 b2). |
---|
214 | interpretation "other block append" 'vappend b1 b2 = (other_block_append ?? b1 b2). |
---|
215 | |
---|
216 | definition step_to_block : ∀p,g. |
---|
217 | seq_or_fin_step p g → seq_block p g ≝ λp,g,s.〈[ ], s〉. |
---|
218 | |
---|
219 | coercion block_from_step : ∀p,g.∀s : seq_or_fin_step p g. |
---|
220 | seq_block p g ≝ step_to_block on _s : seq_or_fin_step ?? to seq_block ??. |
---|
221 | |
---|
222 | definition bind_seq_block_cons : |
---|
223 | ∀p : stmt_params.∀g,is_seq. |
---|
224 | (Σs.step_classifier p g s = cl_other) → bind_seq_block p g is_seq → |
---|
225 | bind_seq_block p g is_seq ≝ |
---|
226 | λp,g,is_seq,x.m_map ??? (λb.〈x::\fst b,\snd b〉). |
---|
227 | |
---|
228 | definition bind_other_block_cons : |
---|
229 | ∀p,g.(Σs.seq_or_fin_step_classifier p g s = cl_other) → bind_other_block p g → bind_other_block p g ≝ |
---|
230 | λp,g,x.m_map … (other_block_cons … x). |
---|
231 | |
---|
232 | let rec bind_pred_aux B X (P : X → Prop) (c : bind_new B X) on c : Prop ≝ |
---|
233 | match c with |
---|
234 | [ bret x ⇒ P x |
---|
235 | | bnew f ⇒ ∀b.bind_pred_aux B X P (f b) |
---|
236 | ]. |
---|
237 | |
---|
238 | let rec bind_pred_inj_aux B X (P : X → Prop) (c : bind_new B X) on c : |
---|
239 | bind_pred_aux B X P c → bind_new B (Σx.P x) ≝ |
---|
240 | match c return λx.bind_pred_aux B X P x → bind_new B (Σx.P x) with |
---|
241 | [ bret x ⇒ λprf.return «x, prf» |
---|
242 | | bnew f ⇒ λprf.bnew … (λx.bind_pred_inj_aux B X P (f x) (prf x)) |
---|
243 | ]. |
---|
244 | |
---|
245 | definition bind_pred ≝ λB. |
---|
246 | mk_InjMonadPred (BindNew B) |
---|
247 | (mk_MonadPred ? |
---|
248 | (bind_pred_aux B) |
---|
249 | ???) |
---|
250 | (λX,P,c_sig.bind_pred_inj_aux B X P c_sig (pi2 … c_sig)) |
---|
251 | ?. |
---|
252 | [ #X #P #Q #H #y elim y [ #x @H | #f #IH #G #b @IH @G] |
---|
253 | | #X #Y #Pin #Pout #m elim m [#x | #f #IH] #H #g #G [ @G @H | #b @(IH … G) @H] |
---|
254 | | #X #P #x #Px @Px |
---|
255 | | #X #P * #m elim m [#x | #f #IH] #H [ % | @bnew_proper #b @IH] |
---|
256 | ] |
---|
257 | qed. |
---|
258 | |
---|
259 | definition bind_seq_block_append : |
---|
260 | ∀p,g,is_seq.(Σb : bind_seq_block p g true.bind_pred ? (λb.step_classifier p g (\snd b) = cl_other) b) → |
---|
261 | bind_seq_block p g is_seq → bind_seq_block p g is_seq ≝ |
---|
262 | λp,g,is_seq,b1,b2. |
---|
263 | !«p, prf» ← mp_inject … b1; |
---|
264 | !〈post, last〉 ← b2; |
---|
265 | return 〈\fst p @ «\snd p, prf» :: post, last〉. |
---|
266 | |
---|
267 | definition bind_other_block_append : |
---|
268 | ∀p,g.(Σb : bind_other_block p g.bind_pred ? |
---|
269 | (λx.block_classifier ?? x = cl_other) b) → |
---|
270 | bind_other_block p g → bind_other_block p g ≝ |
---|
271 | λp,g,b1.m_bin_op … (other_block_append ??) (mp_inject … b1). |
---|
272 | |
---|
273 | interpretation "bind seq block cons" 'cons x b = (bind_seq_block_cons ??? x b). |
---|
274 | interpretation "bind other block cons" 'vcons x b = (bind_other_block_cons ?? x b). |
---|
275 | interpretation "bind seq block append" 'append b1 b2 = (bind_seq_block_append ??? b1 b2). |
---|
276 | interpretation "bind other block append" 'vappend b1 b2 = (bind_other_block_append ?? b1 b2). |
---|
277 | |
---|
278 | let rec instantiates_to B X |
---|
279 | (b : bind_new B X) (l : list B) (x : X) on b : Prop ≝ |
---|
280 | match b with |
---|
281 | [ bret B ⇒ |
---|
282 | match l with |
---|
283 | [ nil ⇒ x = B |
---|
284 | | _ ⇒ False |
---|
285 | ] |
---|
286 | | bnew f ⇒ |
---|
287 | match l with |
---|
288 | [ nil ⇒ False |
---|
289 | | cons r l' ⇒ |
---|
290 | instantiates_to B X (f r) l' x |
---|
291 | ] |
---|
292 | ]. |
---|
293 | |
---|
294 | lemma instantiates_to_bind_pred : |
---|
295 | ∀B,X,P,b,l,x.instantiates_to B X b l x → bind_pred B P b → P x. |
---|
296 | #B #X #P #b elim b |
---|
297 | [ #x * [ #y #EQ >EQ normalize // | #hd #tl #y *] |
---|
298 | | #f #IH * [ #y * | #hd #tl normalize #b #H #G @(IH … H) @G ] |
---|
299 | ] |
---|
300 | qed. |
---|
301 | |
---|
302 | lemma seq_block_append_proof_irr : |
---|
303 | ∀p,g,b1,b1',b2.pi1 ?? b1 = pi1 ?? b1' → |
---|
304 | seq_block_append p g b1 b2 = seq_block_append p g b1' b2. |
---|
305 | #p #g * #b1 #b1prf * #b1' #b1prf' #b2 #EQ destruct(EQ) % |
---|
306 | qed. |
---|
307 | |
---|
308 | lemma other_block_append_proof_irr : |
---|
309 | ∀p,g,b1,b1',b2.pi1 ?? b1 = pi1 ?? b1' → |
---|
310 | other_block_append p g b1 b2 = other_block_append p g b1' b2. |
---|
311 | #p #g * #b1 #b1prf * #b1' #b1prf' #b2 #EQ destruct(EQ) % |
---|
312 | qed. |
---|
313 | |
---|
314 | (* |
---|
315 | lemma is_seq_block_instance_append : ∀p,g,is_seq. |
---|
316 | ∀B1. |
---|
317 | ∀B2 : bind_seq_block p g is_seq. |
---|
318 | ∀l1,l2. |
---|
319 | ∀b1 : Σb.is_safe_block p g b. |
---|
320 | ∀b2 : seq_block p g. |
---|
321 | instantiates_to ? (seq_block p g) B1 l1 (pi1 … b1) → |
---|
322 | instantiates_to ? (seq_block p g) B2 l2 b2 → |
---|
323 | instantiates_to ? (seq_block p g) (B1 @ B2) (l1 @ l2) (b1 @ b2). |
---|
324 | #p #g * #B1 elim B1 -B1 |
---|
325 | [ #B1 | #f1 #IH1 ] |
---|
326 | #B1prf whd in B1prf; |
---|
327 | #B2 * [2,4: #r1 #l1' ] #l2 #b1 #b2 [1,4: *] |
---|
328 | whd in ⊢ (%→?); |
---|
329 | [ @IH1 |
---|
330 | | #EQ destruct(EQ) lapply b2 -b2 lapply l2 -l2 elim B2 -B2 |
---|
331 | [ #B2 | #f2 #IH2] * [2,4: #r2 #l2'] #b2 [1,4: *] |
---|
332 | whd in ⊢ (%→?); |
---|
333 | [ @IH2 |
---|
334 | | #EQ' whd destruct @seq_block_append_proof_irr % |
---|
335 | ] |
---|
336 | ] |
---|
337 | qed. |
---|
338 | |
---|
339 | lemma is_other_block_instance_append : ∀p,g. |
---|
340 | ∀B1 : Σb.bind_pred ? (λx.block_classifier p g x = cl_other) b. |
---|
341 | ∀B2 : bind_other_block p g. |
---|
342 | ∀l1,l2. |
---|
343 | ∀b1 : Σb.block_classifier p g b = cl_other. |
---|
344 | ∀b2 : other_block p g. |
---|
345 | instantiates_to ? (other_block p g) B1 l1 (pi1 … b1) → |
---|
346 | instantiates_to ? (other_block p g) B2 l2 b2 → |
---|
347 | instantiates_to ? (other_block p g) (B1 @@ B2) (l1 @ l2) (b1 @@ b2). |
---|
348 | #p #g * #B1 elim B1 -B1 |
---|
349 | [ #B1 | #f1 #IH1 ] |
---|
350 | #B1prf whd in B1prf; |
---|
351 | #B2 * [2,4: #r1 #l1' ] #l2 #b1 #b2 [1,4: *] |
---|
352 | whd in ⊢ (%→?); |
---|
353 | [ @IH1 |
---|
354 | | #EQ destruct(EQ) lapply b2 -b2 lapply l2 -l2 elim B2 -B2 |
---|
355 | [ #B2 | #f2 #IH2] * [2,4: #r2 #l2'] #b2 [1,4: *] |
---|
356 | whd in ⊢ (%→?); |
---|
357 | [ @IH2 |
---|
358 | | #EQ' whd destruct @other_block_append_proof_irr % |
---|
359 | ] |
---|
360 | ] |
---|
361 | qed. |
---|
362 | |
---|
363 | lemma other_fin_step_has_one_label : |
---|
364 | ∀p,g.∀s:(Σs.fin_step_classifier p g s = cl_other). |
---|
365 | match fin_step_labels ?? s with |
---|
366 | [ nil ⇒ False |
---|
367 | | cons _ tl ⇒ |
---|
368 | match tl with |
---|
369 | [ nil ⇒ True |
---|
370 | | _ ⇒ False |
---|
371 | ] |
---|
372 | ]. |
---|
373 | #p #g ** [#lbl || #ext] |
---|
374 | normalize |
---|
375 | [3: cases (ext_fin_step_flows p ext) |
---|
376 | [* [2: #lbl' * [2: #lbl'' #tl']]] normalize nodelta ] |
---|
377 | #EQ destruct % |
---|
378 | qed. |
---|
379 | |
---|
380 | definition label_of_other_fin_step : ∀p,g. |
---|
381 | (Σs.fin_step_classifier p g s = cl_other) → label ≝ |
---|
382 | λp,g,s. |
---|
383 | match fin_step_labels p ? s return λx.match x with [ nil ⇒ ? | cons _ tl ⇒ ?] → ? with |
---|
384 | [ nil ⇒ Ⓧ |
---|
385 | | cons lbl tl ⇒ λ_.lbl |
---|
386 | ] (other_fin_step_has_one_label p g s). |
---|
387 | |
---|
388 | (* |
---|
389 | definition point_seq_transition : ∀p,g.codeT p g → |
---|
390 | code_point p → code_point p → Prop ≝ |
---|
391 | λp,g,c,src,dst. |
---|
392 | match stmt_at … c src with |
---|
393 | [ Some stmt ⇒ match stmt with |
---|
394 | [ sequential sq nxt ⇒ |
---|
395 | point_of_succ … src nxt = dst |
---|
396 | | final fn ⇒ |
---|
397 | match fin_step_labels … fn with |
---|
398 | [ nil ⇒ False |
---|
399 | | cons lbl tl ⇒ |
---|
400 | match tl with |
---|
401 | [ nil ⇒ point_of_label … c lbl = Some ? dst |
---|
402 | | _ ⇒ False |
---|
403 | ] |
---|
404 | ] |
---|
405 | ] |
---|
406 | | None ⇒ False |
---|
407 | ]. |
---|
408 | |
---|
409 | lemma point_seq_transition_label_of_other_fin_step : |
---|
410 | ∀p,c,src.∀s : (Σs.fin_step_classifier p s = cl_other).∀dst. |
---|
411 | stmt_at ?? c src = Some ? s → |
---|
412 | point_seq_transition p c src dst → |
---|
413 | point_of_label … c (label_of_other_fin_step p s) = Some ? dst. |
---|
414 | #p #c #src ** [#lbl || #ext] #EQ1 |
---|
415 | #dst #EQ2 |
---|
416 | whd in match point_seq_transition; normalize nodelta |
---|
417 | >EQ2 normalize nodelta whd in ⊢ (?→??(????%)?); |
---|
418 | [#H @H | * ] |
---|
419 | lapply (other_fin_step_has_one_label ? «ext,?») |
---|
420 | cases (fin_step_labels p ? ext) normalize nodelta [*] |
---|
421 | #hd * normalize nodelta [2: #_ #_ *] * |
---|
422 | #H @H |
---|
423 | qed. |
---|
424 | |
---|
425 | lemma point_seq_transition_succ : |
---|
426 | ∀p,c,src.∀s,nxt.∀dst. |
---|
427 | stmt_at ?? c src = Some ? (sequential ?? s nxt) → |
---|
428 | point_seq_transition p c src dst → |
---|
429 | point_of_succ … src nxt = dst. |
---|
430 | #p #c #src #s #nxt #dst #EQ |
---|
431 | whd in match point_seq_transition; normalize nodelta |
---|
432 | >EQ normalize nodelta #H @H |
---|
433 | qed. |
---|
434 | *) |
---|
435 | |
---|
436 | definition if_other : ∀p,g.∀A : Type[2].seq_or_fin_step p g → A → A → A ≝ |
---|
437 | λp,g,A,c.match seq_or_fin_step_classifier p g c with |
---|
438 | [ cl_other ⇒ λx,y.x |
---|
439 | | _ ⇒ λx,y.y |
---|
440 | ]. |
---|
441 | |
---|
442 | definition other_step_in_code ≝ |
---|
443 | λp,g. |
---|
444 | λc : codeT p g. |
---|
445 | λsrc : code_point p. |
---|
446 | λs : seq_or_fin_step p g. |
---|
447 | match s return λx.if_other p g ? x (code_point p) unit → Prop with |
---|
448 | [ inl s'' ⇒ λdst.∃n.stmt_at … c src = Some ? (sequential … s'' n) ∧ ? |
---|
449 | | inr s'' ⇒ λdst.stmt_at … c src = Some ? (final … s'') ∧ ? |
---|
450 | ]. |
---|
451 | [ whd in dst; cases (seq_or_fin_step_classifier ???) in dst; |
---|
452 | normalize nodelta [1,2,3: #_ @True |*: #dst |
---|
453 | @(point_of_succ … src n = dst)] |
---|
454 | | whd in dst; |
---|
455 | lapply dst -dst |
---|
456 | lapply (refl … (seq_or_fin_step_classifier ?? (inr … s''))) |
---|
457 | cases (seq_or_fin_step_classifier ?? (inr … s'')) in ⊢ (???%→%); |
---|
458 | normalize nodelta |
---|
459 | [1,2,3: #_ #_ @True |
---|
460 | |*: #EQ #dst |
---|
461 | @(point_of_label … c (label_of_other_fin_step p g «s'', EQ») = Some ? dst) |
---|
462 | ] |
---|
463 | ] |
---|
464 | qed. |
---|
465 | |
---|
466 | definition if_other_sig : |
---|
467 | ∀p,g.∀B,C : Type[0].∀s : Σs.seq_or_fin_step_classifier p g s = cl_other. |
---|
468 | if_other p g ? s B C → B ≝ |
---|
469 | λp,g,B,C.?. |
---|
470 | ** #s whd in match (if_other ??????); |
---|
471 | cases (seq_or_fin_step_classifier ???) normalize nodelta #EQ destruct(EQ) |
---|
472 | #x @x |
---|
473 | qed. |
---|
474 | |
---|
475 | definition if_other_block_sig : |
---|
476 | ∀p,g.∀B,C : Type[0].∀b : Σb.block_classifier p g b = cl_other. |
---|
477 | if_other p g ? (\snd b) B C → B ≝ |
---|
478 | λp,g,B,C.?. |
---|
479 | ** #l #s |
---|
480 | #prf #x @(if_other_sig ???? «s, prf» x) |
---|
481 | qed. |
---|
482 | |
---|
483 | coercion other_sig_to_if nocomposites: |
---|
484 | ∀p,g.∀B,C : Type[0].∀s : Σs.seq_or_fin_step_classifier p g s = cl_other. |
---|
485 | ∀x : if_other p g ? s B C.B ≝ if_other_sig |
---|
486 | on _x : if_other ?? Type[0] ??? to ?. |
---|
487 | |
---|
488 | coercion other_block_sig_to_if nocomposites: |
---|
489 | ∀p,g.∀B,C : Type[0].∀s : Σs.block_classifier p g s = cl_other. |
---|
490 | ∀x : if_other p g ? (\snd s) B C.B ≝ if_other_block_sig |
---|
491 | on _x : if_other ?? Type[0] (\snd ?) ?? to ?. |
---|
492 | |
---|
493 | let rec other_list_in_code p g (c : codeT p g) |
---|
494 | src |
---|
495 | (b : list (Σs.seq_or_fin_step_classifier p g s = cl_other)) |
---|
496 | dst on b : Prop ≝ |
---|
497 | match b with |
---|
498 | [ nil ⇒ src = dst |
---|
499 | | cons hd tl ⇒ ∃mid. |
---|
500 | other_step_in_code p g c src hd mid ∧ other_list_in_code p g c mid tl dst |
---|
501 | ]. |
---|
502 | |
---|
503 | notation > "x ~❨ B ❩~> y 'in' c" with precedence 56 for |
---|
504 | @{'block_in_code $c $x $B $y}. |
---|
505 | |
---|
506 | notation < "hvbox(x ~❨ B ❩~> y \nbsp 'in' \nbsp break c)" with precedence 56 for |
---|
507 | @{'block_in_code $c $x $B $y}. |
---|
508 | |
---|
509 | interpretation "list in code" 'block_in_code c x B y = |
---|
510 | (other_list_in_code ?? c x B y). |
---|
511 | |
---|
512 | definition other_block_in_code : ∀p,g.codeT p g → |
---|
513 | code_point p → ∀b : other_block p g. |
---|
514 | if_other … (\snd b) (code_point p) unit → Prop ≝ |
---|
515 | λp,g,c,src,b,dst. |
---|
516 | ∃mid.src ~❨\fst b❩~> mid in c ∧ |
---|
517 | other_step_in_code p g c mid (\snd b) dst. |
---|
518 | |
---|
519 | interpretation "block in code" 'block_in_code c x B y = |
---|
520 | (other_block_in_code ?? c x B y). |
---|
521 | |
---|
522 | lemma other_list_in_code_append : ∀p,g.∀c : codeT p g. |
---|
523 | ∀x.∀b1 : list ?. |
---|
524 | ∀y.∀b2 : list ?.∀z. |
---|
525 | x ~❨b1❩~> y in c→ y ~❨b2❩~> z in c → x ~❨b1@b2❩~> z in c. |
---|
526 | #p#g#c#x#b1 lapply x -x |
---|
527 | elim b1 [2: ** #hd #hd_prf #tl #IH] #x #y #b2 #z |
---|
528 | [3: #EQ normalize in EQ; destruct #H @H] |
---|
529 | * #mid * normalize nodelta [ *#n ] #H1 #H2 #H3 |
---|
530 | whd normalize nodelta %{mid} |
---|
531 | %{(IH … H2 H3)} |
---|
532 | [ %{n} ] @H1 |
---|
533 | qed. |
---|
534 | |
---|
535 | lemma other_block_in_code_append : ∀p,g.∀c : codeT p g.∀x. |
---|
536 | ∀B1 : Σb.block_classifier p g b = cl_other. |
---|
537 | ∀y. |
---|
538 | ∀B2 : other_block p g. |
---|
539 | ∀z. |
---|
540 | x ~❨B1❩~> y in c → y ~❨B2❩~> z in c → |
---|
541 | x ~❨B1@@B2❩~> z in c. |
---|
542 | #p#g#c #x ** #hd1 *#tl1 #tl1prf |
---|
543 | #y * #hd2 #tl2 #z |
---|
544 | * #mid1 * #H1 #H2 |
---|
545 | * #mid2 * #G1 #G2 |
---|
546 | %{mid2} %{G2} |
---|
547 | whd in match (\fst ?); |
---|
548 | @(other_list_in_code_append … H1) |
---|
549 | %{y} %{H2 G1} |
---|
550 | qed. |
---|
551 | |
---|
552 | (* |
---|
553 | definition instr_block_in_function : |
---|
554 | ∀p : evaluation_params.∀fn : joint_internal_function (globals p) p. |
---|
555 | code_point p → |
---|
556 | ∀b : bind_other_block p. |
---|
557 | ? → Prop ≝ |
---|
558 | λp,fn,src,B,dst. |
---|
559 | ∃vars,B'. |
---|
560 | All ? (In ? (joint_if_locals … fn)) vars ∧ |
---|
561 | instantiates_to … B vars B' ∧ |
---|
562 | src ~❨B'❩~> dst in joint_if_code … fn. |
---|
563 | |
---|
564 | interpretation "bind block in function" 'block_in_code fn x B y = |
---|
565 | (instr_block_in_function ? fn x B y). |
---|
566 | |
---|
567 | lemma instr_block_in_function_trans : |
---|
568 | ∀p,fn,src. |
---|
569 | ∀B1 : ΣB.bind_pred ? (λb.block_classifier p b = cl_other) B. |
---|
570 | ∀mid. |
---|
571 | ∀B2 : bind_other_block p. |
---|
572 | ∀dst. |
---|
573 | src ~❨B1❩~> Some ? mid in fn → |
---|
574 | mid ~❨B2❩~> dst in fn → |
---|
575 | src ~❨B1@@B2❩~> dst in fn. |
---|
576 | #p#fn#src*#B1#B1prf#mid#B2#dst |
---|
577 | * #vars1 * #b1 ** #vars1_ok #b1B1 #b1_in |
---|
578 | * #vars2 * #b2 ** #vars2_ok #b2B2 #b2_in |
---|
579 | %{(vars1@vars2)} %{(«b1,instantiates_to_bind_pred … b1B1 B1prf» @@ b2)} |
---|
580 | /4 by All_append, conj, is_other_block_instance_append, other_block_in_code_append/ |
---|
581 | qed. |
---|
582 | *) |
---|
583 | *) |
---|
584 | *) |
---|