1 | |
---|
2 | include "compiler.ma". |
---|
3 | |
---|
4 | include "ASM/Interpret2.ma". |
---|
5 | |
---|
6 | include "Clight/Clight_classified_system.ma". |
---|
7 | |
---|
8 | (* From measurable on Clight, we will end up with an RTLabs flat trace where |
---|
9 | we know that there are some m' and n' such that the prefix in Clight matches |
---|
10 | the prefix in RTLabs given by m', the next n steps in Clight are equivalent |
---|
11 | to the n' steps in RTLabs, and we have a suitable "will_return" for RTLabs |
---|
12 | for those n' steps so that we can build a corresponding structured trace. |
---|
13 | |
---|
14 | "Equivalent" here means, in particular, that the observables will be the same, |
---|
15 | and those observables will include the stack space costs. |
---|
16 | *) |
---|
17 | |
---|
18 | include "RTLabs/MeasurableToStructured.ma". |
---|
19 | include "common/ExtraMonads.ma". |
---|
20 | |
---|
21 | definition exec_cost_of_trace : (costlabel → ℕ) → list intensional_event → nat ≝ |
---|
22 | λcostmap,itrace. |
---|
23 | let ctrace ≝ costlabels_of_observables itrace in |
---|
24 | Σ_{l ∈ ctrace}(costmap l). |
---|
25 | |
---|
26 | definition exec_steps_with_obs : ∀C:preclassified_system. ∀p:program ?? C. nat → res ((state … C (make_global … C p)) × (list intensional_event)) ≝ |
---|
27 | λC,p,m. |
---|
28 | let g ≝ make_global … (pcs_exec … C) p in |
---|
29 | let C' ≝ pcs_to_cs C g in |
---|
30 | ! s0 ← make_initial_state … p; |
---|
31 | ! 〈prefix,s1〉 ← exec_steps m ?? (cs_exec … C') g s0; |
---|
32 | return 〈s1, \snd (intensional_trace_of_trace C' [ ] prefix)〉. |
---|
33 | |
---|
34 | definition clock_after : ∀pcs:preclassified_system. ∀p. nat → (costlabel→ℕ) → res nat ≝ |
---|
35 | λC,p,n,costmap. |
---|
36 | ! 〈s,itrace〉 ← exec_steps_with_obs C p n; |
---|
37 | return exec_cost_of_trace costmap itrace. |
---|
38 | |
---|
39 | lemma obs_exec_steps_with_obs : ∀pcs,p,m1,m2,obs1,obs2. |
---|
40 | observables pcs p m1 m2 = return 〈obs1,obs2〉 → |
---|
41 | ∃s1,s2. |
---|
42 | exec_steps_with_obs pcs p m1 = return 〈s1,obs1〉 ∧ |
---|
43 | exec_steps_with_obs pcs p (m1+m2) = return 〈s2,obs1@obs2〉. |
---|
44 | #pcs #p #m1 #m2 #obs1 #obs2 #OBS |
---|
45 | @('bind_inversion OBS) -OBS #s0 #INIT #OBS |
---|
46 | @('bind_inversion OBS) -OBS * #tr1 #s1 #EXEC1 #OBS |
---|
47 | @('bind_inversion OBS) -OBS * #tr2 #s2 #EXEC2 @breakup_pair #OBS |
---|
48 | whd in OBS:(??%%); destruct |
---|
49 | %{s1} %{s2} |
---|
50 | whd in ⊢ (?(??%?)(??%?)); >INIT |
---|
51 | whd in ⊢ (?(??%?)(??%?)); >EXEC1 >(exec_steps_join … EXEC1 EXEC2) |
---|
52 | whd in ⊢ (?(??%?)(??%?)); |
---|
53 | % [ % | >int_trace_append' @breakup_pair @breakup_pair % ] |
---|
54 | qed. |
---|
55 | |
---|
56 | include "ASM/CostsProof.ma". |
---|
57 | |
---|
58 | lemma clock_diff_eq_obs : ∀pcs,p,m1,m2,obs1,obs2,c1,c2,costs. |
---|
59 | observables pcs p m1 m2 = return 〈obs1,obs2〉 → |
---|
60 | clock_after pcs p m1 costs = return c1 → |
---|
61 | clock_after pcs p (m1+m2) costs = return c2 → |
---|
62 | c2 - c1 = exec_cost_of_trace costs obs2. |
---|
63 | #pcs #p #m1 #m2 #obs1 #obs2 #c1 #c2 #costs #OBS |
---|
64 | cases (obs_exec_steps_with_obs … OBS) #s1 * #s2 * #EXEC1 #EXEC2 |
---|
65 | whd in ⊢ (??%? → ??%? → ?); >EXEC1 >EXEC2 |
---|
66 | whd in ⊢ (??%% → ??%% → ?); #C1 #C2 destruct |
---|
67 | >costlabels_of_observables_append >fold_sum' >commutative_plus @sym_eq @minus_plus_m_m |
---|
68 | qed. |
---|
69 | |
---|
70 | definition simulates ≝ |
---|
71 | λp: compiler_output. |
---|
72 | let initial_status ≝ initialise_status … (cm (c_labelled_object_code … p)) in |
---|
73 | ∀m1,m2. |
---|
74 | measurable Clight_pcs (c_labelled_clight … p) m1 m2 |
---|
75 | (stack_sizes (c_stack_cost … p)) (c_max_stack … p) → |
---|
76 | ∀c1,c2. |
---|
77 | clock_after Clight_pcs (c_labelled_clight … p) m1 (c_clight_cost_map … p) = OK … c1 → |
---|
78 | clock_after Clight_pcs (c_labelled_clight … p) (m1+m2) (c_clight_cost_map … p) = OK … c2 → |
---|
79 | ∃n1,n2. |
---|
80 | observables Clight_pcs (c_labelled_clight … p) m1 m2 = |
---|
81 | observables (OC_preclassified_system (c_labelled_object_code … p)) |
---|
82 | (c_labelled_object_code … p) n1 n2 |
---|
83 | ∧ |
---|
84 | clock ?? (execute (n1 + n2) ? initial_status) = |
---|
85 | plus (clock ?? (execute n1 ? initial_status)) (minus c2 c1). |
---|
86 | |
---|
87 | include "Clight/SwitchAndLabel.ma". |
---|
88 | |
---|
89 | include "common/FEMeasurable.ma". |
---|
90 | include "Clight/SimplifyCastsMeasurable.ma". |
---|
91 | include "Clight/toCminorMeasurable.ma". |
---|
92 | include "Cminor/toRTLabsCorrectness.ma". |
---|
93 | |
---|
94 | (* atm they are all axioms *) |
---|
95 | include "RTLabs/RTLabsToRTLAxiom.ma". |
---|
96 | include "RTL/RTL_separate_to_overflow.ma". |
---|
97 | include "RTL/RTL_overflow_to_unique.ma". |
---|
98 | include "RTL/RTLToERTLAxiom.ma". |
---|
99 | include "ERTL/ERTLToLTLAxiom.ma". |
---|
100 | include "LTL/LTLToLINAxiom.ma". |
---|
101 | include "LIN/LINToASMAxiom.ma". |
---|
102 | |
---|
103 | include "ASM/AssemblyAxiom.ma". |
---|
104 | include "ASM/OC_traces_to_exec.ma". |
---|
105 | |
---|
106 | lemma measurable_observables : ∀pcs,p,m1,m2,stack_cost,max. |
---|
107 | measurable pcs p m1 m2 stack_cost max → |
---|
108 | ∃pre,subtrace. observables pcs p m1 m2 = return 〈pre,subtrace〉. |
---|
109 | #pcs #p #m1 #m2 #stack_cost #max |
---|
110 | * #s0 * #prefix * #s1 * #interesting * #s2 * * * * * #INIT #EXEC1 #EXEC2 #_ #_ #_ |
---|
111 | % [2: % [2: |
---|
112 | whd in ⊢ (??%?); >INIT in ⊢ (??%?); |
---|
113 | whd in ⊢ (??%?); >EXEC1 in ⊢ (??%?); |
---|
114 | whd in ⊢ (??%?); >EXEC2 in ⊢ (??%?); |
---|
115 | whd in ⊢ (??%?); @breakup_pair % |
---|
116 | | skip ]| skip ] |
---|
117 | qed. |
---|
118 | |
---|
119 | record back_end_preconditions (p_rtlabs : RTLabs_program) |
---|
120 | (stacksizes : ident → option ℕ) (max_stack : ℕ) |
---|
121 | (prefix, subtrace : list intensional_event) (fn : ident) |
---|
122 | : Prop ≝ |
---|
123 | { ra_init : RTLabs_status (make_global p_rtlabs) |
---|
124 | ; ra_init_ok : make_ext_initial_state p_rtlabs = return ra_init |
---|
125 | ; ra_max : |
---|
126 | le (maximum (update_stacksize_info stacksizes (mk_stacksize_info 0 0) |
---|
127 | (extract_call_ud_from_observables (prefix @ subtrace)))) max_stack |
---|
128 | ; ra_ft_tlr : ft_and_tlr (RTLabs_status (make_global p_rtlabs)) |
---|
129 | prefix subtrace fn ra_init |
---|
130 | }. |
---|
131 | |
---|
132 | lemma front_end_correct : |
---|
133 | ∀observe, input_program, init_cost, labelled, p_rtlabs. |
---|
134 | front_end observe input_program = return 〈init_cost, labelled, p_rtlabs〉 → |
---|
135 | not_wrong … (exec_inf … clight_fullexec input_program) → |
---|
136 | sim_with_labels |
---|
137 | (exec_inf … clight_fullexec input_program) |
---|
138 | (exec_inf … clight_fullexec labelled) |
---|
139 | ∧ |
---|
140 | ∀m1,m2,stacksizes,max_stack. |
---|
141 | measurable Clight_pcs labelled m1 m2 stacksizes max_stack → |
---|
142 | ∃prefix, subtrace, fn. |
---|
143 | observables Clight_pcs labelled m1 m2 = return 〈prefix, subtrace〉 ∧ |
---|
144 | back_end_preconditions p_rtlabs stacksizes max_stack |
---|
145 | prefix subtrace fn. |
---|
146 | #observe #p_in #init_cost' #labelled #p_rtlabs #EQ_front_end |
---|
147 | whd in EQ_front_end:(??%?); |
---|
148 | letin cl_switch_removed ≝ (program_switch_removal p_in) in EQ_front_end; |
---|
149 | inversion (clight_label cl_switch_removed) |
---|
150 | #cl_labelled #init_cost #CL_LABELLED |
---|
151 | whd in ⊢ (??%? → ?); |
---|
152 | letin cl_simplified ≝ (simplify_program ?) |
---|
153 | #H @('bind_inversion H) -H #cminor #CMINOR |
---|
154 | #H @('bind_inversion H) -H #WCL #_ |
---|
155 | #H @('bind_inversion H) -H #INJ #_ |
---|
156 | letin rtlabs ≝ (cminor_to_rtlabs cminor) |
---|
157 | whd in ⊢ (??%%→?); #EQ lapply (sym_eq ??? EQ) -EQ #EQ destruct(EQ) |
---|
158 | |
---|
159 | #NOT_WRONG % |
---|
160 | [ cut (cl_labelled = \fst (clight_label cl_switch_removed)) |
---|
161 | [ cases (clight_label ?) in CL_LABELLED ⊢ %; // ] |
---|
162 | #E >E |
---|
163 | @switch_and_labelling_sim @NOT_WRONG |
---|
164 | ] |
---|
165 | |
---|
166 | #m1 #m2 #stacksizes #max_stack #m1_m2_meas |
---|
167 | cases (measurable_observables … m1_m2_meas) #prefix * #subtrace #OBS |
---|
168 | cases (measured_subtrace_preserved simplify_measurable_sim … (refl ??) m1_m2_meas) |
---|
169 | #simp_m1 * #simp_m2 * #simp_meas #simp_obs >simp_obs in OBS ⊢ %; |
---|
170 | cases (measured_subtrace_preserved clight_to_cminor_measurable_sim … CMINOR simp_meas) |
---|
171 | #cm_m1 * #cm_m2 * #cm_meas #cm_obs >cm_obs -simp_m1 -simp_m2 |
---|
172 | cases (measured_subtrace_preserved cminor_rtlabs_meas_sim … (refl ??) cm_meas) |
---|
173 | #ra_m1 * #ra_m2 * #ra_meas #ra_obs >ra_obs -cm_m1 -cm_m2 |
---|
174 | #OBS cases (measurable_subtraces_are_structured … WCL ra_meas OBS) |
---|
175 | #ra_s0 * #ra_s1 * #ra_s2 * #fn * #ra_init * #ra_ft * * #ra_ft_fn #ra_ft_obs * #ra_tlr * * #ra_unrepeating #ra_max #ra_obs' |
---|
176 | >OBS -ra_meas |
---|
177 | %{prefix} %{subtrace} %{fn} %[%] |
---|
178 | %{ra_init ra_max} |
---|
179 | %{ra_unrepeating ra_ft_obs ra_ft_fn ra_obs'} |
---|
180 | qed. |
---|
181 | |
---|
182 | lemma back_end_correct : |
---|
183 | ∀observe,init_cost,p_rtlabs,p_asm,init_cost',stack_m,max_stack,prefix,subtrace,fn. |
---|
184 | back_end observe init_cost p_rtlabs = return 〈〈p_asm, init_cost'〉,stack_m,max_stack〉 → |
---|
185 | back_end_preconditions p_rtlabs (stack_sizes stack_m) max_stack prefix subtrace fn → |
---|
186 | init_cost = init_cost' ∧ |
---|
187 | ∀sigma,pol. |
---|
188 | ft_and_tlr (ASM_status p_asm sigma pol) |
---|
189 | prefix subtrace fn |
---|
190 | (initialise_status ? p_asm). |
---|
191 | #observe #init_cost #p_rtlabs #p_asm' #init_cost #stack_model #max_stack |
---|
192 | #prefix #subtrace #fn |
---|
193 | #H @('bind_inversion H) -H |
---|
194 | #p_asm |
---|
195 | #H lapply (opt_eq_from_res ???? H) -H |
---|
196 | #EQ_lin_to_asm |
---|
197 | #H lapply (sym_eq ??? H) -H |
---|
198 | whd in ⊢ (??%%→?); #EQ destruct(EQ) |
---|
199 | letin p_rtl ≝ (rtlabs_to_rtl init_cost p_rtlabs) |
---|
200 | letin p_ertl ≝ (rtl_to_ertl p_rtl) |
---|
201 | letin p_ltl ≝ (\fst (\fst (ertl_to_ltl compute_fixpoint colour_graph p_ertl))) |
---|
202 | letin p_lin ≝ (ltl_to_lin p_ltl) |
---|
203 | letin stack_model ≝ (\snd (\fst (ertl_to_ltl compute_fixpoint colour_graph p_ertl))) |
---|
204 | letin stack_sizes ≝ (stack_sizes stack_model) |
---|
205 | * |
---|
206 | #ra_init #ra_init_ok #ra_max #ra_ft_tlr %[%] |
---|
207 | #sigma #pol |
---|
208 | |
---|
209 | cases (RTLabsToRTL_ok stack_model init_cost … ra_init_ok) |
---|
210 | [2: @(transitive_stack_cost_model_le … (RTLabsToRTL_monotone_stacksizes init_cost …)) |
---|
211 | @(transitive_stack_cost_model_le … (RTLToERTL_monotone_stacksizes …)) |
---|
212 | @ERTLToLTL_monotone_stacksizes ] |
---|
213 | #rtl_init * #rtl_init_ok * #R_ra_rtl #simul_ra_rtl |
---|
214 | cases (status_simulation_produce_ft_and_tlr … prefix subtrace fn … simul_ra_rtl ra_ft_tlr) |
---|
215 | change with (state_pc RTL_semantics_separate) in rtl_init; |
---|
216 | change with |
---|
217 | (state_pc RTL_semantics_separate → state_pc RTL_semantics_separate → ?) |
---|
218 | #rtl_st2 #rtl_st3 #rtl_ft #rtl_tlr #rtl_unrepeating #rtl_ft_ok |
---|
219 | #current_is_fn #rtl_tlr_ok |
---|
220 | |
---|
221 | lapply (RTL_separate_to_overflow_produce_ft_and_tlr stack_sizes |
---|
222 | p_rtl fn … rtl_ft rtl_tlr ??? rtl_unrepeating) try assumption |
---|
223 | [ whd whd in match extract_call_ud_from_ft; whd in match extract_call_ud_from_tlr; |
---|
224 | normalize nodelta >rtl_ft_ok >rtl_tlr_ok |
---|
225 | <extract_call_ud_from_observables_append assumption |
---|
226 | ] |
---|
227 | >rtl_ft_ok >rtl_tlr_ok #rtl_ft_tlr |
---|
228 | |
---|
229 | cases (RTL_separate_to_unique_ok stack_sizes p_rtl rtl_init rtl_init_ok) |
---|
230 | #rtl_init' * #rtl_init_ok' * #R_rtl #simul_rtl |
---|
231 | lapply (status_simulation_produce_ft_and_tlr … simul_rtl rtl_ft_tlr) |
---|
232 | -rtl_ft_tlr #rtl_ft_tlr -R_rtl -rtl_st2 -rtl_st3 -R_ra_rtl -ra_init -ra_max |
---|
233 | |
---|
234 | cases (RTLToERTL_ok stack_sizes p_rtl rtl_init' rtl_init_ok') |
---|
235 | #ertl_init * #ertl_init_ok * #R_rtl_ertl #simul_rtl_ertl |
---|
236 | lapply (status_simulation_produce_ft_and_tlr … simul_rtl_ertl rtl_ft_tlr) |
---|
237 | -rtl_init -rtl_init' -R_rtl_ertl #ertl_ft_tlr |
---|
238 | |
---|
239 | lapply (ERTLToLTL_ok compute_fixpoint colour_graph p_ertl) |
---|
240 | @pair_elim' @pair_elim' #aux cases (aux ertl_init ertl_init_ok) -aux |
---|
241 | #ltl_init * #ltl_init_ok * #R_ertl_ltl #simul_ertl_ltl |
---|
242 | lapply (status_simulation_produce_ft_and_tlr … simul_ertl_ltl ertl_ft_tlr) |
---|
243 | -ertl_init -R_ertl_ltl #ltl_ft_tlr |
---|
244 | |
---|
245 | cases (LTLToLIN_ok stack_sizes p_ltl ltl_init ltl_init_ok) |
---|
246 | #lin_init * #lin_init_ok * #R_ltl_lin #simul_ltl_lin |
---|
247 | lapply (status_simulation_produce_ft_and_tlr … simul_ltl_lin ltl_ft_tlr) |
---|
248 | -ltl_init -R_ltl_lin #lin_ft_tlr |
---|
249 | |
---|
250 | cases (LINToASM_ok stack_sizes p_lin p_asm sigma pol EQ_lin_to_asm lin_init lin_init_ok) |
---|
251 | #R_lin_asm #simul_lin_asm |
---|
252 | @(status_simulation_produce_ft_and_tlr … simul_lin_asm lin_ft_tlr) |
---|
253 | qed. |
---|
254 | |
---|
255 | lemma assembler_correct : |
---|
256 | ∀observe,input_program,output_program,prefix,subtrace,fn. |
---|
257 | assembler observe input_program = return output_program → |
---|
258 | (∀sigma,pol.ft_and_tlr (ASM_status input_program sigma pol) prefix subtrace fn |
---|
259 | (initialise_status ? input_program)) → |
---|
260 | ft_and_tlr (OC_abstract_status output_program) |
---|
261 | prefix subtrace fn (initialise_status ? (cm output_program)). |
---|
262 | #observe #p_asm #p_oc #prefix #subtrace #fn |
---|
263 | #H @('bind_inversion H) -H ** #sigma #pol normalize nodelta #sigma_pol_ok |
---|
264 | #H lapply (opt_eq_from_res ???? H) -H #jump_expansion_ok |
---|
265 | whd in ⊢ (??%%→?); #H lapply (sym_eq ??? H) -H #EQ destruct(EQ) |
---|
266 | #H lapply (H sigma pol) -H |
---|
267 | |
---|
268 | cases (assembly_ok p_asm … jump_expansion_ok) |
---|
269 | #R_asm_oc #simul_asm_oc |
---|
270 | @(status_simulation_produce_ft_and_tlr … simul_asm_oc) |
---|
271 | qed. |
---|
272 | |
---|
273 | theorem correct : |
---|
274 | ∀observe. |
---|
275 | ∀input_program,output. |
---|
276 | compile observe input_program = return output → |
---|
277 | not_wrong … (exec_inf … clight_fullexec input_program) → |
---|
278 | sim_with_labels |
---|
279 | (exec_inf … clight_fullexec input_program) |
---|
280 | (exec_inf … clight_fullexec (c_labelled_clight … output)) |
---|
281 | ∧ |
---|
282 | simulates output. |
---|
283 | #observe #p_in #out |
---|
284 | #H @('bind_inversion H) -H |
---|
285 | ** #init_cost #labelled #p_rtlabs #EQ_front_end |
---|
286 | #H @('bind_inversion H) -H |
---|
287 | *** #p_asm' #init_cost' #stack_costs #max_stack #EQ_back_end normalize nodelta |
---|
288 | #H @('bind_inversion H) -H #p_oc #EQ_assembler |
---|
289 | whd in ⊢ (??%%→?); #EQ destruct(EQ) #NOT_WRONG |
---|
290 | |
---|
291 | cases (front_end_correct … EQ_front_end NOT_WRONG) #H1 #H2 |
---|
292 | %{H1} #m1 #m2 #m1_m2_meas |
---|
293 | #c1 #c2 #c1_prf #c2_prf |
---|
294 | cases (H2 … m1_m2_meas) |
---|
295 | #prefix * #subtrace * #fn * #OBS #back_end_pre >OBS |
---|
296 | >(clock_diff_eq_obs … OBS c1_prf c2_prf) -c1 -c2 |
---|
297 | |
---|
298 | cases (back_end_correct … EQ_back_end back_end_pre) #EQ destruct(EQ) |
---|
299 | #assembler_pre |
---|
300 | cases (assembler_correct … EQ_assembler assembler_pre) |
---|
301 | #oc_st2 #oc_st3 #oc_ft #oc_tlr #oc_unrepeating #oc_ft_ok #fn_ok #oc_tlr_ok |
---|
302 | |
---|
303 | %{(ft_length … oc_ft)} |
---|
304 | %{(tlr_length … oc_tlr)} |
---|
305 | % |
---|
306 | [ >(OC_traces_to_observables … fn_ok) >oc_ft_ok >oc_tlr_ok % |
---|
307 | | >execute_plus >OC_ft_to_execute >OC_tlr_to_execute |
---|
308 | whd in match exec_cost_of_trace; normalize nodelta <oc_tlr_ok |
---|
309 | >costlabels_of_observables_trace_label_return_id_irrelevant [2: %{one}] |
---|
310 | @(compute_max_trace_label_return_cost_ok_with_trace … oc_unrepeating) |
---|
311 | ] |
---|
312 | qed. |
---|