1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * This module defines the type of values that is used in the dynamic |
---|
17 | semantics of all our intermediate languages. *) |
---|
18 | |
---|
19 | include "utilities/Coqlib.ma". |
---|
20 | include "common/AST.ma". |
---|
21 | include "common/Integers.ma". |
---|
22 | include "common/Floats.ma". |
---|
23 | include "common/Errors.ma". |
---|
24 | |
---|
25 | include "ASM/BitVectorZ.ma". |
---|
26 | |
---|
27 | include "basics/logic.ma". |
---|
28 | |
---|
29 | include "utilities/binary/Z.ma". |
---|
30 | include "utilities/extralib.ma". |
---|
31 | |
---|
32 | (* To define pointers we need a few details about the memory model. |
---|
33 | |
---|
34 | There are several kinds of pointers, which differ in which regions of |
---|
35 | memory they address and the pointer's representation. |
---|
36 | |
---|
37 | Pointers are given as kind, block, offset triples, where a block identifies |
---|
38 | some memory in a given region with an arbitrary concrete address. A proof |
---|
39 | is also required that the representation is suitable for the region the |
---|
40 | memory resides in. Note that blocks cannot extend out of a region (in |
---|
41 | particular, a pdata pointer can address any byte in a pdata block - we never |
---|
42 | need to switch to a larger xdata pointer). |
---|
43 | *) |
---|
44 | |
---|
45 | (* blocks - represented by the region the memory resides in and a unique id *) |
---|
46 | |
---|
47 | record block : Type[0] ≝ |
---|
48 | { block_region : region |
---|
49 | ; block_id : Z |
---|
50 | }. |
---|
51 | |
---|
52 | definition eq_block ≝ |
---|
53 | λb1,b2. |
---|
54 | eq_region (block_region b1) (block_region b2) ∧ |
---|
55 | eqZb (block_id b1) (block_id b2) |
---|
56 | . |
---|
57 | |
---|
58 | lemma eq_block_elim : ∀P:bool → Prop. ∀b1,b2. |
---|
59 | (b1 = b2 → P true) → (b1 ≠ b2 → P false) → |
---|
60 | P (eq_block b1 b2). |
---|
61 | #P * #r1 #i1 * #r2 #i2 #H1 #H2 |
---|
62 | whd in ⊢ (?%) @eq_region_elim #H3 |
---|
63 | [ whd in ⊢ (?%) @eqZb_elim [ /2/ | * #NE @H2 % #E @NE destruct % ] |
---|
64 | | @H2 % #E destruct elim H3 /2/ |
---|
65 | ] qed. |
---|
66 | |
---|
67 | (* Characterise the memory regions which the pointer representations can |
---|
68 | address. |
---|
69 | |
---|
70 | pointer_compat <block> <pointer representation> *) |
---|
71 | |
---|
72 | inductive pointer_compat : block → region → Prop ≝ |
---|
73 | | same_compat : ∀s,id. pointer_compat (mk_block s id) s |
---|
74 | | pxdata_compat : ∀id. pointer_compat (mk_block PData id) XData |
---|
75 | | universal_compat : ∀r,id. pointer_compat (mk_block r id) Any. |
---|
76 | |
---|
77 | lemma pointer_compat_dec : ∀b,p. pointer_compat b p + ¬pointer_compat b p. |
---|
78 | * * #id *; |
---|
79 | try ( %1 // ) |
---|
80 | %2 % #H inversion H #e1 #e2 try #e3 try #e4 destruct |
---|
81 | qed. |
---|
82 | |
---|
83 | definition is_pointer_compat : block → region → bool ≝ |
---|
84 | λb,p. match pointer_compat_dec b p with [ inl _ ⇒ true | inr _ ⇒ false ]. |
---|
85 | |
---|
86 | (* Offsets into the block. We allow integers like CompCert so that we have |
---|
87 | the option of extending blocks backwards. *) |
---|
88 | |
---|
89 | record offset : Type[0] ≝ { offv : Z }. |
---|
90 | |
---|
91 | definition eq_offset ≝ λx,y. eqZb (offv x) (offv y). |
---|
92 | definition shift_offset : offset → int → offset ≝ |
---|
93 | λo,i. mk_offset (offv o + Z_of_signed_bitvector ? i). |
---|
94 | definition neg_shift_offset : offset → int → offset ≝ |
---|
95 | λo,i. mk_offset (offv o - Z_of_signed_bitvector ? i). |
---|
96 | definition sub_offset : offset → offset → int ≝ |
---|
97 | λx,y. bitvector_of_Z ? (offv x - offv y). |
---|
98 | definition zero_offset ≝ mk_offset OZ. |
---|
99 | definition lt_offset : offset → offset → bool ≝ |
---|
100 | λx,y. Zltb (offv x) (offv y). |
---|
101 | |
---|
102 | (* * A value is either: |
---|
103 | - a machine integer; |
---|
104 | - a floating-point number; |
---|
105 | - a pointer: a triple giving the representation of the pointer (in terms of the |
---|
106 | memory regions such a pointer could address), a memory address and |
---|
107 | an integer offset with respect to this address; |
---|
108 | - a null pointer: the region denotes the representation (i.e., pointer size) |
---|
109 | - the [Vundef] value denoting an arbitrary bit pattern, such as the |
---|
110 | value of an uninitialized variable. |
---|
111 | *) |
---|
112 | |
---|
113 | inductive val: Type[0] ≝ |
---|
114 | | Vundef: val |
---|
115 | | Vint: int → val |
---|
116 | | Vfloat: float → val |
---|
117 | | Vnull: region → val |
---|
118 | | Vptr: ∀r:region. ∀b:block. pointer_compat b r → offset → val. |
---|
119 | |
---|
120 | definition Vzero: val ≝ Vint zero. |
---|
121 | definition Vone: val ≝ Vint one. |
---|
122 | definition Vmone: val ≝ Vint mone. |
---|
123 | |
---|
124 | definition Vtrue: val ≝ Vint one. |
---|
125 | definition Vfalse: val ≝ Vint zero. |
---|
126 | |
---|
127 | (* Values split into bytes. Ideally we'd use some kind of sizeof for the |
---|
128 | predicates here, but we don't (currently) have a single sizeof for Vundef. |
---|
129 | We only split in stages of the compiler where all Vint values are byte sized. |
---|
130 | *) |
---|
131 | |
---|
132 | definition ptr_may_be_single : region → bool ≝ |
---|
133 | λr.match r with [ Data ⇒ true | IData ⇒ true | _ ⇒ false ]. |
---|
134 | |
---|
135 | definition may_be_single : val → Prop ≝ |
---|
136 | λv. match v with |
---|
137 | [ Vundef ⇒ True |
---|
138 | | Vint _ ⇒ True |
---|
139 | | Vfloat _ ⇒ False |
---|
140 | | Vnull r ⇒ ptr_may_be_single r = true |
---|
141 | | Vptr r _ _ _ ⇒ ptr_may_be_single r = true |
---|
142 | ]. |
---|
143 | |
---|
144 | definition may_be_split : val → Prop ≝ |
---|
145 | λv.match v with |
---|
146 | [ Vint _ ⇒ False |
---|
147 | | Vnull r ⇒ ptr_may_be_single r = false |
---|
148 | | Vptr r _ _ _ ⇒ ptr_may_be_single r = false |
---|
149 | | _ ⇒ True |
---|
150 | ]. |
---|
151 | |
---|
152 | inductive split_val : Type[0] ≝ |
---|
153 | | Single : ∀v:val. may_be_single v → split_val |
---|
154 | | High : ∀v:val. may_be_split v → split_val |
---|
155 | | Low : ∀v:val. may_be_split v → split_val. |
---|
156 | |
---|
157 | notation > "vbox('do' _ ← e; break e')" with precedence 40 for @{'bind ${e} (λ_.${e'})}. |
---|
158 | |
---|
159 | let rec assert_nat_eq (m,n:nat) : res (m = n) ≝ |
---|
160 | match m return λx.res (x = n) with |
---|
161 | [ O ⇒ match n return λx. res (O = x) with [ O ⇒ OK ? (refl ??) | _ ⇒ Error ? ] |
---|
162 | | S m' ⇒ match n return λx.res (S m' = x) with [ O ⇒ Error ? | S n' ⇒ |
---|
163 | do E ← assert_nat_eq m' n'; |
---|
164 | match E return λx.λ_. res (S m' = S x) with [ refl ⇒ OK ? (refl ??) ] ] |
---|
165 | ]. |
---|
166 | |
---|
167 | definition res_eq_nat : ∀m,n:nat. ∀P:nat → Type[0]. P m → res (P n) ≝ |
---|
168 | λm,n,P,p. |
---|
169 | do E ← assert_nat_eq m n; |
---|
170 | match E return λx.λ_. res (P x) with [ refl ⇒ OK ? p ]. |
---|
171 | |
---|
172 | definition break : ∀n:nat. val → res (Vector split_val n) ≝ |
---|
173 | λn,v. match v return λv'. (may_be_single v' → ?) → (may_be_split v' → ?) → ? with |
---|
174 | [ Vundef ⇒ λs.λt. res_eq_nat 1 n ? (s I) |
---|
175 | | Vint i ⇒ λs.λt. res_eq_nat 1 n ? (s I) |
---|
176 | | Vfloat f ⇒ λs.λt. res_eq_nat 2 n ? (t I) |
---|
177 | | Vnull r ⇒ |
---|
178 | match ptr_may_be_single r return λx. (x = true → ?) → (x = false → ?) → ? with |
---|
179 | [ true ⇒ λs.λt. res_eq_nat 1 n ? (s (refl ??)) |
---|
180 | | false ⇒ λs.λt. ? |
---|
181 | ] |
---|
182 | | Vptr r b p o ⇒ |
---|
183 | match ptr_may_be_single r return λx. (x = true → ?) → (x = false → ?) → ? with |
---|
184 | [ true ⇒ λs.λt. res_eq_nat 1 n ? (s (refl ??)) |
---|
185 | | false ⇒ λs.λt. ? |
---|
186 | ] |
---|
187 | ] (λp. [[ Single v p ]]) (λp. [[ Low v p; High v p ]]). |
---|
188 | @(res_eq_nat 2 n ? (t (refl ??))) qed. (* XXX: I have no idea why this fails if you do it directly. *) |
---|
189 | |
---|
190 | definition val_eq : val → val → bool ≝ |
---|
191 | λx,y. |
---|
192 | match x with |
---|
193 | [ Vundef ⇒ match y with [ Vundef ⇒ true | _ ⇒ false ] |
---|
194 | | Vint i ⇒ match y with [ Vint j ⇒ eq i j | _ ⇒ false ] |
---|
195 | | Vfloat f ⇒ match y with [ Vfloat f' ⇒ match eq_dec f f' with [ inl _ ⇒ true | _ ⇒ false ] | _ ⇒ false ] |
---|
196 | | Vnull r ⇒ match y with [ Vnull r' ⇒ eq_region r r' | _ ⇒ false ] |
---|
197 | | Vptr r b p o ⇒ match y with [ Vptr r' b' p' o' ⇒ eq_region r r' ∧ eq_block b b' ∧ eq_offset o o' | _ ⇒ false ] |
---|
198 | ]. |
---|
199 | |
---|
200 | definition merge : ∀n:nat. Vector split_val n → res val ≝ |
---|
201 | λn,s. match s with |
---|
202 | [ VEmpty ⇒ Error ? |
---|
203 | | VCons _ h1 t1 ⇒ |
---|
204 | match t1 with |
---|
205 | [ VEmpty ⇒ match h1 with [ Single v _ ⇒ OK ? v | _ ⇒ Error ? ] |
---|
206 | | VCons _ h2 t2 ⇒ |
---|
207 | match t2 with |
---|
208 | [ VEmpty ⇒ match h1 with [ Low v _ ⇒ match h2 with [ High v' _ ⇒ if val_eq v v' then OK ? v else Error ? | _ ⇒ Error ? ] | _ ⇒ Error ? ] |
---|
209 | | VCons _ _ _ ⇒ Error ? |
---|
210 | ] |
---|
211 | ] |
---|
212 | ]. |
---|
213 | |
---|
214 | |
---|
215 | (* |
---|
216 | (** The module [Val] defines a number of arithmetic and logical operations |
---|
217 | over type [val]. Most of these operations are straightforward extensions |
---|
218 | of the corresponding integer or floating-point operations. *) |
---|
219 | |
---|
220 | Module Val. |
---|
221 | *) |
---|
222 | definition of_bool : bool → val ≝ λb. if b then Vtrue else Vfalse. |
---|
223 | (* |
---|
224 | definition has_type ≝ λv: val. λt: typ. |
---|
225 | match v with |
---|
226 | [ Vundef ⇒ True |
---|
227 | | Vint _ ⇒ match t with [ ASTint ⇒ True | _ ⇒ False ] |
---|
228 | | Vfloat _ ⇒ match t with [ ASTfloat ⇒ True | _ ⇒ False ] |
---|
229 | | Vptr _ _ _ ⇒ match t with [ ASTptr ⇒ True | _ ⇒ False ] |
---|
230 | | _ ⇒ False |
---|
231 | ]. |
---|
232 | |
---|
233 | let rec has_type_list (vl: list val) (tl: list typ) on vl : Prop ≝ |
---|
234 | match vl with |
---|
235 | [ nil ⇒ match tl with [ nil ⇒ True | _ ⇒ False ] |
---|
236 | | cons v1 vs ⇒ match tl with [ nil ⇒ False | cons t1 ts ⇒ |
---|
237 | has_type v1 t1 ∧ has_type_list vs ts ] |
---|
238 | ]. |
---|
239 | *) |
---|
240 | (* * Truth values. Pointers and non-zero integers are treated as [True]. |
---|
241 | The integer 0 (also used to represent the null pointer) is [False]. |
---|
242 | [Vundef] and floats are neither true nor false. *) |
---|
243 | |
---|
244 | definition is_true : val → Prop ≝ λv. |
---|
245 | match v with |
---|
246 | [ Vint n ⇒ n ≠ zero |
---|
247 | | Vptr _ b _ ofs ⇒ True |
---|
248 | | _ ⇒ False |
---|
249 | ]. |
---|
250 | |
---|
251 | definition is_false : val → Prop ≝ λv. |
---|
252 | match v with |
---|
253 | [ Vint n ⇒ n = zero |
---|
254 | | Vnull _ ⇒ True |
---|
255 | | _ ⇒ False |
---|
256 | ]. |
---|
257 | |
---|
258 | inductive bool_of_val: val → bool → Prop ≝ |
---|
259 | | bool_of_val_int_true: |
---|
260 | ∀n. n ≠ zero → bool_of_val (Vint n) true |
---|
261 | | bool_of_val_int_false: |
---|
262 | bool_of_val (Vint zero) false |
---|
263 | | bool_of_val_ptr: |
---|
264 | ∀r,b,p,ofs. bool_of_val (Vptr r b p ofs) true |
---|
265 | | bool_of_val_null: |
---|
266 | ∀r. bool_of_val (Vnull r) true. |
---|
267 | |
---|
268 | definition neg : val → val ≝ λv. |
---|
269 | match v with |
---|
270 | [ Vint n ⇒ Vint (neg n) |
---|
271 | | _ ⇒ Vundef |
---|
272 | ]. |
---|
273 | |
---|
274 | definition negf : val → val ≝ λv. |
---|
275 | match v with |
---|
276 | [ Vfloat f ⇒ Vfloat (Fneg f) |
---|
277 | | _ => Vundef |
---|
278 | ]. |
---|
279 | |
---|
280 | definition absf : val → val ≝ λv. |
---|
281 | match v with |
---|
282 | [ Vfloat f ⇒ Vfloat (Fabs f) |
---|
283 | | _ ⇒ Vundef |
---|
284 | ]. |
---|
285 | |
---|
286 | definition intoffloat : val → val ≝ λv. |
---|
287 | match v with |
---|
288 | [ Vfloat f ⇒ Vint (intoffloat f) |
---|
289 | | _ ⇒ Vundef |
---|
290 | ]. |
---|
291 | |
---|
292 | definition intuoffloat : val → val ≝ λv. |
---|
293 | match v with |
---|
294 | [ Vfloat f ⇒ Vint (intuoffloat f) |
---|
295 | | _ ⇒ Vundef |
---|
296 | ]. |
---|
297 | |
---|
298 | definition floatofint : val → val ≝ λv. |
---|
299 | match v with |
---|
300 | [ Vint n ⇒ Vfloat (floatofint n) |
---|
301 | | _ ⇒ Vundef |
---|
302 | ]. |
---|
303 | |
---|
304 | definition floatofintu : val → val ≝ λv. |
---|
305 | match v with |
---|
306 | [ Vint n ⇒ Vfloat (floatofintu n) |
---|
307 | | _ ⇒ Vundef |
---|
308 | ]. |
---|
309 | |
---|
310 | definition notint : val → val ≝ λv. |
---|
311 | match v with |
---|
312 | [ Vint n ⇒ Vint (xor n mone) |
---|
313 | | _ ⇒ Vundef |
---|
314 | ]. |
---|
315 | |
---|
316 | (* FIXME: switch to alias, or rename, or … *) |
---|
317 | definition int_eq : int → int → bool ≝ eq. |
---|
318 | definition notbool : val → val ≝ λv. |
---|
319 | match v with |
---|
320 | [ Vint n ⇒ of_bool (int_eq n zero) |
---|
321 | | Vptr _ b _ ofs ⇒ Vfalse |
---|
322 | | Vnull _ ⇒ Vtrue |
---|
323 | | _ ⇒ Vundef |
---|
324 | ]. |
---|
325 | |
---|
326 | definition zero_ext ≝ λnbits: nat. λv: val. |
---|
327 | match v with |
---|
328 | [ Vint n ⇒ Vint (zero_ext nbits n) |
---|
329 | | _ ⇒ Vundef |
---|
330 | ]. |
---|
331 | |
---|
332 | definition sign_ext ≝ λnbits:nat. λv:val. |
---|
333 | match v with |
---|
334 | [ Vint i ⇒ Vint (sign_ext nbits i) |
---|
335 | | _ ⇒ Vundef |
---|
336 | ]. |
---|
337 | |
---|
338 | definition singleoffloat : val → val ≝ λv. |
---|
339 | match v with |
---|
340 | [ Vfloat f ⇒ Vfloat (singleoffloat f) |
---|
341 | | _ ⇒ Vundef |
---|
342 | ]. |
---|
343 | |
---|
344 | (* TODO: add zero to null? *) |
---|
345 | definition add ≝ λv1,v2: val. |
---|
346 | match v1 with |
---|
347 | [ Vint n1 ⇒ match v2 with |
---|
348 | [ Vint n2 ⇒ Vint (addition_n ? n1 n2) |
---|
349 | | Vptr r b2 p ofs2 ⇒ Vptr r b2 p (shift_offset ofs2 n1) |
---|
350 | | _ ⇒ Vundef ] |
---|
351 | | Vptr r b1 p ofs1 ⇒ match v2 with |
---|
352 | [ Vint n2 ⇒ Vptr r b1 p (shift_offset ofs1 n2) |
---|
353 | | _ ⇒ Vundef ] |
---|
354 | | _ ⇒ Vundef ]. |
---|
355 | |
---|
356 | definition sub ≝ λv1,v2: val. |
---|
357 | match v1 with |
---|
358 | [ Vint n1 ⇒ match v2 with |
---|
359 | [ Vint n2 ⇒ Vint (subtraction ? n1 n2) |
---|
360 | | _ ⇒ Vundef ] |
---|
361 | | Vptr r1 b1 p1 ofs1 ⇒ match v2 with |
---|
362 | [ Vint n2 ⇒ Vptr r1 b1 p1 (neg_shift_offset ofs1 n2) |
---|
363 | | Vptr r2 b2 p2 ofs2 ⇒ |
---|
364 | if eq_block b1 b2 then Vint (sub_offset ofs1 ofs2) else Vundef |
---|
365 | | _ ⇒ Vundef ] |
---|
366 | | Vnull r ⇒ match v2 with [ Vnull r' ⇒ Vint zero | _ ⇒ Vundef ] |
---|
367 | | _ ⇒ Vundef ]. |
---|
368 | |
---|
369 | definition mul ≝ λv1, v2: val. |
---|
370 | match v1 with |
---|
371 | [ Vint n1 ⇒ match v2 with |
---|
372 | [ Vint n2 ⇒ Vint (mul n1 n2) |
---|
373 | | _ ⇒ Vundef ] |
---|
374 | | _ ⇒ Vundef ]. |
---|
375 | (* |
---|
376 | definition divs ≝ λv1, v2: val. |
---|
377 | match v1 with |
---|
378 | [ Vint n1 ⇒ match v2 with |
---|
379 | [ Vint n2 ⇒ Vint (divs n1 n2) |
---|
380 | | _ ⇒ Vundef ] |
---|
381 | | _ ⇒ Vundef ]. |
---|
382 | |
---|
383 | Definition mods (v1 v2: val): val := |
---|
384 | match v1, v2 with |
---|
385 | | Vint n1, Vint n2 => |
---|
386 | if Int.eq n2 Int.zero then Vundef else Vint(Int.mods n1 n2) |
---|
387 | | _, _ => Vundef |
---|
388 | end. |
---|
389 | |
---|
390 | Definition divu (v1 v2: val): val := |
---|
391 | match v1, v2 with |
---|
392 | | Vint n1, Vint n2 => |
---|
393 | if Int.eq n2 Int.zero then Vundef else Vint(Int.divu n1 n2) |
---|
394 | | _, _ => Vundef |
---|
395 | end. |
---|
396 | |
---|
397 | Definition modu (v1 v2: val): val := |
---|
398 | match v1, v2 with |
---|
399 | | Vint n1, Vint n2 => |
---|
400 | if Int.eq n2 Int.zero then Vundef else Vint(Int.modu n1 n2) |
---|
401 | | _, _ => Vundef |
---|
402 | end. |
---|
403 | *) |
---|
404 | definition v_and ≝ λv1, v2: val. |
---|
405 | match v1 with |
---|
406 | [ Vint n1 ⇒ match v2 with |
---|
407 | [ Vint n2 ⇒ Vint (i_and n1 n2) |
---|
408 | | _ ⇒ Vundef ] |
---|
409 | | _ ⇒ Vundef ]. |
---|
410 | |
---|
411 | definition or ≝ λv1, v2: val. |
---|
412 | match v1 with |
---|
413 | [ Vint n1 ⇒ match v2 with |
---|
414 | [ Vint n2 ⇒ Vint (or n1 n2) |
---|
415 | | _ ⇒ Vundef ] |
---|
416 | | _ ⇒ Vundef ]. |
---|
417 | |
---|
418 | definition xor ≝ λv1, v2: val. |
---|
419 | match v1 with |
---|
420 | [ Vint n1 ⇒ match v2 with |
---|
421 | [ Vint n2 ⇒ Vint (xor n1 n2) |
---|
422 | | _ ⇒ Vundef ] |
---|
423 | | _ ⇒ Vundef ]. |
---|
424 | (* |
---|
425 | Definition shl (v1 v2: val): val := |
---|
426 | match v1, v2 with |
---|
427 | | Vint n1, Vint n2 => |
---|
428 | if Int.ltu n2 Int.iwordsize |
---|
429 | then Vint(Int.shl n1 n2) |
---|
430 | else Vundef |
---|
431 | | _, _ => Vundef |
---|
432 | end. |
---|
433 | |
---|
434 | Definition shr (v1 v2: val): val := |
---|
435 | match v1, v2 with |
---|
436 | | Vint n1, Vint n2 => |
---|
437 | if Int.ltu n2 Int.iwordsize |
---|
438 | then Vint(Int.shr n1 n2) |
---|
439 | else Vundef |
---|
440 | | _, _ => Vundef |
---|
441 | end. |
---|
442 | |
---|
443 | Definition shr_carry (v1 v2: val): val := |
---|
444 | match v1, v2 with |
---|
445 | | Vint n1, Vint n2 => |
---|
446 | if Int.ltu n2 Int.iwordsize |
---|
447 | then Vint(Int.shr_carry n1 n2) |
---|
448 | else Vundef |
---|
449 | | _, _ => Vundef |
---|
450 | end. |
---|
451 | |
---|
452 | Definition shrx (v1 v2: val): val := |
---|
453 | match v1, v2 with |
---|
454 | | Vint n1, Vint n2 => |
---|
455 | if Int.ltu n2 Int.iwordsize |
---|
456 | then Vint(Int.shrx n1 n2) |
---|
457 | else Vundef |
---|
458 | | _, _ => Vundef |
---|
459 | end. |
---|
460 | |
---|
461 | Definition shru (v1 v2: val): val := |
---|
462 | match v1, v2 with |
---|
463 | | Vint n1, Vint n2 => |
---|
464 | if Int.ltu n2 Int.iwordsize |
---|
465 | then Vint(Int.shru n1 n2) |
---|
466 | else Vundef |
---|
467 | | _, _ => Vundef |
---|
468 | end. |
---|
469 | |
---|
470 | Definition rolm (v: val) (amount mask: int): val := |
---|
471 | match v with |
---|
472 | | Vint n => Vint(Int.rolm n amount mask) |
---|
473 | | _ => Vundef |
---|
474 | end. |
---|
475 | |
---|
476 | Definition ror (v1 v2: val): val := |
---|
477 | match v1, v2 with |
---|
478 | | Vint n1, Vint n2 => |
---|
479 | if Int.ltu n2 Int.iwordsize |
---|
480 | then Vint(Int.ror n1 n2) |
---|
481 | else Vundef |
---|
482 | | _, _ => Vundef |
---|
483 | end. |
---|
484 | *) |
---|
485 | definition addf ≝ λv1,v2: val. |
---|
486 | match v1 with |
---|
487 | [ Vfloat f1 ⇒ match v2 with |
---|
488 | [ Vfloat f2 ⇒ Vfloat (Fadd f1 f2) |
---|
489 | | _ ⇒ Vundef ] |
---|
490 | | _ ⇒ Vundef ]. |
---|
491 | |
---|
492 | definition subf ≝ λv1,v2: val. |
---|
493 | match v1 with |
---|
494 | [ Vfloat f1 ⇒ match v2 with |
---|
495 | [ Vfloat f2 ⇒ Vfloat (Fsub f1 f2) |
---|
496 | | _ ⇒ Vundef ] |
---|
497 | | _ ⇒ Vundef ]. |
---|
498 | |
---|
499 | definition mulf ≝ λv1,v2: val. |
---|
500 | match v1 with |
---|
501 | [ Vfloat f1 ⇒ match v2 with |
---|
502 | [ Vfloat f2 ⇒ Vfloat (Fmul f1 f2) |
---|
503 | | _ ⇒ Vundef ] |
---|
504 | | _ ⇒ Vundef ]. |
---|
505 | |
---|
506 | definition divf ≝ λv1,v2: val. |
---|
507 | match v1 with |
---|
508 | [ Vfloat f1 ⇒ match v2 with |
---|
509 | [ Vfloat f2 ⇒ Vfloat (Fdiv f1 f2) |
---|
510 | | _ ⇒ Vundef ] |
---|
511 | | _ ⇒ Vundef ]. |
---|
512 | |
---|
513 | definition cmp_match : comparison → val ≝ λc. |
---|
514 | match c with |
---|
515 | [ Ceq ⇒ Vtrue |
---|
516 | | Cne ⇒ Vfalse |
---|
517 | | _ ⇒ Vundef |
---|
518 | ]. |
---|
519 | |
---|
520 | definition cmp_mismatch : comparison → val ≝ λc. |
---|
521 | match c with |
---|
522 | [ Ceq ⇒ Vfalse |
---|
523 | | Cne ⇒ Vtrue |
---|
524 | | _ ⇒ Vundef |
---|
525 | ]. |
---|
526 | |
---|
527 | definition cmp_offset ≝ |
---|
528 | λc: comparison. λx,y:offset. |
---|
529 | match c with |
---|
530 | [ Ceq ⇒ eq_offset x y |
---|
531 | | Cne ⇒ ¬eq_offset x y |
---|
532 | | Clt ⇒ lt_offset x y |
---|
533 | | Cle ⇒ ¬lt_offset y x |
---|
534 | | Cgt ⇒ lt_offset y x |
---|
535 | | Cge ⇒ ¬lt_offset x y |
---|
536 | ]. |
---|
537 | |
---|
538 | definition cmp ≝ λc: comparison. λv1,v2: val. |
---|
539 | match v1 with |
---|
540 | [ Vint n1 ⇒ match v2 with |
---|
541 | [ Vint n2 ⇒ of_bool (cmp c n1 n2) |
---|
542 | | _ ⇒ Vundef ] |
---|
543 | | Vptr r1 b1 p1 ofs1 ⇒ match v2 with |
---|
544 | [ Vptr r2 b2 p2 ofs2 ⇒ |
---|
545 | if eq_block b1 b2 |
---|
546 | then of_bool (cmp_offset c ofs1 ofs2) |
---|
547 | else cmp_mismatch c |
---|
548 | | Vnull r2 ⇒ cmp_mismatch c |
---|
549 | | _ ⇒ Vundef ] |
---|
550 | | Vnull r1 ⇒ match v2 with |
---|
551 | [ Vptr _ _ _ _ ⇒ cmp_mismatch c |
---|
552 | | Vnull r2 ⇒ cmp_match c |
---|
553 | | _ ⇒ Vundef |
---|
554 | ] |
---|
555 | | _ ⇒ Vundef ]. |
---|
556 | |
---|
557 | definition cmpu ≝ λc: comparison. λv1,v2: val. |
---|
558 | match v1 with |
---|
559 | [ Vint n1 ⇒ match v2 with |
---|
560 | [ Vint n2 ⇒ of_bool (cmpu c n1 n2) |
---|
561 | | _ ⇒ Vundef ] |
---|
562 | | Vptr r1 b1 p1 ofs1 ⇒ match v2 with |
---|
563 | [ Vptr r2 b2 p2 ofs2 ⇒ |
---|
564 | if eq_block b1 b2 |
---|
565 | then of_bool (cmp_offset c ofs1 ofs2) |
---|
566 | else cmp_mismatch c |
---|
567 | | Vnull r2 ⇒ cmp_mismatch c |
---|
568 | | _ ⇒ Vundef ] |
---|
569 | | Vnull r1 ⇒ match v2 with |
---|
570 | [ Vptr _ _ _ _ ⇒ cmp_mismatch c |
---|
571 | | Vnull r2 ⇒ cmp_match c |
---|
572 | | _ ⇒ Vundef |
---|
573 | ] |
---|
574 | | _ ⇒ Vundef ]. |
---|
575 | |
---|
576 | definition cmpf ≝ λc: comparison. λv1,v2: val. |
---|
577 | match v1 with |
---|
578 | [ Vfloat f1 ⇒ match v2 with |
---|
579 | [ Vfloat f2 ⇒ of_bool (Fcmp c f1 f2) |
---|
580 | | _ ⇒ Vundef ] |
---|
581 | | _ ⇒ Vundef ]. |
---|
582 | |
---|
583 | (* * [load_result] is used in the memory model (library [Mem]) |
---|
584 | to post-process the results of a memory read. For instance, |
---|
585 | consider storing the integer value [0xFFF] on 1 byte at a |
---|
586 | given address, and reading it back. If it is read back with |
---|
587 | chunk [Mint8unsigned], zero-extension must be performed, resulting |
---|
588 | in [0xFF]. If it is read back as a [Mint8signed], sign-extension |
---|
589 | is performed and [0xFFFFFFFF] is returned. Type mismatches |
---|
590 | (e.g. reading back a float as a [Mint32]) read back as [Vundef]. *) |
---|
591 | |
---|
592 | let rec load_result (chunk: memory_chunk) (v: val) ≝ |
---|
593 | match v with |
---|
594 | [ Vint n ⇒ |
---|
595 | match chunk with |
---|
596 | [ Mint8signed ⇒ Vint (sign_ext 8 n) |
---|
597 | | Mint8unsigned ⇒ Vint (zero_ext 8 n) |
---|
598 | | Mint16signed ⇒ Vint (sign_ext 16 n) |
---|
599 | | Mint16unsigned ⇒ Vint (zero_ext 16 n) |
---|
600 | | Mint32 ⇒ Vint n |
---|
601 | | _ ⇒ Vundef |
---|
602 | ] |
---|
603 | | Vptr r b p ofs ⇒ |
---|
604 | match chunk with |
---|
605 | [ Mpointer r' ⇒ if eq_region r r' then Vptr r b p ofs else Vundef |
---|
606 | | _ ⇒ Vundef |
---|
607 | ] |
---|
608 | | Vnull r ⇒ |
---|
609 | match chunk with |
---|
610 | [ Mpointer r' ⇒ if eq_region r r' then Vnull r else Vundef |
---|
611 | | _ ⇒ Vundef |
---|
612 | ] |
---|
613 | | Vfloat f ⇒ |
---|
614 | match chunk with |
---|
615 | [ Mfloat32 ⇒ Vfloat(singleoffloat f) |
---|
616 | | Mfloat64 ⇒ Vfloat f |
---|
617 | | _ ⇒ Vundef |
---|
618 | ] |
---|
619 | | _ ⇒ Vundef |
---|
620 | ]. |
---|
621 | |
---|
622 | (* |
---|
623 | (** Theorems on arithmetic operations. *) |
---|
624 | |
---|
625 | Theorem cast8unsigned_and: |
---|
626 | forall x, zero_ext 8 x = and x (Vint(Int.repr 255)). |
---|
627 | Proof. |
---|
628 | destruct x; simpl; auto. decEq. |
---|
629 | change 255 with (two_p 8 - 1). apply Int.zero_ext_and. vm_compute; auto. |
---|
630 | Qed. |
---|
631 | |
---|
632 | Theorem cast16unsigned_and: |
---|
633 | forall x, zero_ext 16 x = and x (Vint(Int.repr 65535)). |
---|
634 | Proof. |
---|
635 | destruct x; simpl; auto. decEq. |
---|
636 | change 65535 with (two_p 16 - 1). apply Int.zero_ext_and. vm_compute; auto. |
---|
637 | Qed. |
---|
638 | |
---|
639 | Theorem istrue_not_isfalse: |
---|
640 | forall v, is_false v -> is_true (notbool v). |
---|
641 | Proof. |
---|
642 | destruct v; simpl; try contradiction. |
---|
643 | intros. subst i. simpl. discriminate. |
---|
644 | Qed. |
---|
645 | |
---|
646 | Theorem isfalse_not_istrue: |
---|
647 | forall v, is_true v -> is_false (notbool v). |
---|
648 | Proof. |
---|
649 | destruct v; simpl; try contradiction. |
---|
650 | intros. generalize (Int.eq_spec i Int.zero). |
---|
651 | case (Int.eq i Int.zero); intro. |
---|
652 | contradiction. simpl. auto. |
---|
653 | auto. |
---|
654 | Qed. |
---|
655 | |
---|
656 | Theorem bool_of_true_val: |
---|
657 | forall v, is_true v -> bool_of_val v true. |
---|
658 | Proof. |
---|
659 | intro. destruct v; simpl; intros; try contradiction. |
---|
660 | constructor; auto. constructor. |
---|
661 | Qed. |
---|
662 | |
---|
663 | Theorem bool_of_true_val2: |
---|
664 | forall v, bool_of_val v true -> is_true v. |
---|
665 | Proof. |
---|
666 | intros. inversion H; simpl; auto. |
---|
667 | Qed. |
---|
668 | |
---|
669 | Theorem bool_of_true_val_inv: |
---|
670 | forall v b, is_true v -> bool_of_val v b -> b = true. |
---|
671 | Proof. |
---|
672 | intros. inversion H0; subst v b; simpl in H; auto. |
---|
673 | Qed. |
---|
674 | |
---|
675 | Theorem bool_of_false_val: |
---|
676 | forall v, is_false v -> bool_of_val v false. |
---|
677 | Proof. |
---|
678 | intro. destruct v; simpl; intros; try contradiction. |
---|
679 | subst i; constructor. |
---|
680 | Qed. |
---|
681 | |
---|
682 | Theorem bool_of_false_val2: |
---|
683 | forall v, bool_of_val v false -> is_false v. |
---|
684 | Proof. |
---|
685 | intros. inversion H; simpl; auto. |
---|
686 | Qed. |
---|
687 | |
---|
688 | Theorem bool_of_false_val_inv: |
---|
689 | forall v b, is_false v -> bool_of_val v b -> b = false. |
---|
690 | Proof. |
---|
691 | intros. inversion H0; subst v b; simpl in H. |
---|
692 | congruence. auto. contradiction. |
---|
693 | Qed. |
---|
694 | |
---|
695 | Theorem notbool_negb_1: |
---|
696 | forall b, of_bool (negb b) = notbool (of_bool b). |
---|
697 | Proof. |
---|
698 | destruct b; reflexivity. |
---|
699 | Qed. |
---|
700 | |
---|
701 | Theorem notbool_negb_2: |
---|
702 | forall b, of_bool b = notbool (of_bool (negb b)). |
---|
703 | Proof. |
---|
704 | destruct b; reflexivity. |
---|
705 | Qed. |
---|
706 | |
---|
707 | Theorem notbool_idem2: |
---|
708 | forall b, notbool(notbool(of_bool b)) = of_bool b. |
---|
709 | Proof. |
---|
710 | destruct b; reflexivity. |
---|
711 | Qed. |
---|
712 | |
---|
713 | Theorem notbool_idem3: |
---|
714 | forall x, notbool(notbool(notbool x)) = notbool x. |
---|
715 | Proof. |
---|
716 | destruct x; simpl; auto. |
---|
717 | case (Int.eq i Int.zero); reflexivity. |
---|
718 | Qed. |
---|
719 | |
---|
720 | Theorem add_commut: forall x y, add x y = add y x. |
---|
721 | Proof. |
---|
722 | destruct x; destruct y; simpl; auto. |
---|
723 | decEq. apply Int.add_commut. |
---|
724 | Qed. |
---|
725 | |
---|
726 | Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z). |
---|
727 | Proof. |
---|
728 | destruct x; destruct y; destruct z; simpl; auto. |
---|
729 | rewrite Int.add_assoc; auto. |
---|
730 | rewrite Int.add_assoc; auto. |
---|
731 | decEq. decEq. apply Int.add_commut. |
---|
732 | decEq. rewrite Int.add_commut. rewrite <- Int.add_assoc. |
---|
733 | decEq. apply Int.add_commut. |
---|
734 | decEq. rewrite Int.add_assoc. auto. |
---|
735 | Qed. |
---|
736 | |
---|
737 | Theorem add_permut: forall x y z, add x (add y z) = add y (add x z). |
---|
738 | Proof. |
---|
739 | intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut. |
---|
740 | Qed. |
---|
741 | |
---|
742 | Theorem add_permut_4: |
---|
743 | forall x y z t, add (add x y) (add z t) = add (add x z) (add y t). |
---|
744 | Proof. |
---|
745 | intros. rewrite add_permut. rewrite add_assoc. |
---|
746 | rewrite add_permut. symmetry. apply add_assoc. |
---|
747 | Qed. |
---|
748 | |
---|
749 | Theorem neg_zero: neg Vzero = Vzero. |
---|
750 | Proof. |
---|
751 | reflexivity. |
---|
752 | Qed. |
---|
753 | |
---|
754 | Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y). |
---|
755 | Proof. |
---|
756 | destruct x; destruct y; simpl; auto. decEq. apply Int.neg_add_distr. |
---|
757 | Qed. |
---|
758 | |
---|
759 | Theorem sub_zero_r: forall x, sub Vzero x = neg x. |
---|
760 | Proof. |
---|
761 | destruct x; simpl; auto. |
---|
762 | Qed. |
---|
763 | |
---|
764 | Theorem sub_add_opp: forall x y, sub x (Vint y) = add x (Vint (Int.neg y)). |
---|
765 | Proof. |
---|
766 | destruct x; intro y; simpl; auto; rewrite Int.sub_add_opp; auto. |
---|
767 | Qed. |
---|
768 | |
---|
769 | Theorem sub_opp_add: forall x y, sub x (Vint (Int.neg y)) = add x (Vint y). |
---|
770 | Proof. |
---|
771 | intros. unfold sub, add. |
---|
772 | destruct x; auto; rewrite Int.sub_add_opp; rewrite Int.neg_involutive; auto. |
---|
773 | Qed. |
---|
774 | |
---|
775 | Theorem sub_add_l: |
---|
776 | forall v1 v2 i, sub (add v1 (Vint i)) v2 = add (sub v1 v2) (Vint i). |
---|
777 | Proof. |
---|
778 | destruct v1; destruct v2; intros; simpl; auto. |
---|
779 | rewrite Int.sub_add_l. auto. |
---|
780 | rewrite Int.sub_add_l. auto. |
---|
781 | case (zeq b b0); intro. rewrite Int.sub_add_l. auto. reflexivity. |
---|
782 | Qed. |
---|
783 | |
---|
784 | Theorem sub_add_r: |
---|
785 | forall v1 v2 i, sub v1 (add v2 (Vint i)) = add (sub v1 v2) (Vint (Int.neg i)). |
---|
786 | Proof. |
---|
787 | destruct v1; destruct v2; intros; simpl; auto. |
---|
788 | rewrite Int.sub_add_r. auto. |
---|
789 | repeat rewrite Int.sub_add_opp. decEq. |
---|
790 | repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. |
---|
791 | decEq. repeat rewrite Int.sub_add_opp. |
---|
792 | rewrite Int.add_assoc. decEq. apply Int.neg_add_distr. |
---|
793 | case (zeq b b0); intro. simpl. decEq. |
---|
794 | repeat rewrite Int.sub_add_opp. rewrite Int.add_assoc. decEq. |
---|
795 | apply Int.neg_add_distr. |
---|
796 | reflexivity. |
---|
797 | Qed. |
---|
798 | |
---|
799 | Theorem mul_commut: forall x y, mul x y = mul y x. |
---|
800 | Proof. |
---|
801 | destruct x; destruct y; simpl; auto. decEq. apply Int.mul_commut. |
---|
802 | Qed. |
---|
803 | |
---|
804 | Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z). |
---|
805 | Proof. |
---|
806 | destruct x; destruct y; destruct z; simpl; auto. |
---|
807 | decEq. apply Int.mul_assoc. |
---|
808 | Qed. |
---|
809 | |
---|
810 | Theorem mul_add_distr_l: |
---|
811 | forall x y z, mul (add x y) z = add (mul x z) (mul y z). |
---|
812 | Proof. |
---|
813 | destruct x; destruct y; destruct z; simpl; auto. |
---|
814 | decEq. apply Int.mul_add_distr_l. |
---|
815 | Qed. |
---|
816 | |
---|
817 | |
---|
818 | Theorem mul_add_distr_r: |
---|
819 | forall x y z, mul x (add y z) = add (mul x y) (mul x z). |
---|
820 | Proof. |
---|
821 | destruct x; destruct y; destruct z; simpl; auto. |
---|
822 | decEq. apply Int.mul_add_distr_r. |
---|
823 | Qed. |
---|
824 | |
---|
825 | Theorem mul_pow2: |
---|
826 | forall x n logn, |
---|
827 | Int.is_power2 n = Some logn -> |
---|
828 | mul x (Vint n) = shl x (Vint logn). |
---|
829 | Proof. |
---|
830 | intros; destruct x; simpl; auto. |
---|
831 | change 32 with (Z_of_nat Int.wordsize). |
---|
832 | rewrite (Int.is_power2_range _ _ H). decEq. apply Int.mul_pow2. auto. |
---|
833 | Qed. |
---|
834 | |
---|
835 | Theorem mods_divs: |
---|
836 | forall x y, mods x y = sub x (mul (divs x y) y). |
---|
837 | Proof. |
---|
838 | destruct x; destruct y; simpl; auto. |
---|
839 | case (Int.eq i0 Int.zero); simpl. auto. decEq. apply Int.mods_divs. |
---|
840 | Qed. |
---|
841 | |
---|
842 | Theorem modu_divu: |
---|
843 | forall x y, modu x y = sub x (mul (divu x y) y). |
---|
844 | Proof. |
---|
845 | destruct x; destruct y; simpl; auto. |
---|
846 | generalize (Int.eq_spec i0 Int.zero); |
---|
847 | case (Int.eq i0 Int.zero); simpl. auto. |
---|
848 | intro. decEq. apply Int.modu_divu. auto. |
---|
849 | Qed. |
---|
850 | |
---|
851 | Theorem divs_pow2: |
---|
852 | forall x n logn, |
---|
853 | Int.is_power2 n = Some logn -> |
---|
854 | divs x (Vint n) = shrx x (Vint logn). |
---|
855 | Proof. |
---|
856 | intros; destruct x; simpl; auto. |
---|
857 | change 32 with (Z_of_nat Int.wordsize). |
---|
858 | rewrite (Int.is_power2_range _ _ H). |
---|
859 | generalize (Int.eq_spec n Int.zero); |
---|
860 | case (Int.eq n Int.zero); intro. |
---|
861 | subst n. compute in H. discriminate. |
---|
862 | decEq. apply Int.divs_pow2. auto. |
---|
863 | Qed. |
---|
864 | |
---|
865 | Theorem divu_pow2: |
---|
866 | forall x n logn, |
---|
867 | Int.is_power2 n = Some logn -> |
---|
868 | divu x (Vint n) = shru x (Vint logn). |
---|
869 | Proof. |
---|
870 | intros; destruct x; simpl; auto. |
---|
871 | change 32 with (Z_of_nat Int.wordsize). |
---|
872 | rewrite (Int.is_power2_range _ _ H). |
---|
873 | generalize (Int.eq_spec n Int.zero); |
---|
874 | case (Int.eq n Int.zero); intro. |
---|
875 | subst n. compute in H. discriminate. |
---|
876 | decEq. apply Int.divu_pow2. auto. |
---|
877 | Qed. |
---|
878 | |
---|
879 | Theorem modu_pow2: |
---|
880 | forall x n logn, |
---|
881 | Int.is_power2 n = Some logn -> |
---|
882 | modu x (Vint n) = and x (Vint (Int.sub n Int.one)). |
---|
883 | Proof. |
---|
884 | intros; destruct x; simpl; auto. |
---|
885 | generalize (Int.eq_spec n Int.zero); |
---|
886 | case (Int.eq n Int.zero); intro. |
---|
887 | subst n. compute in H. discriminate. |
---|
888 | decEq. eapply Int.modu_and; eauto. |
---|
889 | Qed. |
---|
890 | |
---|
891 | Theorem and_commut: forall x y, and x y = and y x. |
---|
892 | Proof. |
---|
893 | destruct x; destruct y; simpl; auto. decEq. apply Int.and_commut. |
---|
894 | Qed. |
---|
895 | |
---|
896 | Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z). |
---|
897 | Proof. |
---|
898 | destruct x; destruct y; destruct z; simpl; auto. |
---|
899 | decEq. apply Int.and_assoc. |
---|
900 | Qed. |
---|
901 | |
---|
902 | Theorem or_commut: forall x y, or x y = or y x. |
---|
903 | Proof. |
---|
904 | destruct x; destruct y; simpl; auto. decEq. apply Int.or_commut. |
---|
905 | Qed. |
---|
906 | |
---|
907 | Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z). |
---|
908 | Proof. |
---|
909 | destruct x; destruct y; destruct z; simpl; auto. |
---|
910 | decEq. apply Int.or_assoc. |
---|
911 | Qed. |
---|
912 | |
---|
913 | Theorem xor_commut: forall x y, xor x y = xor y x. |
---|
914 | Proof. |
---|
915 | destruct x; destruct y; simpl; auto. decEq. apply Int.xor_commut. |
---|
916 | Qed. |
---|
917 | |
---|
918 | Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z). |
---|
919 | Proof. |
---|
920 | destruct x; destruct y; destruct z; simpl; auto. |
---|
921 | decEq. apply Int.xor_assoc. |
---|
922 | Qed. |
---|
923 | |
---|
924 | Theorem shl_mul: forall x y, Val.mul x (Val.shl Vone y) = Val.shl x y. |
---|
925 | Proof. |
---|
926 | destruct x; destruct y; simpl; auto. |
---|
927 | case (Int.ltu i0 Int.iwordsize); auto. |
---|
928 | decEq. symmetry. apply Int.shl_mul. |
---|
929 | Qed. |
---|
930 | |
---|
931 | Theorem shl_rolm: |
---|
932 | forall x n, |
---|
933 | Int.ltu n Int.iwordsize = true -> |
---|
934 | shl x (Vint n) = rolm x n (Int.shl Int.mone n). |
---|
935 | Proof. |
---|
936 | intros; destruct x; simpl; auto. |
---|
937 | rewrite H. decEq. apply Int.shl_rolm. exact H. |
---|
938 | Qed. |
---|
939 | |
---|
940 | Theorem shru_rolm: |
---|
941 | forall x n, |
---|
942 | Int.ltu n Int.iwordsize = true -> |
---|
943 | shru x (Vint n) = rolm x (Int.sub Int.iwordsize n) (Int.shru Int.mone n). |
---|
944 | Proof. |
---|
945 | intros; destruct x; simpl; auto. |
---|
946 | rewrite H. decEq. apply Int.shru_rolm. exact H. |
---|
947 | Qed. |
---|
948 | |
---|
949 | Theorem shrx_carry: |
---|
950 | forall x y, |
---|
951 | add (shr x y) (shr_carry x y) = shrx x y. |
---|
952 | Proof. |
---|
953 | destruct x; destruct y; simpl; auto. |
---|
954 | case (Int.ltu i0 Int.iwordsize); auto. |
---|
955 | simpl. decEq. apply Int.shrx_carry. |
---|
956 | Qed. |
---|
957 | |
---|
958 | Theorem or_rolm: |
---|
959 | forall x n m1 m2, |
---|
960 | or (rolm x n m1) (rolm x n m2) = rolm x n (Int.or m1 m2). |
---|
961 | Proof. |
---|
962 | intros; destruct x; simpl; auto. |
---|
963 | decEq. apply Int.or_rolm. |
---|
964 | Qed. |
---|
965 | |
---|
966 | Theorem rolm_rolm: |
---|
967 | forall x n1 m1 n2 m2, |
---|
968 | rolm (rolm x n1 m1) n2 m2 = |
---|
969 | rolm x (Int.modu (Int.add n1 n2) Int.iwordsize) |
---|
970 | (Int.and (Int.rol m1 n2) m2). |
---|
971 | Proof. |
---|
972 | intros; destruct x; simpl; auto. |
---|
973 | decEq. |
---|
974 | apply Int.rolm_rolm. apply int_wordsize_divides_modulus. |
---|
975 | Qed. |
---|
976 | |
---|
977 | Theorem rolm_zero: |
---|
978 | forall x m, |
---|
979 | rolm x Int.zero m = and x (Vint m). |
---|
980 | Proof. |
---|
981 | intros; destruct x; simpl; auto. decEq. apply Int.rolm_zero. |
---|
982 | Qed. |
---|
983 | |
---|
984 | Theorem addf_commut: forall x y, addf x y = addf y x. |
---|
985 | Proof. |
---|
986 | destruct x; destruct y; simpl; auto. decEq. apply Float.addf_commut. |
---|
987 | Qed. |
---|
988 | |
---|
989 | Lemma negate_cmp_mismatch: |
---|
990 | forall c, |
---|
991 | cmp_mismatch (negate_comparison c) = notbool(cmp_mismatch c). |
---|
992 | Proof. |
---|
993 | destruct c; reflexivity. |
---|
994 | Qed. |
---|
995 | |
---|
996 | Theorem negate_cmp: |
---|
997 | forall c x y, |
---|
998 | cmp (negate_comparison c) x y = notbool (cmp c x y). |
---|
999 | Proof. |
---|
1000 | destruct x; destruct y; simpl; auto. |
---|
1001 | rewrite Int.negate_cmp. apply notbool_negb_1. |
---|
1002 | case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity. |
---|
1003 | case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity. |
---|
1004 | case (zeq b b0); intro. |
---|
1005 | rewrite Int.negate_cmp. apply notbool_negb_1. |
---|
1006 | apply negate_cmp_mismatch. |
---|
1007 | Qed. |
---|
1008 | |
---|
1009 | Theorem negate_cmpu: |
---|
1010 | forall c x y, |
---|
1011 | cmpu (negate_comparison c) x y = notbool (cmpu c x y). |
---|
1012 | Proof. |
---|
1013 | destruct x; destruct y; simpl; auto. |
---|
1014 | rewrite Int.negate_cmpu. apply notbool_negb_1. |
---|
1015 | case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity. |
---|
1016 | case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity. |
---|
1017 | case (zeq b b0); intro. |
---|
1018 | rewrite Int.negate_cmpu. apply notbool_negb_1. |
---|
1019 | apply negate_cmp_mismatch. |
---|
1020 | Qed. |
---|
1021 | |
---|
1022 | Lemma swap_cmp_mismatch: |
---|
1023 | forall c, cmp_mismatch (swap_comparison c) = cmp_mismatch c. |
---|
1024 | Proof. |
---|
1025 | destruct c; reflexivity. |
---|
1026 | Qed. |
---|
1027 | |
---|
1028 | Theorem swap_cmp: |
---|
1029 | forall c x y, |
---|
1030 | cmp (swap_comparison c) x y = cmp c y x. |
---|
1031 | Proof. |
---|
1032 | destruct x; destruct y; simpl; auto. |
---|
1033 | rewrite Int.swap_cmp. auto. |
---|
1034 | case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto. |
---|
1035 | case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto. |
---|
1036 | case (zeq b b0); intro. |
---|
1037 | subst b0. rewrite zeq_true. rewrite Int.swap_cmp. auto. |
---|
1038 | rewrite zeq_false. apply swap_cmp_mismatch. auto. |
---|
1039 | Qed. |
---|
1040 | |
---|
1041 | Theorem swap_cmpu: |
---|
1042 | forall c x y, |
---|
1043 | cmpu (swap_comparison c) x y = cmpu c y x. |
---|
1044 | Proof. |
---|
1045 | destruct x; destruct y; simpl; auto. |
---|
1046 | rewrite Int.swap_cmpu. auto. |
---|
1047 | case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto. |
---|
1048 | case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto. |
---|
1049 | case (zeq b b0); intro. |
---|
1050 | subst b0. rewrite zeq_true. rewrite Int.swap_cmpu. auto. |
---|
1051 | rewrite zeq_false. apply swap_cmp_mismatch. auto. |
---|
1052 | Qed. |
---|
1053 | |
---|
1054 | Theorem negate_cmpf_eq: |
---|
1055 | forall v1 v2, notbool (cmpf Cne v1 v2) = cmpf Ceq v1 v2. |
---|
1056 | Proof. |
---|
1057 | destruct v1; destruct v2; simpl; auto. |
---|
1058 | rewrite Float.cmp_ne_eq. rewrite notbool_negb_1. |
---|
1059 | apply notbool_idem2. |
---|
1060 | Qed. |
---|
1061 | |
---|
1062 | Theorem negate_cmpf_ne: |
---|
1063 | forall v1 v2, notbool (cmpf Ceq v1 v2) = cmpf Cne v1 v2. |
---|
1064 | Proof. |
---|
1065 | destruct v1; destruct v2; simpl; auto. |
---|
1066 | rewrite Float.cmp_ne_eq. rewrite notbool_negb_1. auto. |
---|
1067 | Qed. |
---|
1068 | |
---|
1069 | Lemma or_of_bool: |
---|
1070 | forall b1 b2, or (of_bool b1) (of_bool b2) = of_bool (b1 || b2). |
---|
1071 | Proof. |
---|
1072 | destruct b1; destruct b2; reflexivity. |
---|
1073 | Qed. |
---|
1074 | |
---|
1075 | Theorem cmpf_le: |
---|
1076 | forall v1 v2, cmpf Cle v1 v2 = or (cmpf Clt v1 v2) (cmpf Ceq v1 v2). |
---|
1077 | Proof. |
---|
1078 | destruct v1; destruct v2; simpl; auto. |
---|
1079 | rewrite or_of_bool. decEq. apply Float.cmp_le_lt_eq. |
---|
1080 | Qed. |
---|
1081 | |
---|
1082 | Theorem cmpf_ge: |
---|
1083 | forall v1 v2, cmpf Cge v1 v2 = or (cmpf Cgt v1 v2) (cmpf Ceq v1 v2). |
---|
1084 | Proof. |
---|
1085 | destruct v1; destruct v2; simpl; auto. |
---|
1086 | rewrite or_of_bool. decEq. apply Float.cmp_ge_gt_eq. |
---|
1087 | Qed. |
---|
1088 | |
---|
1089 | Definition is_bool (v: val) := |
---|
1090 | v = Vundef \/ v = Vtrue \/ v = Vfalse. |
---|
1091 | |
---|
1092 | Lemma of_bool_is_bool: |
---|
1093 | forall b, is_bool (of_bool b). |
---|
1094 | Proof. |
---|
1095 | destruct b; unfold is_bool; simpl; tauto. |
---|
1096 | Qed. |
---|
1097 | |
---|
1098 | Lemma undef_is_bool: is_bool Vundef. |
---|
1099 | Proof. |
---|
1100 | unfold is_bool; tauto. |
---|
1101 | Qed. |
---|
1102 | |
---|
1103 | Lemma cmp_mismatch_is_bool: |
---|
1104 | forall c, is_bool (cmp_mismatch c). |
---|
1105 | Proof. |
---|
1106 | destruct c; simpl; unfold is_bool; tauto. |
---|
1107 | Qed. |
---|
1108 | |
---|
1109 | Lemma cmp_is_bool: |
---|
1110 | forall c v1 v2, is_bool (cmp c v1 v2). |
---|
1111 | Proof. |
---|
1112 | destruct v1; destruct v2; simpl; try apply undef_is_bool. |
---|
1113 | apply of_bool_is_bool. |
---|
1114 | case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. |
---|
1115 | case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. |
---|
1116 | case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool. |
---|
1117 | Qed. |
---|
1118 | |
---|
1119 | Lemma cmpu_is_bool: |
---|
1120 | forall c v1 v2, is_bool (cmpu c v1 v2). |
---|
1121 | Proof. |
---|
1122 | destruct v1; destruct v2; simpl; try apply undef_is_bool. |
---|
1123 | apply of_bool_is_bool. |
---|
1124 | case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. |
---|
1125 | case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. |
---|
1126 | case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool. |
---|
1127 | Qed. |
---|
1128 | |
---|
1129 | Lemma cmpf_is_bool: |
---|
1130 | forall c v1 v2, is_bool (cmpf c v1 v2). |
---|
1131 | Proof. |
---|
1132 | destruct v1; destruct v2; simpl; |
---|
1133 | apply undef_is_bool || apply of_bool_is_bool. |
---|
1134 | Qed. |
---|
1135 | |
---|
1136 | Lemma notbool_is_bool: |
---|
1137 | forall v, is_bool (notbool v). |
---|
1138 | Proof. |
---|
1139 | destruct v; simpl. |
---|
1140 | apply undef_is_bool. apply of_bool_is_bool. |
---|
1141 | apply undef_is_bool. unfold is_bool; tauto. |
---|
1142 | Qed. |
---|
1143 | |
---|
1144 | Lemma notbool_xor: |
---|
1145 | forall v, is_bool v -> v = xor (notbool v) Vone. |
---|
1146 | Proof. |
---|
1147 | intros. elim H; intro. |
---|
1148 | subst v. reflexivity. |
---|
1149 | elim H0; intro; subst v; reflexivity. |
---|
1150 | Qed. |
---|
1151 | |
---|
1152 | Lemma rolm_lt_zero: |
---|
1153 | forall v, rolm v Int.one Int.one = cmp Clt v (Vint Int.zero). |
---|
1154 | Proof. |
---|
1155 | intros. destruct v; simpl; auto. |
---|
1156 | transitivity (Vint (Int.shru i (Int.repr (Z_of_nat Int.wordsize - 1)))). |
---|
1157 | decEq. symmetry. rewrite Int.shru_rolm. auto. auto. |
---|
1158 | rewrite Int.shru_lt_zero. destruct (Int.lt i Int.zero); auto. |
---|
1159 | Qed. |
---|
1160 | |
---|
1161 | Lemma rolm_ge_zero: |
---|
1162 | forall v, |
---|
1163 | xor (rolm v Int.one Int.one) (Vint Int.one) = cmp Cge v (Vint Int.zero). |
---|
1164 | Proof. |
---|
1165 | intros. rewrite rolm_lt_zero. destruct v; simpl; auto. |
---|
1166 | destruct (Int.lt i Int.zero); auto. |
---|
1167 | Qed. |
---|
1168 | *) |
---|
1169 | (* * The ``is less defined'' relation between values. |
---|
1170 | A value is less defined than itself, and [Vundef] is |
---|
1171 | less defined than any value. *) |
---|
1172 | |
---|
1173 | inductive Val_lessdef: val → val → Prop ≝ |
---|
1174 | | lessdef_refl: ∀v. Val_lessdef v v |
---|
1175 | | lessdef_undef: ∀v. Val_lessdef Vundef v. |
---|
1176 | |
---|
1177 | inductive lessdef_list: list val → list val → Prop ≝ |
---|
1178 | | lessdef_list_nil: |
---|
1179 | lessdef_list (nil ?) (nil ?) |
---|
1180 | | lessdef_list_cons: |
---|
1181 | ∀v1,v2,vl1,vl2. |
---|
1182 | Val_lessdef v1 v2 → lessdef_list vl1 vl2 → |
---|
1183 | lessdef_list (v1 :: vl1) (v2 :: vl2). |
---|
1184 | |
---|
1185 | (*Hint Resolve lessdef_refl lessdef_undef lessdef_list_nil lessdef_list_cons.*) |
---|
1186 | (* |
---|
1187 | lemma lessdef_list_inv: |
---|
1188 | ∀vl1,vl2. lessdef_list vl1 vl2 → vl1 = vl2 ∨ in_list ? Vundef vl1. |
---|
1189 | #vl1 elim vl1; |
---|
1190 | [ #vl2 #H inversion H; /2/; #h1 #h2 #t1 #t2 #H1 #H2 #H3 #Hbad destruct |
---|
1191 | | #h #t #IH #vl2 #H |
---|
1192 | inversion H; |
---|
1193 | [ #H' destruct |
---|
1194 | | #h1 #h2 #t1 #t2 #H1 #H2 #H3 #e1 #e2 destruct; |
---|
1195 | elim H1; |
---|
1196 | [ elim (IH t2 H2); |
---|
1197 | [ #e destruct; /2/; |
---|
1198 | | /3/ ] |
---|
1199 | | /3/ ] |
---|
1200 | ] |
---|
1201 | ] qed. |
---|
1202 | *) |
---|
1203 | lemma load_result_lessdef: |
---|
1204 | ∀chunk,v1,v2. |
---|
1205 | Val_lessdef v1 v2 → Val_lessdef (load_result chunk v1) (load_result chunk v2). |
---|
1206 | #chunk #v1 #v2 #H inversion H; //; #v #e1 #e2 cases chunk |
---|
1207 | [ 8: #r ] whd in ⊢ (?%?); //; |
---|
1208 | qed. |
---|
1209 | |
---|
1210 | lemma zero_ext_lessdef: |
---|
1211 | ∀n,v1,v2. Val_lessdef v1 v2 → Val_lessdef (zero_ext n v1) (zero_ext n v2). |
---|
1212 | #n #v1 #v2 #H inversion H // #v #E1 #E2 destruct // |
---|
1213 | qed. |
---|
1214 | |
---|
1215 | lemma sign_ext_lessdef: |
---|
1216 | ∀n,v1,v2. Val_lessdef v1 v2 → Val_lessdef (sign_ext n v1) (sign_ext n v2). |
---|
1217 | #n #v1 #v2 #H inversion H;//;#v #e1 #e2 <e1 in H >e2 //; |
---|
1218 | qed. |
---|
1219 | (* |
---|
1220 | Lemma singleoffloat_lessdef: |
---|
1221 | forall v1 v2, lessdef v1 v2 -> lessdef (singleoffloat v1) (singleoffloat v2). |
---|
1222 | Proof. |
---|
1223 | intros; inv H; simpl; auto. |
---|
1224 | Qed. |
---|
1225 | |
---|
1226 | End Val. |
---|
1227 | *) |
---|