source: src/common/SmallstepExec.ma @ 1599

Last change on this file since 1599 was 1599, checked in by sacerdot, 8 years ago

Start of merging of stuff into the standard library of Matita.

File size: 4.7 KB
Line 
1include "utilities/extralib.ma".
2include "common/IOMonad.ma".
3include "common/Integers.ma".
4include "common/Events.ma".
5
6record trans_system (outty:Type[0]) (inty:outty → Type[0]) : Type[2] ≝
7{ global : Type[1]
8; state  : global → Type[0]
9; is_final : ∀g. state g → option int
10; step : ∀g. state g → IO outty inty (trace×(state g))
11}.
12
13let rec repeat (n:nat) (outty:Type[0]) (inty:outty → Type[0]) (exec:trans_system outty inty)
14               (g:global ?? exec) (s:state ?? exec g)
15 : IO outty inty (trace × (state ?? exec g)) ≝
16match n with
17[ O ⇒ Value ??? 〈E0, s〉
18| S n' ⇒ ! 〈t1,s1〉 ← step ?? exec g s;
19         repeat n' ?? exec g s1
20].
21
22let rec trace_map (A,B:Type[0]) (f:A → res (trace × B))
23                  (l:list A) on l : res (trace × (list B)) ≝
24match l with
25[ nil ⇒ OK ? 〈E0, [ ]〉
26| cons h t ⇒
27    do 〈tr,h'〉 ← f h;
28    do 〈tr',t'〉 ← trace_map … f t;
29    OK ? 〈tr ⧺ tr',h'::t'〉
30].
31
32(* A (possibly non-terminating) execution.   *)
33coinductive execution (state:Type[0]) (output:Type[0]) (input:output → Type[0]) : Type[0] ≝
34| e_stop : trace → int → state → execution state output input
35| e_step : trace → state → execution state output input → execution state output input
36| e_wrong : errmsg → execution state output input
37| e_interact : ∀o:output. (input o → execution state output input) → execution state output input.
38
39(* This definition is slightly awkward because of the need to provide resumptions.
40   It records the last trace/state passed in, then recursively processes the next
41   state. *)
42
43let corec exec_inf_aux (output:Type[0]) (input:output → Type[0])
44                       (exec:trans_system output input) (g:global ?? exec)
45                       (s:IO output input (trace×(state ?? exec g)))
46                       : execution ??? ≝
47match s with
48[ Wrong m ⇒ e_wrong ??? m
49| Value v ⇒ let 〈t,s'〉 ≝ v in
50    match is_final ?? exec g s' with
51    [ Some r ⇒ e_stop ??? t r s'
52    | None ⇒ e_step ??? t s' (exec_inf_aux ??? g (step ?? exec g s')) ]
53| Interact out k' ⇒ e_interact ??? out (λv. exec_inf_aux ??? g (k' v))
54].
55
56lemma execution_cases: ∀o,i,s.∀e:execution s o i.
57 e = match e with [ e_stop tr r m ⇒ e_stop ??? tr r m
58 | e_step tr s e ⇒ e_step ??? tr s e
59 | e_wrong m ⇒ e_wrong ??? m | e_interact o k ⇒ e_interact ??? o k ].
60#o #i #s #e cases e; [1: #T #I #M % | 2: #T #S #E % | 3: #E %
61 | 4: #O #I % ] qed. (* XXX: assertion failed: superposition.ml when using auto
62  here, used reflexivity instead *)
63
64axiom exec_inf_aux_unfold: ∀o,i,exec,g,s. exec_inf_aux o i exec g s =
65match s with
66[ Wrong m ⇒ e_wrong ??? m
67| Value v ⇒ let 〈t,s'〉 ≝ v in
68    match is_final ?? exec g s' with
69    [ Some r ⇒ e_stop ??? t r s'
70    | None ⇒ e_step ??? t s' (exec_inf_aux ??? g (step ?? exec g s')) ]
71| Interact out k' ⇒ e_interact ??? out (λv. exec_inf_aux ??? g (k' v))
72].
73(*
74#exec #ge #s >(execution_cases ? (exec_inf_aux …)) cases s
75[ #o #k
76| #x cases x #tr #s' (* XXX Can't unfold exec_inf_aux here *)
77| ]
78whd in ⊢ (??%%); //;
79qed.
80*)
81
82record fullexec (outty:Type[0]) (inty:outty → Type[0]) : Type[2] ≝
83{ program : Type[0]
84; es1 :> trans_system outty inty
85; make_global : program → global ?? es1
86; make_initial_state : ∀p:program. res (state ?? es1 (make_global p))
87}.
88
89definition exec_inf : ∀o,i.∀fx:fullexec o i. ∀p:program ?? fx. execution (state ?? fx (make_global … fx p)) o i ≝
90λo,i,fx,p.
91  match make_initial_state ?? fx p with
92  [ OK s ⇒ exec_inf_aux ?? fx (make_global … fx p) (Value … 〈E0,s〉)
93  | Error m ⇒ e_wrong ??? m
94  ].
95
96(* Some preliminary simulation stuff that's not been used yet.
97record execstep' (outty:Type[0]) (inty:outty → Type[0]) : Type[1] ≝
98{ es0 :> execstep outty inty
99; initial : state ?? es0 → Prop
100}.
101
102
103alias symbol "and" (instance 2) = "logical and".
104record related_semantics : Type[1] ≝
105{ output : Type[0]
106; input : output → Type[0]
107; sem1 : execstep' output input
108; sem2 : execstep' output input
109; ge1 : genv ?? sem1
110; ge2 : genv ?? sem2
111; match_states : state ?? sem1 → state ?? sem2 → Prop
112; match_initial_states : ∀st1. (initial ?? sem1) st1 → ∃st2. (initial ?? sem2) st2 ∧ match_states st1 st2
113; match_final_states : ∀st1,st2,r. match_states st1 st2 → (is_final ?? sem1) st1 = Some ? r → (is_final ?? sem2) st2 = Some ? r
114}.
115
116
117
118record simulation : Type[1] ≝
119{ sems :> related_semantics
120; sim : ∀st1,st2,t,st1'.
121        P_io' ?? (trace × (state ?? (sem1 sems))) (λr. r = 〈t,st1'〉) (step ?? (sem1 sems) (ge1 sems) st1) →
122        match_states sems st1 st2 →
123        ∃st2':(state ?? (sem2 sems)).(∃n:nat.P_io' ?? (trace × (state ?? (sem2 sems))) (λr. r = 〈t,st2'〉) (repeat n ?? (sem2 sems) (ge2 sems) st2)) ∧
124          match_states sems st1' st2'
125}.
126*)
Note: See TracBrowser for help on using the repository browser.