1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Global environments are a component of the dynamic semantics of |
---|
17 | all languages involved in the compiler. A global environment |
---|
18 | maps symbol names (names of functions and of global variables) |
---|
19 | to the corresponding memory addresses. It also maps memory addresses |
---|
20 | of functions to the corresponding function descriptions. |
---|
21 | |
---|
22 | Global environments, along with the initial memory state at the beginning |
---|
23 | of program execution, are built from the program of interest, as follows: |
---|
24 | - A distinct memory address is assigned to each function of the program. |
---|
25 | These function addresses use negative numbers to distinguish them from |
---|
26 | addresses of memory blocks. The associations of function name to function |
---|
27 | address and function address to function description are recorded in |
---|
28 | the global environment. |
---|
29 | - For each global variable, a memory block is allocated and associated to |
---|
30 | the name of the variable. |
---|
31 | |
---|
32 | These operations reflect (at a high level of abstraction) what takes |
---|
33 | place during program linking and program loading in a real operating |
---|
34 | system. *) |
---|
35 | |
---|
36 | include "common/Errors.ma". |
---|
37 | include "common/AST.ma". |
---|
38 | (*include "Values.ma".*) |
---|
39 | include "common/FrontEndMem.ma". |
---|
40 | |
---|
41 | (* * The type of global environments. The parameter [F] is the type |
---|
42 | of function descriptions. *) |
---|
43 | (* Functions are given negative block numbers *) |
---|
44 | record genv_t (F:Type[0]) : Type[0] ≝ { |
---|
45 | functions: positive_map F; |
---|
46 | nextfunction: Pos; |
---|
47 | symbols: identifier_map SymbolTag block; |
---|
48 | functions_inv: ∀b. lookup_opt ? b functions ≠ None ? → |
---|
49 | ∃id. lookup … symbols id = Some ? (mk_block Code (neg b)) |
---|
50 | }. |
---|
51 | |
---|
52 | (* We deal with shadowed names by overwriting their global environment entry |
---|
53 | and getting rid of any function mapping (the latter is necessary so that we |
---|
54 | get a reverse mapping). In fact, the parser will prevent these anyway, but |
---|
55 | adding the uniqueness of these names throughout would be more trouble than |
---|
56 | it's worth. *) |
---|
57 | |
---|
58 | definition drop_fn : ∀F:Type[0]. ident → genv_t F → genv_t F ≝ |
---|
59 | λF,id,g. |
---|
60 | let fns ≝ |
---|
61 | match lookup ?? (symbols … g) id with |
---|
62 | [ None ⇒ functions … g |
---|
63 | | Some b' ⇒ |
---|
64 | match b' with |
---|
65 | [ mk_block r x ⇒ |
---|
66 | match r with |
---|
67 | [ Code ⇒ |
---|
68 | match x with |
---|
69 | [ neg p ⇒ pm_set … p (None ?) (functions … g) |
---|
70 | | _ ⇒ functions … g |
---|
71 | ] |
---|
72 | | _ ⇒ functions … g |
---|
73 | ] |
---|
74 | | _ ⇒ functions … g |
---|
75 | ] |
---|
76 | ] |
---|
77 | in mk_genv_t F fns (nextfunction … g) (remove … (symbols … g) id) ?. |
---|
78 | whd in match fns; -fns |
---|
79 | #b #L |
---|
80 | cases (functions_inv ? g b ?) |
---|
81 | [ #id' #L' |
---|
82 | cases (identifier_eq … id id') |
---|
83 | [ #E destruct >L' in L; normalize >lookup_opt_pm_set_hit * #H cases (H (refl ??)) |
---|
84 | | #NE %{id'} >lookup_remove_miss /2/ |
---|
85 | ] |
---|
86 | | cases (lookup ?? (symbols F g) id) in L; |
---|
87 | [ normalize // |
---|
88 | | * * * [ 2,3,5,6: #b' ] normalize // |
---|
89 | #H cut (b ≠ b') |
---|
90 | [ % #E destruct >lookup_opt_pm_set_hit in H; * /2/ ] |
---|
91 | #NE >lookup_opt_pm_set_miss in H; // |
---|
92 | ] |
---|
93 | ] qed. |
---|
94 | |
---|
95 | lemma drop_fn_id : ∀F,id,ge. |
---|
96 | lookup ?? (symbols … (drop_fn F id ge)) id = None ?. |
---|
97 | #F #id * #fns #next #syms #inv |
---|
98 | whd in match (drop_fn ???); |
---|
99 | @lookup_remove_hit |
---|
100 | qed. |
---|
101 | |
---|
102 | lemma drop_fn_lfn : ∀F,id,ge,b,f. |
---|
103 | lookup_opt ? b (functions … (drop_fn F id ge)) = Some ? f → |
---|
104 | lookup_opt ? b (functions … ge) = Some ? f. |
---|
105 | #F #id #ge #b #f |
---|
106 | whd in match (drop_fn ???); |
---|
107 | cases (lookup ??? id) |
---|
108 | [ normalize // |
---|
109 | | * * * [2,3,5,6: #b' ] normalize // |
---|
110 | cases (decidable_eq_pos b b') |
---|
111 | [ #E destruct >lookup_opt_pm_set_hit #E destruct |
---|
112 | | #NE >lookup_opt_pm_set_miss // |
---|
113 | ] |
---|
114 | ] qed. |
---|
115 | |
---|
116 | definition add_funct : ∀F:Type[0]. (ident × F) → genv_t F → genv_t F ≝ |
---|
117 | λF,name_fun,g. |
---|
118 | let blk_id ≝ nextfunction ? g in |
---|
119 | let b ≝ mk_block Code (neg blk_id) in |
---|
120 | let g' ≝ drop_fn F (\fst name_fun) g in |
---|
121 | mk_genv_t F (insert ? blk_id (\snd name_fun) (functions … g')) |
---|
122 | (succ blk_id) |
---|
123 | (add ?? (symbols … g') (\fst name_fun) b) ?. |
---|
124 | #b' #L whd in match b; |
---|
125 | cases (decidable_eq_pos blk_id b') |
---|
126 | [ #E destruct |
---|
127 | %{(\fst name_fun)} @lookup_add_hit |
---|
128 | | #NE |
---|
129 | cases (functions_inv ? g' b' ?) |
---|
130 | [ #id #L' %{id} >lookup_add_miss |
---|
131 | [ @L' |
---|
132 | | % #E destruct |
---|
133 | >drop_fn_id in L'; #E destruct |
---|
134 | ] |
---|
135 | | >lookup_opt_insert_miss in L; /2/ |
---|
136 | ] |
---|
137 | ] qed. |
---|
138 | |
---|
139 | definition add_symbol : ∀F:Type[0]. ident → block → genv_t F → genv_t F ≝ |
---|
140 | λF,name,b,g. |
---|
141 | let g' ≝ drop_fn F name g in |
---|
142 | mk_genv_t F (functions … g') |
---|
143 | (nextfunction … g') |
---|
144 | (add ?? (symbols … g') name b) |
---|
145 | ?. |
---|
146 | #b' #L |
---|
147 | cases (functions_inv ? g' b' ?) |
---|
148 | [ #id #L' %{id} >lookup_add_miss |
---|
149 | [ @L' |
---|
150 | | % #E destruct |
---|
151 | >drop_fn_id in L'; #E destruct |
---|
152 | ] |
---|
153 | | @L |
---|
154 | ] qed. |
---|
155 | |
---|
156 | (* Construct environment and initial memory store *) |
---|
157 | definition empty_mem ≝ empty. (* XXX*) |
---|
158 | definition empty : ∀F. genv_t F ≝ |
---|
159 | λF. mk_genv_t F (pm_leaf ?) (succ_pos_of_nat … 2) (empty_map ??) ?. |
---|
160 | #b #L normalize in L; cases L #L cases (L (refl ??)) |
---|
161 | qed. |
---|
162 | |
---|
163 | definition add_functs : ∀F:Type[0]. genv_t F → list (ident × F) → genv_t F ≝ |
---|
164 | λF,init,fns. |
---|
165 | foldr ?? (add_funct F) init fns. |
---|
166 | |
---|
167 | (* Return the address of the given global symbol, if any. *) |
---|
168 | definition find_symbol: ∀F: Type[0]. genv_t F → ident → option block ≝ |
---|
169 | λF,ge. lookup ?? (symbols … ge). |
---|
170 | |
---|
171 | (* init *) |
---|
172 | |
---|
173 | definition store_init_data : ∀F.genv_t F → mem → block → Z → init_data → option mem ≝ |
---|
174 | λF,ge,m,b,p,id. |
---|
175 | (* store checks that the address came from something capable of representing |
---|
176 | addresses of the memory region in question - here there are no real |
---|
177 | pointers, so use the real region. *) |
---|
178 | let ptr ≝ mk_pointer (*block_region m b*) b (*?*) (mk_offset (bitvector_of_Z … p)) in |
---|
179 | match id with |
---|
180 | [ Init_int8 n ⇒ store (ASTint I8 Unsigned) m ptr (Vint I8 n) |
---|
181 | | Init_int16 n ⇒ store (ASTint I16 Unsigned) m ptr (Vint I16 n) |
---|
182 | | Init_int32 n ⇒ store (ASTint I32 Unsigned) m ptr (Vint I32 n) |
---|
183 | | Init_float32 n ⇒ None ? (*store (ASTfloat F32) m ptr (Vfloat n)*) |
---|
184 | | Init_float64 n ⇒ None ? (*store (ASTfloat F64) m ptr (Vfloat n) *) |
---|
185 | | Init_addrof (*r'*) symb ofs ⇒ |
---|
186 | match find_symbol … ge symb with |
---|
187 | [ None ⇒ None ? |
---|
188 | | Some b' ⇒ (* |
---|
189 | match pointer_compat_dec b' r' with |
---|
190 | [ inl pc ⇒*) store (ASTptr (*r'*)) m ptr (Vptr (mk_pointer (*r'*) b' (*pc*) (shift_offset ? zero_offset (repr I16 ofs)))) |
---|
191 | (*| inr _ ⇒ None ? |
---|
192 | ]*) |
---|
193 | ] |
---|
194 | | Init_space n ⇒ Some ? m |
---|
195 | | Init_null (*r'*) ⇒ store (ASTptr (*r'*)) m ptr (Vnull (*r'*)) |
---|
196 | ]. |
---|
197 | (*cases b // |
---|
198 | qed.*) |
---|
199 | |
---|
200 | definition size_init_data : init_data → nat ≝ |
---|
201 | λi_data.match i_data with |
---|
202 | [ Init_int8 _ ⇒ 1 |
---|
203 | | Init_int16 _ ⇒ 2 |
---|
204 | | Init_int32 _ ⇒ 4 |
---|
205 | | Init_float32 _ ⇒ 4 |
---|
206 | | Init_float64 _ ⇒ 8 |
---|
207 | | Init_space n ⇒ max n 0 |
---|
208 | | Init_null (*r*) ⇒ size_pointer (*r*) |
---|
209 | | Init_addrof (*r*) _ _ ⇒ size_pointer (*r*)]. |
---|
210 | |
---|
211 | let rec store_init_data_list (F:Type[0]) (ge:genv_t F) |
---|
212 | (m: mem) (b: block) (p: Z) (idl: list init_data) |
---|
213 | on idl : option mem ≝ |
---|
214 | match idl with |
---|
215 | [ nil ⇒ Some ? m |
---|
216 | | cons id idl' ⇒ |
---|
217 | match store_init_data F ge m b p id with |
---|
218 | [ None ⇒ None ? |
---|
219 | | Some m' ⇒ store_init_data_list F ge m' b (p + size_init_data id) idl' |
---|
220 | ] |
---|
221 | ]. |
---|
222 | |
---|
223 | definition size_init_data_list : list init_data → nat ≝ |
---|
224 | λi_data.foldr ?? (λi_data,sz. size_init_data i_data + sz) O i_data. |
---|
225 | |
---|
226 | (* Nonessential properties that may require arithmetic |
---|
227 | nremark size_init_data_list_pos: |
---|
228 | ∀i_data. OZ ≤ size_init_data_list i_data. |
---|
229 | #i_data;elim i_data;//; |
---|
230 | #a;#tl;cut (OZ ≤ size_init_data a) |
---|
231 | ##[cases a;normalize;//; |
---|
232 | #x;cases x;normalize;//; |
---|
233 | ##|#Hsize;#IH;nchange in ⊢ (??%) with (size_init_data a + (foldr ??? OZ tl)); |
---|
234 | cut (size_init_data a = OZ ∨ ∃m.size_init_data a = pos m) |
---|
235 | ##[cases (size_init_data a) in Hsize IH; |
---|
236 | ##[##1,2:/3/ |
---|
237 | ##|normalize;#n;#Hfalse;elim Hfalse] |
---|
238 | ##|#Hdisc;cases Hdisc |
---|
239 | ##[#Heq;nrewrite > Heq;//; |
---|
240 | ##|#Heq;cases Heq;#x;#Heq2;nrewrite > Heq2; |
---|
241 | (* TODO: arithmetics *) napply daemon] |
---|
242 | ##] |
---|
243 | ##] |
---|
244 | qed. |
---|
245 | *) |
---|
246 | |
---|
247 | |
---|
248 | (* init *) |
---|
249 | |
---|
250 | axiom InitDataStoreFailed : String. |
---|
251 | |
---|
252 | definition add_globals : ∀F,V:Type[0]. |
---|
253 | (V → (list init_data)) → |
---|
254 | genv_t F × mem → list (ident × region × V) → |
---|
255 | (genv_t F × mem) ≝ |
---|
256 | λF,V,extract_init,init_env,vars. |
---|
257 | foldl ?? |
---|
258 | (λg_st: genv_t F × mem. λid_init: ident × region × V. |
---|
259 | let 〈id, r, init_info〉 ≝ id_init in |
---|
260 | let init ≝ extract_init init_info in |
---|
261 | let 〈g,st〉 ≝ g_st in |
---|
262 | let 〈st',b〉 ≝ alloc st OZ (size_init_data_list init) r in |
---|
263 | let g' ≝ add_symbol ? id b g in |
---|
264 | 〈g', st'〉 |
---|
265 | ) |
---|
266 | init_env vars. |
---|
267 | |
---|
268 | definition init_globals : ∀F,V:Type[0]. |
---|
269 | (V → (list init_data)) → |
---|
270 | genv_t F → mem → list (ident × region × V) → |
---|
271 | res mem ≝ |
---|
272 | λF,V,extract_init,g,m,vars. |
---|
273 | foldl ?? |
---|
274 | (λst: res mem. λid_init: ident × region × V. |
---|
275 | let 〈id, r, init_info〉 ≝ id_init in |
---|
276 | let init ≝ extract_init init_info in |
---|
277 | do st ← st; |
---|
278 | match find_symbol … g id with |
---|
279 | [ Some b ⇒ opt_to_res ? (msg InitDataStoreFailed) (store_init_data_list F g st b OZ init) |
---|
280 | | None ⇒ Error ? (msg InitDataStoreFailed) (* ought to be impossible *) |
---|
281 | ] ) |
---|
282 | (OK ? m) vars. |
---|
283 | |
---|
284 | definition globalenv_allocmem : ∀F,V. (V → (list init_data)) → ∀p:program F V. (genv_t (F (prog_var_names … p)) × mem) ≝ |
---|
285 | λF,V,init_info,p. |
---|
286 | add_globals … init_info |
---|
287 | 〈add_functs ? (empty …) (prog_funct F ? p), empty_mem〉 |
---|
288 | (prog_vars ?? p). |
---|
289 | |
---|
290 | (* Return the global environment for the given program. *) |
---|
291 | definition globalenv: ∀F,V. (V → list init_data) → ∀p:program F V. genv_t (F (prog_var_names … p)) ≝ |
---|
292 | λF,V,i,p. |
---|
293 | \fst (globalenv_allocmem F V i p). |
---|
294 | |
---|
295 | (* Return the global environment for the given program with no data initialisation. *) |
---|
296 | definition globalenv_noinit: ∀F. ∀p:program F nat. genv_t (F (prog_var_names … p)) ≝ |
---|
297 | λF,p. |
---|
298 | globalenv F nat (λn.[Init_space n]) p. |
---|
299 | |
---|
300 | (* Return the initial memory state for the given program. *) |
---|
301 | definition init_mem: ∀F,V. (V → list init_data) → program F V → res mem ≝ |
---|
302 | λF,V,i,p. |
---|
303 | let 〈g,m〉 ≝ globalenv_allocmem F V i p in |
---|
304 | init_globals ? V i g m (prog_vars ?? p). |
---|
305 | |
---|
306 | (* Setup memory when data initialisation is not required (has the benefit |
---|
307 | of being total. *) |
---|
308 | definition alloc_mem: ∀F. program F nat → mem ≝ |
---|
309 | λF,p. |
---|
310 | \snd (globalenv_allocmem F nat (λn. [Init_space n]) p). |
---|
311 | |
---|
312 | (* Return the function description associated with the given address, if any. *) |
---|
313 | definition find_funct_ptr: ∀F: Type[0]. genv_t F → block → option F ≝ |
---|
314 | λF,ge,b. match block_region b with [ Code ⇒ |
---|
315 | match block_id b with [ neg p ⇒ lookup_opt … p (functions … ge) |
---|
316 | | _ ⇒ None ? ] | _ ⇒ None ? ]. |
---|
317 | |
---|
318 | (* Same as [find_funct_ptr] but the function address is given as |
---|
319 | a value, which must be a pointer with offset 0. *) |
---|
320 | definition find_funct: ∀F: Type[0]. genv_t F → val → option F ≝ |
---|
321 | λF,ge,v. match v with [ Vptr ptr ⇒ if eq_offset (poff ptr) zero_offset then find_funct_ptr … ge (pblock ptr) else None ? | _ ⇒ None ? ]. |
---|
322 | |
---|
323 | |
---|
324 | (* Turn a memory block into the original symbol. *) |
---|
325 | definition symbol_for_block: ∀F:Type[0]. genv_t F → block → option ident ≝ |
---|
326 | λF,genv,b. |
---|
327 | option_map ?? (fst ??) (find … (symbols … genv) (λid,b'. eq_block b b')). |
---|
328 | |
---|
329 | |
---|
330 | lemma find_funct_find_funct_ptr : ∀F,ge,v,f. |
---|
331 | find_funct F ge v = Some F f → |
---|
332 | ∃(*pty,*)b(*,c*). v = Vptr (mk_pointer (*pty*) b (*c*) zero_offset) ∧ find_funct_ptr F ge b = Some F f. |
---|
333 | #F #ge * |
---|
334 | [ #f #E normalize in E; destruct |
---|
335 | | #sz #i #f #E normalize in E; destruct |
---|
336 | (*| #f #fn #E normalize in E; destruct*) |
---|
337 | | (*#r*) #f #E normalize in E; destruct |
---|
338 | | * (*#pty*) #b (*#c*) * #off #f whd in ⊢ (??%? → ?); |
---|
339 | @eq_offset_elim #Eoff |
---|
340 | #E whd in E:(??%?); destruct |
---|
341 | (*%{pty}*) %{b} (*%{c}*) % // @E |
---|
342 | ] qed. |
---|
343 | |
---|
344 | lemma add_globals_match : ∀A,B,V,W,initV,initW. |
---|
345 | ∀P:(ident × region × V) → (ident × region × W) → Prop. |
---|
346 | (∀v,w. P v w → \fst v = \fst w ∧ size_init_data_list (initV (\snd v)) = size_init_data_list (initW (\snd w))) → |
---|
347 | ∀vars,ge,ge',m,vars'. |
---|
348 | symbols ? ge = symbols … ge' → |
---|
349 | All2 … P vars vars' → |
---|
350 | symbols … (\fst (add_globals A V initV 〈ge,m〉 vars)) = symbols … (\fst (add_globals B W initW 〈ge',m〉 vars')) ∧ |
---|
351 | \snd (add_globals A V initV 〈ge,m〉 vars) = \snd (add_globals B W initW 〈ge',m〉 vars'). |
---|
352 | #A #B #V #W #initV #initW #P #varsOK |
---|
353 | #vars elim vars |
---|
354 | [ #ge #ge' #m * [ #E #_ % // @E | #h #t #_ * ] |
---|
355 | | * * #id #r #v #tl #IH #ge #ge' #m * [ #_ * ] |
---|
356 | * * #id' #r' #w #tl' #E * #p #TL |
---|
357 | whd in match (add_globals A ????); |
---|
358 | change with (add_globals A ????) in match (foldl ?????); |
---|
359 | whd in match (add_globals B ????); |
---|
360 | change with (add_globals B ????) in match (foldl (genv_t B × mem) ????); |
---|
361 | cases (varsOK … p) #E1 #E2 |
---|
362 | destruct >E2 cases (alloc ????) #m' #b |
---|
363 | @IH /2/ |
---|
364 | whd in match (add_symbol ????); whd in match (drop_fn ???); |
---|
365 | whd in match (add_symbol ????); whd in match (drop_fn ???); |
---|
366 | >E % |
---|
367 | ] qed. |
---|
368 | |
---|
369 | |
---|
370 | lemma pre_matching_fns_get_same_blocks : ∀A,B,P. |
---|
371 | (∀f,g. P f g → \fst f = \fst g) → |
---|
372 | ∀fns,fns'. |
---|
373 | All2 … P fns fns' → |
---|
374 | let ge ≝ add_functs A (empty ?) fns in |
---|
375 | let ge' ≝ add_functs B (empty ?) fns' in |
---|
376 | nextfunction … ge = nextfunction … ge' ∧ symbols … ge = symbols … ge'. |
---|
377 | #A #B #P #fnOK #fns elim fns |
---|
378 | [ * [ #_ % % | #h #t * ] |
---|
379 | | * #id #f #tl #IH * [ * ] |
---|
380 | * #id' #g #tl' * #p lapply (fnOK … p) #E destruct #H |
---|
381 | whd in match (add_functs ???); |
---|
382 | change with (add_functs ???) in match (foldr ?????); |
---|
383 | whd in match (add_functs B ??); |
---|
384 | change with (add_functs ???) in match (foldr (ident × B) ????); |
---|
385 | cases (IH tl' H) #E1 #E2 |
---|
386 | % [ >E1 % |
---|
387 | | whd in match (drop_fn ???); |
---|
388 | whd in match (drop_fn ???); |
---|
389 | >E1 >E2 % ] |
---|
390 | ] qed. |
---|
391 | |
---|
392 | lemma matching_fns_get_same_blocks : ∀A,B,P. |
---|
393 | (∀f,g. P f g → \fst f = \fst g) → |
---|
394 | ∀fns,fns'. |
---|
395 | All2 … P fns fns' → |
---|
396 | let ge ≝ add_functs A (empty ?) fns in |
---|
397 | let ge' ≝ add_functs B (empty ?) fns' in |
---|
398 | symbols … ge = symbols … ge'. |
---|
399 | #A #B #P #fnOK #fns #fns' #p @(proj2 … (pre_matching_fns_get_same_blocks … p)) @fnOK |
---|
400 | qed. |
---|
401 | |
---|
402 | lemma symbol_of_block_rev : ∀F,genv,b,id. |
---|
403 | symbol_for_block F genv b = Some ? id → |
---|
404 | find_symbol F genv id = Some ? b. |
---|
405 | #F #genv #b #id #H whd in H:(??%?); |
---|
406 | @(find_lookup … (λid,b'. eq_block b b')) |
---|
407 | lapply (find_predicate … (symbols … genv) (λid,b'. eq_block b b')) |
---|
408 | cases (find ????) in H ⊢ %; |
---|
409 | [ normalize #E destruct |
---|
410 | | * #id' #b' normalize in ⊢ (% → ?); #E destruct |
---|
411 | #H lapply (H … (refl ??)) |
---|
412 | @eq_block_elim |
---|
413 | [ #E destruct // |
---|
414 | | #_ * |
---|
415 | ] |
---|
416 | ] qed. |
---|
417 | |
---|
418 | (* The mapping of blocks to symbols is total for functions. *) |
---|
419 | |
---|
420 | definition symbol_of_function_block : ∀F,ge,b. find_funct_ptr F ge b ≠ None ? → ident ≝ |
---|
421 | λF,ge,b,FFP. |
---|
422 | match symbol_for_block F ge b return λx. symbol_for_block ??? = x → ? with |
---|
423 | [ None ⇒ λH. ⊥ |
---|
424 | | Some id ⇒ λ_. id |
---|
425 | ] (refl ? (symbol_for_block F ge b)). |
---|
426 | whd in H:(??%?); |
---|
427 | cases b in FFP H ⊢ %; * * -b [2,3,5,6: #b ] normalize in ⊢ (% → ?); [4: #FFP | *: * #H cases (H (refl ??)) ] |
---|
428 | cases (functions_inv … ge b FFP) |
---|
429 | #id #L lapply (find_lookup ?? (symbols F ge) (λid',b'. eq_block (mk_block Code (neg b)) b') id (mk_block Code (neg b))) |
---|
430 | lapply (find_none … (symbols F ge) (λid',b'. eq_block (mk_block Code (neg b)) b') id (mk_block Code (neg b))) |
---|
431 | cases (find ????) |
---|
432 | [ #H #_ #_ lapply (H (refl ??) L) @eq_block_elim [ #_ * | * #H' cases (H' (refl ??)) ] |
---|
433 | | * #id' #b' #_ normalize #_ #E destruct |
---|
434 | ] qed. |
---|
435 | |
---|
436 | |
---|
437 | (* |
---|
438 | (* * ** Properties of the operations. *) |
---|
439 | |
---|
440 | find_funct_inv: |
---|
441 | ∀F: Type[0]. ∀ge: genv_t F. ∀v: val. ∀f: F. |
---|
442 | find_funct ? ge v = Some ? f → ∃b. v = Vptr Code b zero; |
---|
443 | find_funct_find_funct_ptr: |
---|
444 | ∀F: Type[0]. ∀ge: genv_t F. ∀sp. ∀b: block. |
---|
445 | find_funct ? ge (Vptr sp b zero) = find_funct_ptr ? ge b; |
---|
446 | *) |
---|
447 | lemma find_symbol_exists: |
---|
448 | ∀F,V. ∀init. ∀p: program F V. ∀id. |
---|
449 | Exists ? (λx. x = id) (map … (λx. \fst x) (prog_funct ?? p) @ map … (λx. \fst (\fst x)) (prog_vars ?? p)) → |
---|
450 | ∃b. find_symbol ? (globalenv … init p) id = Some ? b. |
---|
451 | #F #V #init * #vars #fns #main #id |
---|
452 | whd in match (globalenv ????); |
---|
453 | whd in match (globalenv_allocmem ????); |
---|
454 | whd in match (prog_var_names ???); |
---|
455 | generalize in match (F ?) in fns ⊢ %; -F #F #fns |
---|
456 | #EX |
---|
457 | cut (Exists ident (λx.x = id) (map … (λx.\fst (\fst x)) vars) ∨ |
---|
458 | ∃b. find_symbol ? (add_functs F (empty F) fns) id = Some ? b) |
---|
459 | [ cases (Exists_append … EX) |
---|
460 | [ -EX #EX %2 |
---|
461 | elim fns in EX ⊢ %; |
---|
462 | [ * |
---|
463 | | * #id' #f #tl #IH * |
---|
464 | [ #E destruct |
---|
465 | change with (foldr ?????) in match (add_functs F (empty F) ?); |
---|
466 | change with (lookup ????) in match (find_symbol ???); |
---|
467 | whd in match (foldr ?????); |
---|
468 | % [2: @lookup_add_hit | skip ] |
---|
469 | | #TL |
---|
470 | change with (foldr ?????) in match (add_functs F (empty F) ?); |
---|
471 | change with (lookup ????) in match (find_symbol ???); |
---|
472 | whd in match (foldr ?????); |
---|
473 | cases (identifier_eq ? id id') |
---|
474 | [ #E destruct |
---|
475 | % [2: @lookup_add_hit | skip ] |
---|
476 | | #NE >lookup_add_miss // |
---|
477 | whd in match (drop_fn ???); |
---|
478 | >lookup_remove_miss // @IH @TL |
---|
479 | ] |
---|
480 | ] |
---|
481 | ] |
---|
482 | | #EX %1 @EX |
---|
483 | ] |
---|
484 | ] |
---|
485 | -EX |
---|
486 | generalize in match (add_functs F (empty F) fns); |
---|
487 | generalize in match empty_mem; |
---|
488 | elim vars |
---|
489 | [ #m #ge * [ * | // ] |
---|
490 | | * * #id' #r' #v' #tl #IH #m #ge * |
---|
491 | [ * |
---|
492 | [ #E destruct |
---|
493 | (* Found one, but it might be shadowed later *) |
---|
494 | whd in match (foldl ?????); normalize nodelta |
---|
495 | cases (alloc ????) #m' #b normalize nodelta |
---|
496 | cut (find_symbol F (add_symbol F id b ge) id = Some ? b) |
---|
497 | [ change with (lookup ????) in ⊢ (??%?); |
---|
498 | whd in match add_symbol; normalize nodelta |
---|
499 | @lookup_add_hit ] |
---|
500 | #F @IH %2 %{b} @F |
---|
501 | | #TL whd in match (foldl ?????); normalize nodelta |
---|
502 | cases (alloc ????) #m' #b' |
---|
503 | @IH %1 @TL |
---|
504 | ] |
---|
505 | | #H whd in match (foldl ?????); normalize nodelta |
---|
506 | cases (alloc ????) #m' #b' normalize nodelta |
---|
507 | @IH %2 |
---|
508 | cases (identifier_eq ? id id') |
---|
509 | [ #E destruct %{b'} |
---|
510 | whd in match add_symbol; normalize nodelta |
---|
511 | @lookup_add_hit |
---|
512 | | #NE cases H #b #H' %{b} |
---|
513 | whd in match add_symbol; normalize nodelta |
---|
514 | change with (lookup ???? = ?) >lookup_add_miss // |
---|
515 | whd in match (drop_fn ???); >lookup_remove_miss // @H' |
---|
516 | ] |
---|
517 | ] |
---|
518 | ] qed. |
---|
519 | |
---|
520 | (* |
---|
521 | find_funct_ptr_exists: |
---|
522 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀f: F. |
---|
523 | list_norepet ? (prog_funct_names ?? p) → |
---|
524 | list_disjoint ? (prog_funct_names ?? p) (prog_var_names ?? p) → |
---|
525 | in_list ? 〈id, f〉 (prog_funct ?? p) → |
---|
526 | ∃sp,b. find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 |
---|
527 | ∧ find_funct_ptr ? (globalenv ?? p) b = Some ? f; |
---|
528 | |
---|
529 | find_funct_ptr_inversion: |
---|
530 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀b: block. ∀f: F. |
---|
531 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
532 | ∃id. in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
533 | find_funct_inversion: |
---|
534 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀v: val. ∀f: F. |
---|
535 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
536 | ∃id. in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
537 | find_funct_ptr_symbol_inversion: |
---|
538 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. ∀f: F. |
---|
539 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → |
---|
540 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
541 | in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
542 | |
---|
543 | find_funct_ptr_prop: |
---|
544 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀b: block. ∀f: F. |
---|
545 | (∀id,f. in_list ? 〈id, f〉 (prog_funct ?? p) → P f) → |
---|
546 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
547 | P f; |
---|
548 | find_funct_prop: |
---|
549 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀v: val. ∀f: F. |
---|
550 | (∀id,f. in_list ? 〈id, f〉 (prog_funct ?? p) → P f) → |
---|
551 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
552 | P f; |
---|
553 | |
---|
554 | initmem_nullptr: |
---|
555 | ∀F,V: Type[0]. ∀p: program F V. |
---|
556 | let m ≝ init_mem ?? p in |
---|
557 | valid_block m nullptr ∧ |
---|
558 | (blocks m) nullptr = empty_block 0 0 Any; |
---|
559 | (* initmem_inject_neutral: |
---|
560 | ∀F,V: Type[0]. ∀p: program F V. |
---|
561 | mem_inject_neutral (init_mem ?? p);*) |
---|
562 | find_funct_ptr_negative: |
---|
563 | ∀F,V: Type[0]. ∀p: program F V. ∀b: block. ∀f: F. |
---|
564 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → b < 0; |
---|
565 | find_symbol_not_fresh: |
---|
566 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. |
---|
567 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → b < nextblock (init_mem ?? p); |
---|
568 | find_symbol_not_nullptr: |
---|
569 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. |
---|
570 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → b ≠ nullptr; |
---|
571 | global_addresses_distinct: |
---|
572 | ∀F,V: Type[0]. ∀p: program F V. ∀id1,id2,b1,b2. |
---|
573 | id1≠id2 → |
---|
574 | find_symbol ? (globalenv ?? p) id1 = Some ? b1 → |
---|
575 | find_symbol ? (globalenv ?? p) id2 = Some ? b2 → |
---|
576 | b1≠b2; |
---|
577 | |
---|
578 | (* * Commutation properties between program transformations |
---|
579 | and operations over global environments. *) |
---|
580 | |
---|
581 | find_funct_ptr_rev_transf: |
---|
582 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
583 | ∀b : block. ∀tf : B. |
---|
584 | find_funct_ptr ? (globalenv ?? (transform_program … transf p)) b = Some ? tf → |
---|
585 | ∃f : A. find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf f = tf; |
---|
586 | find_funct_rev_transf: |
---|
587 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
588 | ∀v : val. ∀tf : B. |
---|
589 | find_funct ? (globalenv ?? (transform_program … transf p)) v = Some ? tf → |
---|
590 | ∃f : A. find_funct ? (globalenv ?? p) v = Some ? f ∧ transf f = tf; |
---|
591 | |
---|
592 | (* * Commutation properties between partial program transformations |
---|
593 | and operations over global environments. *) |
---|
594 | |
---|
595 | find_funct_ptr_transf_partial: |
---|
596 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
597 | transform_partial_program … transf p = OK ? p' → |
---|
598 | ∀b: block. ∀f: A. |
---|
599 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
600 | ∃f'. |
---|
601 | find_funct_ptr ? (globalenv ?? p') b = Some ? f' ∧ transf f = OK ? f'; |
---|
602 | find_funct_transf_partial: |
---|
603 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
604 | transform_partial_program … transf p = OK ? p' → |
---|
605 | ∀v: val. ∀f: A. |
---|
606 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
607 | ∃f'. |
---|
608 | find_funct ? (globalenv ?? p') v = Some ? f' ∧ transf f = OK ? f'; |
---|
609 | find_symbol_transf_partial: |
---|
610 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
611 | transform_partial_program … transf p = OK ? p' → |
---|
612 | ∀s: ident. |
---|
613 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
614 | init_mem_transf_partial: |
---|
615 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
616 | transform_partial_program … transf p = OK ? p' → |
---|
617 | init_mem ?? p' = init_mem ?? p; |
---|
618 | find_funct_ptr_rev_transf_partial: |
---|
619 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
620 | transform_partial_program … transf p = OK ? p' → |
---|
621 | ∀b : block. ∀tf : B. |
---|
622 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
623 | ∃f : A. |
---|
624 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf f = OK ? tf; |
---|
625 | find_funct_rev_transf_partial: |
---|
626 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
627 | transform_partial_program … transf p = OK ? p' → |
---|
628 | ∀v : val. ∀tf : B. |
---|
629 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
630 | ∃f : A. |
---|
631 | find_funct ? (globalenv ?? p) v = Some ? f ∧ transf f = OK ? tf(*; |
---|
632 | |
---|
633 | find_funct_ptr_transf_partial2: |
---|
634 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
635 | ∀p: program A V. ∀p': program B W. |
---|
636 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
637 | ∀b: block. ∀f: A. |
---|
638 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
639 | ∃f'. |
---|
640 | find_funct_ptr ? (globalenv ?? p') b = Some ? f' ∧ transf_fun f = OK ? f'; |
---|
641 | find_funct_transf_partial2: |
---|
642 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
643 | ∀p: program A V. ∀p': program B W. |
---|
644 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
645 | ∀v: val. ∀f: A. |
---|
646 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
647 | ∃f'. |
---|
648 | find_funct ? (globalenv ?? p') v = Some ? f' ∧ transf_fun f = OK ? f'; |
---|
649 | find_symbol_transf_partial2: |
---|
650 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
651 | ∀p: program A V. ∀p': program B W. |
---|
652 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
653 | ∀s: ident. |
---|
654 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
655 | init_mem_transf_partial2: |
---|
656 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
657 | ∀p: program A V. ∀p': program B W. |
---|
658 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
659 | init_mem ?? p' = init_mem ?? p; |
---|
660 | find_funct_ptr_rev_transf_partial2: |
---|
661 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
662 | ∀p: program A V. ∀p': program B W. |
---|
663 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
664 | ∀b: block. ∀tf: B. |
---|
665 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
666 | ∃f : A. |
---|
667 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf_fun f = OK ? tf; |
---|
668 | find_funct_rev_transf_partial2: |
---|
669 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
670 | ∀p: program A V. ∀p': program B W. |
---|
671 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
672 | ∀v: val. ∀tf: B. |
---|
673 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
674 | ∃f : A. |
---|
675 | find_funct ? (globalenv ?? p) v = Some ? f ∧ transf_fun f = OK ? tf}. ; |
---|
676 | |
---|
677 | (* * Commutation properties between matching between programs |
---|
678 | and operations over global environments. *) |
---|
679 | *) *) |
---|
680 | |
---|
681 | (* First, show that nextfunction only depends on the number of functions: *) |
---|
682 | |
---|
683 | let rec nat_plus_pos (n:nat) (p:Pos) : Pos ≝ |
---|
684 | match n with |
---|
685 | [ O ⇒ p |
---|
686 | | S m ⇒ succ (nat_plus_pos m p) |
---|
687 | ]. |
---|
688 | |
---|
689 | lemma nextfunction_length : ∀A,l,ge. |
---|
690 | nextfunction A (add_functs … ge l) = nat_plus_pos (|l|) (nextfunction A ge). |
---|
691 | #A #l elim l // #h #t #IH #ge |
---|
692 | whd in ⊢ (??%%); >IH // |
---|
693 | qed. |
---|
694 | |
---|
695 | lemma alloc_pair : ∀m,m',l,h,l',h',r. ∀P:mem×(Σb:block. block_region b = r) → mem×(Σb:block. block_region b = r) → Type[0]. |
---|
696 | nextblock m = nextblock m' → |
---|
697 | (∀m1,m2,b. nextblock m1 = nextblock m2 → P 〈m1,b〉 〈m2,b〉) → |
---|
698 | P (alloc m l h r) (alloc m' l' h' r). |
---|
699 | * #ct #nx #NX * #ct' #nx' #NX' #l #h #l' #h' #r #P #N destruct #H @H % |
---|
700 | qed. |
---|
701 | |
---|
702 | lemma vars_irrelevant_to_find_funct_ptr : |
---|
703 | ∀F,G,V,W. |
---|
704 | ∀P:F → G → Prop. |
---|
705 | ∀init,init',b,vars,vars',ge,ge',m,m',f. |
---|
706 | (find_funct_ptr F ge b = Some ? f → ∃f'. find_funct_ptr G ge' b = Some ? f' ∧ P f f') → |
---|
707 | symbols F ge = symbols G ge' → |
---|
708 | nextblock m = nextblock m' → |
---|
709 | All2 … (λx,y. \fst x = \fst y) vars vars' → |
---|
710 | find_funct_ptr F (\fst (add_globals F V init 〈ge,m〉 vars)) b = Some ? f → |
---|
711 | ∃f'.find_funct_ptr G (\fst (add_globals G W init' 〈ge',m'〉 vars')) b = Some ? f' ∧ P f f'. |
---|
712 | #F #G #V #W #P #init #init' |
---|
713 | * * * [ 2,3,5,6: #blk ] [ 4: | *: #vars #vars' #ge #ge' #m #m' #f #H1 #H2 #H3 #H4 #H5 normalize in H5; destruct ] |
---|
714 | #vars elim vars |
---|
715 | [ * [ #ge #ge' #m #m' #f #H #_ #_ #_ @H |
---|
716 | | #x #tl #ge #ge' #m #m' #f #_ #_ #_ * |
---|
717 | ] |
---|
718 | | * * #id #r #v #tl #IH * |
---|
719 | [ #ge #ge' #m #m' #f #_ #_ #_ * |
---|
720 | | * * #id' #r' #v' #tl' |
---|
721 | #ge #ge' #m #m' #f #FFP1 #Esym #Enext * #E destruct #MATCH |
---|
722 | whd in match (add_globals ?????); whd in match (add_globals G ????); |
---|
723 | whd in ⊢ (??(??(???(????%?))?)? → ??(λ_.?(??(??(???(????%?))?)?)?)); |
---|
724 | @(alloc_pair … Enext) #m1 #m2 #b #Enext' |
---|
725 | whd in ⊢ (??(??(???(????%?))?)? → ??(λ_.?(??(??(???(????%?))?)?)?)); |
---|
726 | #FFP |
---|
727 | @(IH … MATCH FFP) |
---|
728 | [ whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
729 | whd in ⊢ (??(???%)? → ??(λ_.?(??(???%)?)?)); |
---|
730 | >Esym |
---|
731 | cases (lookup … id') |
---|
732 | [ @FFP1 |
---|
733 | | * * * try @FFP1 #p try @FFP1 |
---|
734 | normalize |
---|
735 | cases (decidable_eq_pos blk p) |
---|
736 | [ #E destruct >lookup_opt_pm_set_hit #E destruct |
---|
737 | | #NE >(lookup_opt_pm_set_miss … NE) >(lookup_opt_pm_set_miss … NE) |
---|
738 | @FFP1 |
---|
739 | ] |
---|
740 | ] |
---|
741 | | whd in match (add_symbol ????); whd in match (drop_fn ???); |
---|
742 | whd in match (add_symbol ????); whd in match (drop_fn ???); |
---|
743 | >Esym % |
---|
744 | | assumption |
---|
745 | ] |
---|
746 | ] |
---|
747 | ] qed. |
---|
748 | |
---|
749 | (* Now link functions in related programs, but without dealing with the type |
---|
750 | casts yet. *) |
---|
751 | |
---|
752 | lemma symbols_drop_fn_eq : ∀A,B,ge,ge',id. |
---|
753 | symbols A ge = symbols B ge' → |
---|
754 | symbols A (drop_fn A id ge) = symbols B (drop_fn B id ge'). |
---|
755 | #A #B #ge #ge' #id #E |
---|
756 | whd in ⊢ (??(??%)(??%)); |
---|
757 | >E % |
---|
758 | qed. |
---|
759 | |
---|
760 | lemma ge_add_functs : ∀A,B,fns,fns'. |
---|
761 | All2 ?? (λx,y. \fst x = \fst y) fns fns' → |
---|
762 | symbols A (add_functs A (empty ?) fns) = symbols B (add_functs B (empty ?) fns') ∧ |
---|
763 | nextfunction A (add_functs A (empty ?) fns) = nextfunction B (add_functs B (empty ?) fns'). |
---|
764 | #A #B |
---|
765 | #fns elim fns |
---|
766 | [ * [ #_ % % | #h #t * ] |
---|
767 | | * #id #a #tl #IH * * #id' #b #tl' * #E destruct #TL |
---|
768 | whd in match (add_functs ???); whd in match (add_functs B ??); |
---|
769 | cases (IH ? TL) #S #N >N % [2: % ] |
---|
770 | >(symbols_drop_fn_eq A B (foldr ??? (empty A) tl) (foldr ?? (add_funct B) (empty B) tl')) |
---|
771 | [ % |
---|
772 | | @S |
---|
773 | ] |
---|
774 | ] qed. |
---|
775 | |
---|
776 | lemma lookup_drop_fn_different : ∀F,ge,id,b,f. |
---|
777 | lookup_opt ? b (functions ? (drop_fn F id ge)) = Some ? f → |
---|
778 | lookup … (symbols ? ge) id ≠ Some ? (mk_block Code (neg b)). |
---|
779 | #F #ge #id #b #f |
---|
780 | whd in match (drop_fn F id ge); |
---|
781 | cases (lookup … id) |
---|
782 | [ #_ % #E destruct |
---|
783 | | * * * [2,3,5,6: #b'] normalize |
---|
784 | [4: cases (decidable_eq_pos b b') |
---|
785 | [ #E destruct >lookup_opt_pm_set_hit #E destruct |
---|
786 | | #NE #_ @(not_to_not … NE) #E destruct // |
---|
787 | ] |
---|
788 | | *: #_ % #E destruct |
---|
789 | ] |
---|
790 | ] qed. |
---|
791 | |
---|
792 | lemma lookup_drop_fn_irrelevant : ∀F,ge,id,b. |
---|
793 | lookup … (symbols ? ge) id ≠ Some ? (mk_block Code (neg b)) → |
---|
794 | lookup_opt ? b (functions ? (drop_fn F id ge)) = lookup_opt ? b (functions ? ge). |
---|
795 | #F #ge #id #b |
---|
796 | whd in match (drop_fn F id ge); |
---|
797 | cases (lookup … id) |
---|
798 | [ // |
---|
799 | | * * * // |
---|
800 | #b' normalize #NE |
---|
801 | @lookup_opt_pm_set_miss |
---|
802 | @(not_to_not … NE) |
---|
803 | #E destruct % |
---|
804 | ] qed. |
---|
805 | |
---|
806 | lemma find_funct_ptr_All2 : ∀A,B,V,W,b,p,f,initV,initW,p',P. |
---|
807 | All2 ?? (λx,y. \fst x = \fst y ∧ P (\snd x) (\snd y)) (prog_funct ?? p) (prog_funct … p') → |
---|
808 | All2 … (λx,y. \fst x = \fst y) (prog_vars ?? p) (prog_vars ?? p') → |
---|
809 | find_funct_ptr … (globalenv A V initV p) b = Some ? f → |
---|
810 | ∃f'. find_funct_ptr … (globalenv B W initW p') b = Some ? f' ∧ P f f'. |
---|
811 | #A #B #V #W #b * #vars #fns #main #f #initV #initW * #vars' #fns' #main' #P |
---|
812 | #Mfns |
---|
813 | cases b * * [ 2,3,5,6(*,8,9,11,12,14,15,17,18*): #bp ] |
---|
814 | [ 4: (*12:*) | *: #_ #F whd in F:(??%?); destruct ] |
---|
815 | whd in match (globalenv ????); whd in match (globalenv_allocmem ????); |
---|
816 | whd in match (globalenv ????); whd in match (globalenv_allocmem ????); |
---|
817 | @vars_irrelevant_to_find_funct_ptr |
---|
818 | [ letin varnames ≝ (map ??? vars) |
---|
819 | generalize in match fns' in Mfns ⊢ %; |
---|
820 | elim fns |
---|
821 | [ #fns' #Mfns whd in ⊢ (??%? → ?); #E destruct |
---|
822 | | * #id #fn #tl #IH * * #id' #fn' #tl' * * #E #Phd destruct #Mtl |
---|
823 | whd in ⊢ (??%? → ?); |
---|
824 | whd in match (functions ??); |
---|
825 | change with (add_functs ???) in match (foldr ?????); |
---|
826 | cases (ge_add_functs ?? tl tl' ?) [2: @(All2_mp … Mtl) * #idA #a * #idB #b * // ] |
---|
827 | #SYMS #NEXT |
---|
828 | cases (decidable_eq_pos bp (nextfunction … (add_functs ? (empty ?) tl))) |
---|
829 | [ #E destruct >lookup_opt_insert_hit #E destruct |
---|
830 | %{fn'} % // whd in ⊢ (??%?); |
---|
831 | whd in match (functions ??); |
---|
832 | change with (add_functs ???) in match (foldr ???? tl'); |
---|
833 | >NEXT >lookup_opt_insert_hit @refl |
---|
834 | | #NE >lookup_opt_insert_miss // |
---|
835 | #FFP cases (IH tl' Mtl ?) |
---|
836 | [ #fn'' * #FFP' #P' %{fn''} % |
---|
837 | [ whd in ⊢ (??%?); |
---|
838 | >lookup_opt_insert_miss [2: <NEXT // ] |
---|
839 | lapply (lookup_drop_fn_different ????? FFP) |
---|
840 | >SYMS |
---|
841 | #L >lookup_drop_fn_irrelevant // @FFP' |
---|
842 | | @P' |
---|
843 | ] |
---|
844 | | @(drop_fn_lfn … FFP) |
---|
845 | ] |
---|
846 | ] |
---|
847 | ] |
---|
848 | | cases (ge_add_functs ?? fns fns' ?) [2: @(All2_mp … Mfns) * #idA #a * #idB #b * // ] |
---|
849 | #S #_ @S |
---|
850 | | @refl |
---|
851 | ] qed. |
---|
852 | |
---|
853 | (* lazy proof *) |
---|
854 | lemma find_funct_ptr_All : ∀A,V,b,p,f,initV,P. |
---|
855 | find_funct_ptr … (globalenv A V initV p) b = Some ? f → |
---|
856 | All ? (λx. P (\snd x)) (prog_funct ?? p) → |
---|
857 | P f. |
---|
858 | #A #V #b #p #f #initV #P #FFP #ALL |
---|
859 | cut (All2 ?? (λx,y. \fst x = \fst y ∧ P (\snd x)) (prog_funct ?? p) (prog_funct ?? p)) |
---|
860 | [ elim (prog_funct … p) in ALL ⊢ %; |
---|
861 | [ // | #h #t #IH * #Hh #Ht % /2/ ] ] |
---|
862 | cut (All2 ?? (λx,y. \fst x = \fst y) (prog_vars ?? p) (prog_vars ?? p)) |
---|
863 | [ elim (prog_vars … p) [ // | * #x #x' #tl #TL /2/ ] ] |
---|
864 | #VARS2 #FNS2 |
---|
865 | cases (find_funct_ptr_All2 A A V V b p f initV initV p ? FNS2 VARS2 FFP) |
---|
866 | #x * // |
---|
867 | qed. |
---|
868 | |
---|
869 | |
---|
870 | discriminator Prod. |
---|
871 | |
---|
872 | (* Now prove the full version. *) |
---|
873 | |
---|
874 | lemma find_funct_ptr_match: |
---|
875 | ∀M:matching.∀initV,initW. |
---|
876 | ∀p: program (m_A M) (m_V M). ∀p': program (m_B M) (m_W M). |
---|
877 | ∀MATCH:match_program … M p p'. |
---|
878 | ∀b: block. ∀f: m_A M (prog_var_names … p). |
---|
879 | find_funct_ptr … (globalenv … initV p) b = Some ? f → |
---|
880 | ∃tf : m_B M (prog_var_names … p'). |
---|
881 | find_funct_ptr … (globalenv … initW p') b = Some ? tf ∧ match_fundef M ? f (tf⌈m_B M ? ↦ m_B M (prog_var_names … p)⌉). |
---|
882 | [ 2: >(matching_vars … (mp_vars … MATCH)) % ] |
---|
883 | * #A #B #V #W #match_fn #match_var #initV #initW |
---|
884 | #p #p' * #Mvars #Mfn #Mmain |
---|
885 | #b #f #FFP |
---|
886 | @(find_funct_ptr_All2 A B V W ????????? FFP) |
---|
887 | [ lapply (matching_vars … (mk_matching A B V W match_fn match_var) … Mvars) |
---|
888 | #E |
---|
889 | @(All2_mp … Mfn) |
---|
890 | * #id #f * #id' #f' |
---|
891 | <E in f' ⊢ %; #f' -Mmain -b -Mfn -Mvars -initV -initW -E |
---|
892 | normalize #H @(match_funct_entry_inv … H) |
---|
893 | #vs #id1 #f1 #f2 #M % // |
---|
894 | | @(All2_mp … Mvars) |
---|
895 | * #x #x' * #y #y' #M inversion M #id #r #v1 #v2 #M' #E1 #E2 #_ destruct // |
---|
896 | qed. |
---|
897 | |
---|
898 | lemma |
---|
899 | find_funct_ptr_transf_partial2: |
---|
900 | ∀A,B,V,W,iV,iW. ∀transf_fun: (∀vs. A vs → res (B vs)). ∀transf_var: V → res W. |
---|
901 | ∀p: program A V. ∀p': program B W. |
---|
902 | transform_partial_program2 … p transf_fun transf_var = OK ? p' → |
---|
903 | ∀b: block. ∀f: A ?. |
---|
904 | find_funct_ptr ? (globalenv … iV p) b = Some ? f → |
---|
905 | ∃f'. |
---|
906 | find_funct_ptr ? (globalenv … iW p') b = Some ? f' ∧ transf_fun ? f ≃ OK ? f'. |
---|
907 | #A #B #V #W #iV #iW #tf #tv #p #p' #TPP2 #b #f #FFP |
---|
908 | cases (find_funct_ptr_match … (transform_partial_program2_match … TPP2) … FFP) |
---|
909 | [2: @iW |
---|
910 | | #f' * #FFP' generalize in ⊢ (???(??(match % with [_⇒?])) → ?); #E |
---|
911 | #TF %{f'} % // |
---|
912 | -FFP -TPP2 -FFP' >TF -TF >E in f' ⊢ %; #f' % |
---|
913 | qed. |
---|
914 | |
---|
915 | lemma match_funct_entry_id : ∀M,vs,vs',f,g. |
---|
916 | match_funct_entry M vs vs' f g → \fst f = \fst g. |
---|
917 | #M #vs #vs' #f #g * // |
---|
918 | qed. |
---|
919 | |
---|
920 | lemma |
---|
921 | find_symbol_match: |
---|
922 | ∀M:matching. |
---|
923 | ∀initV,initW. (∀v,w. match_var_entry M v w → size_init_data_list (initV (\snd v)) = size_init_data_list (initW (\snd w))) → |
---|
924 | ∀p: program (m_A M) (m_V M). ∀p': program (m_B M) (m_W M). |
---|
925 | match_program … M p p' → |
---|
926 | ∀s: ident. |
---|
927 | find_symbol ? (globalenv … initW p') s = find_symbol ? (globalenv … initV p) s. |
---|
928 | * #A #B #V #W #match_fun #match_var #initV #initW #initsize |
---|
929 | * #vars #fns #main * #vars' #fns' #main' * #Mvars #Mfns #Mmain #s |
---|
930 | whd in ⊢ (??%%); |
---|
931 | @sym_eq |
---|
932 | @(eq_f ??(λx. lookup SymbolTag block x s)) |
---|
933 | whd in match (globalenv ????); whd in match (globalenv_allocmem ????); |
---|
934 | whd in match (globalenv ????); whd in match (globalenv_allocmem ????); |
---|
935 | change with (add_globals ?????) in match (foldl ?????); |
---|
936 | change with (add_globals ?????) in match (foldl ? (ident×region×V) ???); |
---|
937 | @(proj1 … (add_globals_match … Mvars)) |
---|
938 | [ @(matching_fns_get_same_blocks … Mfns) |
---|
939 | #f #g @match_funct_entry_id |
---|
940 | | * #idr #v * #idr' #w #MVE % [ inversion MVE #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 destruct % | @(initsize … MVE) ] |
---|
941 | ] qed. |
---|
942 | |
---|
943 | lemma |
---|
944 | find_symbol_transf_partial2: |
---|
945 | ∀A,B,V,W,iV,iW. ∀transf_fun: (∀vs. A vs → res (B vs)). ∀transf_var: V → res W. |
---|
946 | (∀v,w. transf_var v = OK ? w → size_init_data_list (iV v) = size_init_data_list (iW w)) → |
---|
947 | ∀p: program A V. ∀p': program B W. |
---|
948 | transform_partial_program2 … p transf_fun transf_var = OK ? p' → |
---|
949 | ∀s: ident. |
---|
950 | find_symbol ? (globalenv … iW p') s = find_symbol ? (globalenv … iV p) s. |
---|
951 | #A #B #V #W #iV #iW #tf #tv #sizeOK #p #p' #TPP2 #s |
---|
952 | @(find_symbol_match … (transform_partial_program2_match … TPP2)) |
---|
953 | #v0 #w0 * #id #r #v #w @sizeOK |
---|
954 | qed. |
---|
955 | |
---|
956 | lemma |
---|
957 | find_funct_ptr_transf: |
---|
958 | ∀A,B,V,iV. ∀p: program A V. ∀transf: (∀vs. A vs → B vs). |
---|
959 | ∀b: block. ∀f: A ?. |
---|
960 | find_funct_ptr ? (globalenv … iV p) b = Some ? f → |
---|
961 | find_funct_ptr ? (globalenv … iV (transform_program … p transf)) b = Some ? (transf … f). |
---|
962 | #A #B #V #iV * #vars #fns #main #tf #b #f #FFP |
---|
963 | cases (find_funct_ptr_match … (transform_program_match … tf ?) … FFP) |
---|
964 | [ 2: @iV |
---|
965 | | #f' * #FFP' |
---|
966 | whd in ⊢ (???(match % with [_⇒?]) → ?); (* XXX this line only required to workaround unification bug *) |
---|
967 | generalize in match (matching_vars ????); |
---|
968 | whd in match (prog_var_names ???); whd in match (prog_vars ???); |
---|
969 | #E >(K ?? E) whd in ⊢ (??%% → ?); #E' >FFP' >E' % |
---|
970 | ] qed. |
---|
971 | |
---|
972 | lemma |
---|
973 | find_funct_transf: |
---|
974 | ∀A,B,V,iV. ∀transf: (∀vs. A vs → B vs). ∀p: program A V. |
---|
975 | ∀v: val. ∀f: A ?. |
---|
976 | find_funct ? (globalenv … iV p) v = Some ? f → |
---|
977 | find_funct ? (globalenv … iV (transform_program … p transf)) v = Some ? (transf ? f). |
---|
978 | #A #B #V #iV #tf #p #v #f #FF |
---|
979 | cases (find_funct_find_funct_ptr ???? FF) |
---|
980 | #b * #E destruct #FFP |
---|
981 | change with (find_funct_ptr ???) in ⊢ (??%?); |
---|
982 | @(find_funct_ptr_transf A B V iV p tf b f FFP) (* XXX Matita seems to require too much detail here *) |
---|
983 | qed. |
---|
984 | |
---|
985 | lemma |
---|
986 | find_symbol_transf: |
---|
987 | ∀A,B,V,iV. ∀transf: (∀vs. A vs → B vs). ∀p: program A V. |
---|
988 | ∀s: ident. |
---|
989 | find_symbol ? (globalenv … iV (transform_program … p transf)) s = |
---|
990 | find_symbol ? (globalenv … iV p) s. |
---|
991 | #A #B #V #iV #tf #p @(find_symbol_match … (transform_program_match … tf ?)) |
---|
992 | #v0 #w0 * // |
---|
993 | qed. |
---|
994 | |
---|
995 | lemma store_init_data_symbols : ∀A,B,ge,ge',m,b,o,d. |
---|
996 | symbols A ge = symbols … ge' → |
---|
997 | store_init_data A ge m b o d = store_init_data B ge' m b o d. |
---|
998 | #A #B #ge #ge' #m #b #o #d #SYM |
---|
999 | whd in ⊢ (??%%); |
---|
1000 | cases d try #d' try @refl |
---|
1001 | #n whd in ⊢ (??%%); |
---|
1002 | whd in match (find_symbol A ??); whd in match (find_symbol B ??); >SYM @refl |
---|
1003 | qed. |
---|
1004 | |
---|
1005 | lemma store_init_data_list_symbols : ∀A,B,ge,ge',b. |
---|
1006 | symbols A ge = symbols … ge' → |
---|
1007 | ∀d,m,o. store_init_data_list A ge m b o d = store_init_data_list B ge' m b o d. |
---|
1008 | #A #B #ge #ge' #b #SYM #d elim d |
---|
1009 | [ // |
---|
1010 | | #hd #tl #IH #m #o |
---|
1011 | whd in ⊢ (??%%); |
---|
1012 | >(store_init_data_symbols … SYM) |
---|
1013 | cases (store_init_data ??????) |
---|
1014 | [ % |
---|
1015 | | #m' @IH |
---|
1016 | ] |
---|
1017 | ] qed. |
---|
1018 | |
---|
1019 | lemma init_globals_match : ∀A,B,V,W. ∀P:ident × region × V → ident × region × W → Prop. |
---|
1020 | ∀iV,iW. (∀v,w. P v w → \fst v = \fst w ∧ iV (\snd v) = iW (\snd w)) → |
---|
1021 | ∀ge:genv_t A. ∀ge':genv_t B. |
---|
1022 | symbols … ge = symbols … ge' → |
---|
1023 | ∀m. ∀vars,vars'. |
---|
1024 | All2 … P vars vars' → |
---|
1025 | init_globals A V iV ge m vars = init_globals B W iW ge' m vars'. |
---|
1026 | #A #B #V #W #P #iV #iW #varsOK #ge #ge' #SYM #m #vars |
---|
1027 | whd in ⊢ (? → ? → ??%%); |
---|
1028 | generalize in match (OK ? m); |
---|
1029 | elim vars |
---|
1030 | [ #rm * |
---|
1031 | [ #_ % |
---|
1032 | | #h #t * |
---|
1033 | ] |
---|
1034 | | * #idr #v #tl #IH #rm |
---|
1035 | * [ * ] |
---|
1036 | * #idr' #w #tl' |
---|
1037 | * #p cases (varsOK … p) #E1 #E2 destruct #TL |
---|
1038 | whd in ⊢ (??%%); cases idr' #id #r cases rm #m' |
---|
1039 | whd in ⊢ (??(????%?)(????%?)); |
---|
1040 | [ whd in match (find_symbol ?? id); |
---|
1041 | whd in match (find_symbol B ? id); |
---|
1042 | >SYM cases (lookup ??? id) |
---|
1043 | [ 2: #b whd in ⊢ (??(????%?)(????%?)); >E2 >(store_init_data_list_symbols … SYM) ] |
---|
1044 | ] @IH // |
---|
1045 | ] qed. |
---|
1046 | |
---|
1047 | lemma |
---|
1048 | init_mem_match: |
---|
1049 | ∀M:matching. |
---|
1050 | ∀iV,iW. (∀v,w. match_varinfo M v w → iV v = iW w) → |
---|
1051 | ∀p: program (m_A M) (m_V M). ∀p': program (m_B M) (m_W M). |
---|
1052 | match_program … M p p' → |
---|
1053 | init_mem … iW p' = init_mem … iV p. |
---|
1054 | * #A #B #V #W #match_fn #match_var #iV #iW #iSAME #p #p' * #Mvars #Mfns #Mmain |
---|
1055 | whd in ⊢ (??%%); |
---|
1056 | change with (add_globals ?????) in match (globalenv_allocmem ??? p'); |
---|
1057 | change with (add_globals ?????) in match (globalenv_allocmem ??? p); |
---|
1058 | cases (add_globals_match (A ?) (B ?) V W iV iW ?? (prog_vars … p) ??? (prog_vars … p') ? Mvars) |
---|
1059 | [ 8: @(matching_fns_get_same_blocks … Mfns) |
---|
1060 | #f0 #g0 * // |
---|
1061 | | cases (add_globals ?????) #ge1 #m1 |
---|
1062 | cases (add_globals ?????) #ge2 #m2 |
---|
1063 | #SYM #MEM destruct @sym_eq @(init_globals_match … Mvars) |
---|
1064 | [ #v0 #w0 * #id #r #v #w /3/ |
---|
1065 | | @SYM |
---|
1066 | ] |
---|
1067 | | 4: #v0 #w0 * #id #r #v #w #V % // >iSAME // |
---|
1068 | | *: skip |
---|
1069 | ] qed. |
---|
1070 | |
---|
1071 | lemma |
---|
1072 | init_mem_transf: |
---|
1073 | ∀A,B,V,iV. ∀transf: (∀vs. A vs → B vs). ∀p: program A V. |
---|
1074 | init_mem … iV (transform_program … p transf) = init_mem … iV p. |
---|
1075 | #A #B #C #iV #transf #p |
---|
1076 | @(init_mem_match … (transform_program_match … transf ?)) |
---|
1077 | // |
---|
1078 | qed. |
---|
1079 | |
---|
1080 | lemma |
---|
1081 | init_mem_transf_gen: |
---|
1082 | ∀tag,A,B,V,iV,g. ∀transf: (∀vs. universe tag → A vs → B vs × (universe tag)). ∀p: program A V. |
---|
1083 | init_mem … iV (\fst (transform_program_gen … g p transf)) = init_mem … iV p. |
---|
1084 | #tag #A #B #C #iV #g #transf #p |
---|
1085 | @(init_mem_match … (transform_program_gen_match … transf ?)) |
---|
1086 | // |
---|
1087 | qed. |
---|
1088 | |
---|
1089 | |
---|
1090 | (* Package up transform_program results for global envs nicely. *) |
---|
1091 | |
---|
1092 | record related_globals (A,B:Type[0]) (t: A → B) (ge:genv_t A) (ge':genv_t B) : Prop ≝ { |
---|
1093 | rg_find_symbol: ∀s. |
---|
1094 | find_symbol … ge s = find_symbol … ge' s; |
---|
1095 | rg_find_funct: ∀v,f. |
---|
1096 | find_funct … ge v = Some ? f → |
---|
1097 | find_funct … ge' v = Some ? (t f); |
---|
1098 | rg_find_funct_ptr: ∀b,f. |
---|
1099 | find_funct_ptr … ge b = Some ? f → |
---|
1100 | find_funct_ptr … ge' b = Some ? (t f) |
---|
1101 | }. |
---|
1102 | |
---|
1103 | theorem transform_program_related : ∀A,B,V,init,p. ∀tf:∀vs. A vs → B vs. |
---|
1104 | related_globals (A ?) (B ?) (tf ?) (globalenv A V init p) (globalenv B V init (transform_program A B V p tf)). |
---|
1105 | #A #B #V #iV #p #tf % |
---|
1106 | [ #s @sym_eq @(find_symbol_transf A B V iV tf p) |
---|
1107 | | @(find_funct_transf A B V iV tf p) |
---|
1108 | | @(find_funct_ptr_transf A B V iV p tf) |
---|
1109 | ] qed. |
---|
1110 | |
---|
1111 | record related_globals_gen (tag:String) (A,B:Type[0]) (t: universe tag → A → B × (universe tag)) (ge:genv_t A) (ge':genv_t B) : Prop ≝ { |
---|
1112 | rgg_find_symbol: ∀s. |
---|
1113 | find_symbol … ge s = find_symbol … ge' s; |
---|
1114 | rgg_find_funct_ptr: ∀b,f. |
---|
1115 | find_funct_ptr … ge b = Some ? f → |
---|
1116 | ∃g. find_funct_ptr … ge' b = Some ? (\fst (t g f)); |
---|
1117 | rgg_find_funct: ∀v,f. |
---|
1118 | find_funct … ge v = Some ? f → |
---|
1119 | ∃g. find_funct … ge' v = Some ? (\fst (t g f)) |
---|
1120 | }. |
---|
1121 | |
---|
1122 | include "utilities/bool.ma". |
---|
1123 | |
---|
1124 | theorem transform_program_gen_related : ∀tag,A,B,V,init,g,p. ∀tf:∀vs. universe tag → A vs → B vs × (universe tag). |
---|
1125 | related_globals_gen tag (A ?) (B ?) (tf ?) (globalenv A V init p) (globalenv B V init (\fst (transform_program_gen tag A B V g p tf))). |
---|
1126 | #tag #A #B #V #iV #g #p #tf % |
---|
1127 | [ #s @sym_eq @(find_symbol_match … (transform_program_gen_match … tf p)) |
---|
1128 | #v #w * // |
---|
1129 | | #b #f #FFP |
---|
1130 | cases (find_funct_ptr_match … (transform_program_gen_match … tf p) … FFP) |
---|
1131 | [ 2: @iV |
---|
1132 | | #fn' * #FFP' |
---|
1133 | generalize in match (matching_vars ????); |
---|
1134 | whd in match (prog_var_names ???); whd in match (prog_vars ???); |
---|
1135 | #E >(K ?? E) * #g1 * #g2 whd in ⊢ (??%% → ?); #E' >FFP' %{g1} >E' % |
---|
1136 | | skip |
---|
1137 | ] |
---|
1138 | | * [ 4: #ptr #fn whd in match (find_funct ???); |
---|
1139 | @if_elim #Eoff #FFP |
---|
1140 | [ cases (find_funct_ptr_match … (transform_program_gen_match … tf p) … FFP) |
---|
1141 | [ 2: @iV |
---|
1142 | | #fn' * #FFP' |
---|
1143 | generalize in match (matching_vars ????); |
---|
1144 | whd in match (prog_var_names ???); whd in match (prog_vars ???); |
---|
1145 | #E >(K ?? E) * #g1 * #g2 whd in ⊢ (??%% → ?); #E' |
---|
1146 | %{g1} whd in ⊢ (??%?); >Eoff >FFP' >E' % |
---|
1147 | ] |
---|
1148 | | destruct |
---|
1149 | ] |
---|
1150 | | *: normalize #A #B try #C try #D destruct |
---|
1151 | ] |
---|
1152 | ] qed. |
---|
1153 | |
---|
1154 | |
---|
1155 | (* |
---|
1156 | |
---|
1157 | find_funct_ptr_match: |
---|
1158 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
1159 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
1160 | match_program … match_fun match_var p p' → |
---|
1161 | ∀b: block. ∀f: A. |
---|
1162 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
1163 | ∃tf : B. |
---|
1164 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf ∧ match_fun f tf; |
---|
1165 | find_funct_ptr_rev_match: |
---|
1166 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
1167 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
1168 | match_program … match_fun match_var p p' → |
---|
1169 | ∀b: block. ∀tf: B. |
---|
1170 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
1171 | ∃f : A. |
---|
1172 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ match_fun f tf; |
---|
1173 | find_funct_match: |
---|
1174 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
1175 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
1176 | match_program … match_fun match_var p p' → |
---|
1177 | ∀v: val. ∀f: A. |
---|
1178 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
1179 | ∃tf : B. find_funct ? (globalenv ?? p') v = Some ? tf ∧ match_fun f tf; |
---|
1180 | find_funct_rev_match: |
---|
1181 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
1182 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
1183 | match_program … match_fun match_var p p' → |
---|
1184 | ∀v: val. ∀tf: B. |
---|
1185 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
1186 | ∃f : A. find_funct ? (globalenv ?? p) v = Some ? f ∧ match_fun f tf; |
---|
1187 | find_symbol_match: |
---|
1188 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
1189 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
1190 | match_program … match_fun match_var p p' → |
---|
1191 | ∀s: ident. |
---|
1192 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
1193 | *) |
---|
1194 | (* |
---|
1195 | Definition find_funct_ptr ? (g: genv) (b: block) : option F := |
---|
1196 | ZMap.get b g.(functions). |
---|
1197 | |
---|
1198 | Definition find_funct (g: genv) (v: val) : option F := |
---|
1199 | match v with |
---|
1200 | | Vptr b ofs => |
---|
1201 | if Int.eq ofs Int.zero then find_funct_ptr ? g b else None |
---|
1202 | | _ => |
---|
1203 | None |
---|
1204 | end. |
---|
1205 | |
---|
1206 | Definition find_symbol ? (g: genv) (symb: ident) : option block := |
---|
1207 | PTree.get symb g.(symbols). |
---|
1208 | |
---|
1209 | Lemma find_funct_inv: |
---|
1210 | forall (ge: t) (v: val) (f: F), |
---|
1211 | find_funct ge v = Some ? f → ∃b. v = Vptr b Int.zero. |
---|
1212 | Proof. |
---|
1213 | intros until f. unfold find_funct. destruct v; try (intros; discriminate). |
---|
1214 | generalize (Int.eq_spec i Int.zero). case (Int.eq i Int.zero); intros. |
---|
1215 | exists b. congruence. |
---|
1216 | discriminate. |
---|
1217 | Qed. |
---|
1218 | |
---|
1219 | Lemma find_funct_find_funct_ptr: |
---|
1220 | forall (ge: t) (b: block), |
---|
1221 | find_funct ge (Vptr b Int.zero) = find_funct_ptr ? ge b. |
---|
1222 | Proof. |
---|
1223 | intros. simpl. |
---|
1224 | generalize (Int.eq_spec Int.zero Int.zero). |
---|
1225 | case (Int.eq Int.zero Int.zero); intros. |
---|
1226 | auto. tauto. |
---|
1227 | Qed. |
---|
1228 | *) |
---|
1229 | |
---|
1230 | (* |
---|
1231 | ##[ #A B C transf p b f; elim p; #fns main vars; |
---|
1232 | elim fns; |
---|
1233 | ##[ whd in match globalenv_ in ⊢ %; whd in match globalenv_initmem in ⊢ %; whd in ⊢ (??%? → ??%?); normalize; #H; destruct; |
---|
1234 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??(??%?)? → ??(??%?)?); |
---|
1235 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
1236 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
1237 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1238 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
1239 | ##[ ##2: elim t; ##[ //; ##| #h t IH; whd in ⊢ (??%?); nrewrite > IH; |
---|
1240 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1241 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??%?); |
---|
1242 | ##[ #H; destruct (H); //; |
---|
1243 | ##| #H; napply IH; napply H; |
---|
1244 | ##] |
---|
1245 | ##] |
---|
1246 | ##] |
---|
1247 | ##] |
---|
1248 | ##| #A B C transf p v f; elim v; |
---|
1249 | ##[ whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
1250 | ##| ##2,3: #x; whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
1251 | ##| #pcl b off; whd in ⊢ (??%? → ??%?); elim (eq off zero); |
---|
1252 | whd in ⊢ (??%? → ??%?); |
---|
1253 | ##[ elim p; #fns main vars; elim fns; |
---|
1254 | ##[ whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
1255 | ##| #h t; elim h; #f fn IH; |
---|
1256 | whd in ⊢ (??%? → ??%?); |
---|
1257 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
1258 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
1259 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1260 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
1261 | ##[ ##2: elim t; ##[ //; ##| #h t IH; whd in ⊢ (??%?); nrewrite > IH; |
---|
1262 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1263 | ##| napply eqZb_elim; #e; whd in ⊢ (??%? → ??%?); #H; |
---|
1264 | ##[ destruct (H); //; |
---|
1265 | ##| napply IH; napply H; |
---|
1266 | ##] |
---|
1267 | ##] |
---|
1268 | ##] |
---|
1269 | ##] |
---|
1270 | ##| #H; destruct; |
---|
1271 | ##] |
---|
1272 | ##] |
---|
1273 | ##| #A B C transf p id; elim p; #fns main vars; |
---|
1274 | elim fns; |
---|
1275 | ##[ normalize; // |
---|
1276 | ##| #h t; elim h; #fid fd; whd in ⊢ (??%% → ??%%); #IH; |
---|
1277 | elim (ident_eq fid id); #e; |
---|
1278 | ##[ whd in ⊢ (??%%); |
---|
1279 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
1280 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
1281 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1282 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
1283 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
1284 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1285 | ##| // |
---|
1286 | ##] |
---|
1287 | ##] |
---|
1288 | ##| whd in ⊢ (??%%); nrewrite > IH; napply refl; |
---|
1289 | ##] |
---|
1290 | ##] |
---|
1291 | ##| //; |
---|
1292 | ##| #A B C transf p b tf; elim p; #fns main vars; |
---|
1293 | elim fns; |
---|
1294 | ##[ normalize; #H; destruct; |
---|
1295 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
1296 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
1297 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
1298 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1299 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
1300 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
1301 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1302 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
1303 | ##[ #H; @fd; @; //; elim (grumpydestruct1 ??? H); //; |
---|
1304 | ##| #H; napply IH; napply H; |
---|
1305 | ##] |
---|
1306 | ##] |
---|
1307 | ##] |
---|
1308 | ##] |
---|
1309 | ##| #A B C transf p v tf; elim p; #fns main vars; elim v; |
---|
1310 | ##[ normalize; #H; destruct; |
---|
1311 | ##| ##2,3: #x; normalize; #H; destruct; |
---|
1312 | ##| #pcl b off; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); elim (eq off zero); |
---|
1313 | ##[ whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
1314 | elim fns; |
---|
1315 | ##[ normalize; #H; destruct; |
---|
1316 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
1317 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
1318 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
1319 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1320 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
1321 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
1322 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
1323 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
1324 | ##[ #H; @fd; @; //; elim (grumpydestruct1 ??? H); //; |
---|
1325 | ##| #H; napply IH; napply H; |
---|
1326 | ##] |
---|
1327 | ##] |
---|
1328 | ##] |
---|
1329 | ##] |
---|
1330 | ##| normalize; #H; destruct; |
---|
1331 | ##] |
---|
1332 | ##] |
---|
1333 | ##] qed. |
---|
1334 | |
---|
1335 | |
---|
1336 | Lemma functions_globalenv: |
---|
1337 | forall (p: program F V), |
---|
1338 | functions (globalenv p) = functions (add_functs empty p.(prog_funct)). |
---|
1339 | Proof. |
---|
1340 | assert (forall init vars, |
---|
1341 | functions (fst (add_globals init vars)) = functions (fst init)). |
---|
1342 | induction vars; simpl. |
---|
1343 | reflexivity. |
---|
1344 | destruct a as [[id1 init1] info1]. destruct (add_globals init vars). |
---|
1345 | simpl. exact IHvars. |
---|
1346 | |
---|
1347 | unfold add_globals; simpl. |
---|
1348 | intros. unfold globalenv; unfold globalenv_initmem. |
---|
1349 | rewrite H. reflexivity. |
---|
1350 | Qed. |
---|
1351 | |
---|
1352 | Lemma initmem_nullptr: |
---|
1353 | forall (p: program F V), |
---|
1354 | let m := init_mem p in |
---|
1355 | valid_block m nullptr /\ |
---|
1356 | m.(blocks) nullptr = mkblock 0 0 (fun y => Undef). |
---|
1357 | Proof. |
---|
1358 | pose (P := fun m => valid_block m nullptr /\ |
---|
1359 | m.(blocks) nullptr = mkblock 0 0 (fun y => Undef)). |
---|
1360 | assert (forall init, P (snd init) → forall vars, P (snd (add_globals init vars))). |
---|
1361 | induction vars; simpl; intros. |
---|
1362 | auto. |
---|
1363 | destruct a as [[id1 in1] inf1]. |
---|
1364 | destruct (add_globals init vars) as [g st]. |
---|
1365 | simpl in *. destruct IHvars. split. |
---|
1366 | red; simpl. red in H0. omega. |
---|
1367 | simpl. rewrite update_o. auto. unfold block. red in H0. omega. |
---|
1368 | |
---|
1369 | intro. unfold init_mem, globalenv_initmem. apply H. |
---|
1370 | red; simpl. split. compute. auto. reflexivity. |
---|
1371 | Qed. |
---|
1372 | |
---|
1373 | Lemma initmem_inject_neutral: |
---|
1374 | forall (p: program F V), |
---|
1375 | mem_inject_neutral (init_mem p). |
---|
1376 | Proof. |
---|
1377 | assert (forall g0 vars g1 m, |
---|
1378 | add_globals (g0, Mem.empty) vars = (g1, m) → |
---|
1379 | mem_inject_neutral m). |
---|
1380 | Opaque alloc_init_data. |
---|
1381 | induction vars; simpl. |
---|
1382 | intros. inv H. red; intros. destruct (load_inv _ _ _ _ _ H). |
---|
1383 | simpl in H1. rewrite Mem.getN_init in H1. |
---|
1384 | replace v with Vundef. auto. destruct chunk; simpl in H1; auto. |
---|
1385 | destruct a as [[id1 init1] info1]. |
---|
1386 | caseEq (add_globals (g0, Mem.empty) vars). intros g1 m1 EQ. |
---|
1387 | caseEq (alloc_init_data m1 init1). intros m2 b ALLOC. |
---|
1388 | intros. inv H. |
---|
1389 | eapply Mem.alloc_init_data_neutral; eauto. |
---|
1390 | intros. caseEq (globalenv_initmem p). intros g m EQ. |
---|
1391 | unfold init_mem; rewrite EQ; simpl. |
---|
1392 | unfold globalenv_initmem in EQ. eauto. |
---|
1393 | Qed. |
---|
1394 | |
---|
1395 | Remark nextfunction_add_functs_neg: |
---|
1396 | forall fns, nextfunction (add_functs empty fns) < 0. |
---|
1397 | Proof. |
---|
1398 | induction fns; simpl; intros. omega. unfold Zpred. omega. |
---|
1399 | Qed. |
---|
1400 | |
---|
1401 | Theorem find_funct_ptr_negative: |
---|
1402 | forall (p: program F V) (b: block) (f: F), |
---|
1403 | find_funct_ptr ? (globalenv p) b = Some ? f → b < 0. |
---|
1404 | Proof. |
---|
1405 | intros until f. |
---|
1406 | assert (forall fns, ZMap.get b (functions (add_functs empty fns)) = Some ? f → b < 0). |
---|
1407 | induction fns; simpl. |
---|
1408 | rewrite ZMap.gi. congruence. |
---|
1409 | rewrite ZMap.gsspec. case (ZIndexed.eq b (nextfunction (add_functs empty fns))); intro. |
---|
1410 | intro. rewrite e. apply nextfunction_add_functs_neg. |
---|
1411 | auto. |
---|
1412 | unfold find_funct_ptr. rewrite functions_globalenv. |
---|
1413 | intros. eauto. |
---|
1414 | Qed. |
---|
1415 | |
---|
1416 | Remark find_symbol_add_functs_negative: |
---|
1417 | forall (fns: list (ident * F)) s b, |
---|
1418 | (symbols (add_functs empty fns)) ! s = Some ? b → b < 0. |
---|
1419 | Proof. |
---|
1420 | induction fns; simpl; intros until b. |
---|
1421 | rewrite PTree.gempty. congruence. |
---|
1422 | rewrite PTree.gsspec. destruct a; simpl. case (peq s i); intro. |
---|
1423 | intro EQ; inversion EQ. apply nextfunction_add_functs_neg. |
---|
1424 | eauto. |
---|
1425 | Qed. |
---|
1426 | |
---|
1427 | Remark find_symbol_add_symbols_not_fresh: |
---|
1428 | forall fns vars g m s b, |
---|
1429 | add_globals (add_functs empty fns, Mem.empty) vars = (g, m) → |
---|
1430 | (symbols g)!s = Some ? b → |
---|
1431 | b < nextblock m. |
---|
1432 | Proof. |
---|
1433 | induction vars; simpl; intros until b. |
---|
1434 | intros. inversion H. subst g m. simpl. |
---|
1435 | generalize (find_symbol_add_functs_negative fns s H0). omega. |
---|
1436 | Transparent alloc_init_data. |
---|
1437 | destruct a as [[id1 init1] info1]. |
---|
1438 | caseEq (add_globals (add_functs empty fns, Mem.empty) vars). |
---|
1439 | intros g1 m1 ADG EQ. inversion EQ; subst g m; clear EQ. |
---|
1440 | unfold add_symbol; simpl. rewrite PTree.gsspec. case (peq s id1); intro. |
---|
1441 | intro EQ; inversion EQ. omega. |
---|
1442 | intro. generalize (IHvars _ _ _ _ ADG H). omega. |
---|
1443 | Qed. |
---|
1444 | |
---|
1445 | Theorem find_symbol_not_fresh: |
---|
1446 | forall (p: program F V) (id: ident) (b: block), |
---|
1447 | find_symbol ? (globalenv p) id = Some ? b → b < nextblock (init_mem p). |
---|
1448 | Proof. |
---|
1449 | intros until b. unfold find_symbol, globalenv, init_mem, globalenv_initmem; simpl. |
---|
1450 | caseEq (add_globals (add_functs empty (prog_funct p), Mem.empty) |
---|
1451 | (prog_vars p)); intros g m EQ. |
---|
1452 | simpl; intros. eapply find_symbol_add_symbols_not_fresh; eauto. |
---|
1453 | Qed. |
---|
1454 | |
---|
1455 | Lemma find_symbol_exists: |
---|
1456 | forall (p: program F V) |
---|
1457 | (id: ident) (init: list init_data) (v: V), |
---|
1458 | In (id, init, v) (prog_vars p) → |
---|
1459 | ∃b. find_symbol ? (globalenv p) id = Some ? b. |
---|
1460 | Proof. |
---|
1461 | intros until v. |
---|
1462 | assert (forall initm vl, In (id, init, v) vl → |
---|
1463 | ∃b. PTree.get id (symbols (fst (add_globals initm vl))) = Some ? b). |
---|
1464 | induction vl; simpl; intros. |
---|
1465 | elim H. |
---|
1466 | destruct a as [[id0 init0] v0]. |
---|
1467 | caseEq (add_globals initm vl). intros g1 m1 EQ. simpl. |
---|
1468 | rewrite PTree.gsspec. destruct (peq id id0). econstructor; eauto. |
---|
1469 | elim H; intro. congruence. generalize (IHvl H0). rewrite EQ. auto. |
---|
1470 | intros. unfold globalenv, find_symbol, globalenv_initmem. auto. |
---|
1471 | Qed. |
---|
1472 | |
---|
1473 | Remark find_symbol_above_nextfunction: |
---|
1474 | forall (id: ident) (b: block) (fns: list (ident * F)), |
---|
1475 | let g := add_functs empty fns in |
---|
1476 | PTree.get id g.(symbols) = Some ? b → |
---|
1477 | b > g.(nextfunction). |
---|
1478 | Proof. |
---|
1479 | induction fns; simpl. |
---|
1480 | rewrite PTree.gempty. congruence. |
---|
1481 | rewrite PTree.gsspec. case (peq id (fst a)); intro. |
---|
1482 | intro EQ. inversion EQ. unfold Zpred. omega. |
---|
1483 | intros. generalize (IHfns H). unfold Zpred; omega. |
---|
1484 | Qed. |
---|
1485 | |
---|
1486 | Remark find_symbol_add_globals: |
---|
1487 | forall (id: ident) (ge_m: t * mem) (vars: list (ident * list init_data * V)), |
---|
1488 | ~In id (map (fun x: ident * list init_data * V => fst(fst x)) vars) → |
---|
1489 | find_symbol ? (fst (add_globals ge_m vars)) id = |
---|
1490 | find_symbol ? (fst ge_m) id. |
---|
1491 | Proof. |
---|
1492 | unfold find_symbol; induction vars; simpl; intros. |
---|
1493 | auto. |
---|
1494 | destruct a as [[id0 init0] var0]. simpl in *. |
---|
1495 | caseEq (add_globals ge_m vars); intros ge' m' EQ. |
---|
1496 | simpl. rewrite PTree.gso. rewrite EQ in IHvars. simpl in IHvars. |
---|
1497 | apply IHvars. tauto. intuition congruence. |
---|
1498 | Qed. |
---|
1499 | |
---|
1500 | Lemma find_funct_ptr_exists: |
---|
1501 | forall (p: program F V) (id: ident) (f: F), |
---|
1502 | list_norepet (prog_funct_names p) → |
---|
1503 | list_disjoint (prog_funct_names p) (prog_var_names p) → |
---|
1504 | In (id, f) (prog_funct p) → |
---|
1505 | ∃b. find_symbol ? (globalenv p) id = Some ? b |
---|
1506 | /\ find_funct_ptr ? (globalenv p) b = Some ? f. |
---|
1507 | Proof. |
---|
1508 | intros until f. |
---|
1509 | assert (forall (fns: list (ident * F)), |
---|
1510 | list_norepet (map (@fst ident F) fns) → |
---|
1511 | In (id, f) fns → |
---|
1512 | ∃b. find_symbol ? (add_functs empty fns) id = Some ? b |
---|
1513 | /\ find_funct_ptr ? (add_functs empty fns) b = Some ? f). |
---|
1514 | unfold find_symbol, find_funct_ptr. induction fns; intros. |
---|
1515 | elim H0. |
---|
1516 | destruct a as [id0 f0]; simpl in *. inv H. |
---|
1517 | unfold add_funct; simpl. |
---|
1518 | rewrite PTree.gsspec. destruct (peq id id0). |
---|
1519 | subst id0. econstructor; split. eauto. |
---|
1520 | replace f0 with f. apply ZMap.gss. |
---|
1521 | elim H0; intro. congruence. elim H3. |
---|
1522 | change id with (@fst ident F (id, f)). apply List.in_map. auto. |
---|
1523 | exploit IHfns; eauto. elim H0; intro. congruence. auto. |
---|
1524 | intros [b [X Y]]. exists b; split. auto. rewrite ZMap.gso. auto. |
---|
1525 | generalize (find_symbol_above_nextfunction _ _ X). |
---|
1526 | unfold block; unfold ZIndexed.t; intro; omega. |
---|
1527 | |
---|
1528 | intros. exploit H; eauto. intros [b [X Y]]. |
---|
1529 | exists b; split. |
---|
1530 | unfold globalenv, globalenv_initmem. rewrite find_symbol_add_globals. |
---|
1531 | assumption. apply list_disjoint_notin with (prog_funct_names p). assumption. |
---|
1532 | unfold prog_funct_names. change id with (fst (id, f)). |
---|
1533 | apply List.in_map; auto. |
---|
1534 | unfold find_funct_ptr. rewrite functions_globalenv. |
---|
1535 | assumption. |
---|
1536 | Qed. |
---|
1537 | |
---|
1538 | Lemma find_funct_ptr_inversion: |
---|
1539 | forall (P: F → Prop) (p: program F V) (b: block) (f: F), |
---|
1540 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1541 | ∃id. In (id, f) (prog_funct p). |
---|
1542 | Proof. |
---|
1543 | intros until f. |
---|
1544 | assert (forall fns: list (ident * F), |
---|
1545 | find_funct_ptr ? (add_functs empty fns) b = Some ? f → |
---|
1546 | ∃id. In (id, f) fns). |
---|
1547 | unfold find_funct_ptr. induction fns; simpl. |
---|
1548 | rewrite ZMap.gi. congruence. |
---|
1549 | destruct a as [id0 f0]; simpl. |
---|
1550 | rewrite ZMap.gsspec. destruct (ZIndexed.eq b (nextfunction (add_functs empty fns))). |
---|
1551 | intro. inv H. exists id0; auto. |
---|
1552 | intro. exploit IHfns; eauto. intros [id A]. exists id; auto. |
---|
1553 | unfold find_funct_ptr; rewrite functions_globalenv. intros; apply H; auto. |
---|
1554 | Qed. |
---|
1555 | |
---|
1556 | Lemma find_funct_ptr_prop: |
---|
1557 | forall (P: F → Prop) (p: program F V) (b: block) (f: F), |
---|
1558 | (forall id f, In (id, f) (prog_funct p) → P f) → |
---|
1559 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1560 | P f. |
---|
1561 | Proof. |
---|
1562 | intros. exploit find_funct_ptr_inversion; eauto. intros [id A]. eauto. |
---|
1563 | Qed. |
---|
1564 | |
---|
1565 | Lemma find_funct_inversion: |
---|
1566 | forall (P: F → Prop) (p: program F V) (v: val) (f: F), |
---|
1567 | find_funct (globalenv p) v = Some ? f → |
---|
1568 | ∃id. In (id, f) (prog_funct p). |
---|
1569 | Proof. |
---|
1570 | intros. exploit find_funct_inv; eauto. intros [b EQ]. rewrite EQ in H. |
---|
1571 | rewrite find_funct_find_funct_ptr ? in H. |
---|
1572 | eapply find_funct_ptr_inversion; eauto. |
---|
1573 | Qed. |
---|
1574 | |
---|
1575 | Lemma find_funct_prop: |
---|
1576 | forall (P: F → Prop) (p: program F V) (v: val) (f: F), |
---|
1577 | (forall id f, In (id, f) (prog_funct p) → P f) → |
---|
1578 | find_funct (globalenv p) v = Some ? f → |
---|
1579 | P f. |
---|
1580 | Proof. |
---|
1581 | intros. exploit find_funct_inversion; eauto. intros [id A]. eauto. |
---|
1582 | Qed. |
---|
1583 | |
---|
1584 | Lemma find_funct_ptr_symbol_inversion: |
---|
1585 | forall (p: program F V) (id: ident) (b: block) (f: F), |
---|
1586 | find_symbol ? (globalenv p) id = Some ? b → |
---|
1587 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1588 | In (id, f) p.(prog_funct). |
---|
1589 | Proof. |
---|
1590 | intros until f. |
---|
1591 | assert (forall fns, |
---|
1592 | let g := add_functs empty fns in |
---|
1593 | PTree.get id g.(symbols) = Some ? b → |
---|
1594 | ZMap.get b g.(functions) = Some ? f → |
---|
1595 | In (id, f) fns). |
---|
1596 | induction fns; simpl. |
---|
1597 | rewrite ZMap.gi. congruence. |
---|
1598 | set (g := add_functs empty fns). |
---|
1599 | rewrite PTree.gsspec. rewrite ZMap.gsspec. |
---|
1600 | case (peq id (fst a)); intro. |
---|
1601 | intro EQ. inversion EQ. unfold ZIndexed.eq. rewrite zeq_true. |
---|
1602 | intro EQ2. left. destruct a. simpl in *. congruence. |
---|
1603 | intro. unfold ZIndexed.eq. rewrite zeq_false. intro. eauto. |
---|
1604 | generalize (find_symbol_above_nextfunction _ _ H). fold g. unfold block. omega. |
---|
1605 | assert (forall g0 m0, b < 0 → |
---|
1606 | forall vars g m, |
---|
1607 | add_globals (g0, m0) vars = (g, m) → |
---|
1608 | PTree.get id g.(symbols) = Some ? b → |
---|
1609 | PTree.get id g0.(symbols) = Some ? b). |
---|
1610 | induction vars; simpl. |
---|
1611 | intros. inv H1. auto. |
---|
1612 | destruct a as [[id1 init1] info1]. caseEq (add_globals (g0, m0) vars). |
---|
1613 | intros g1 m1 EQ g m EQ1. injection EQ1; simpl; clear EQ1. |
---|
1614 | unfold add_symbol; intros A B. rewrite <- B. simpl. |
---|
1615 | rewrite PTree.gsspec. case (peq id id1); intros. |
---|
1616 | assert (b > 0). inv H1. apply nextblock_pos. |
---|
1617 | omegaContradiction. |
---|
1618 | eauto. |
---|
1619 | intros. |
---|
1620 | generalize (find_funct_ptr_negative _ _ H2). intro. |
---|
1621 | pose (g := add_functs empty (prog_funct p)). |
---|
1622 | apply H. |
---|
1623 | apply H0 with Mem.empty (prog_vars p) (globalenv p) (init_mem p). |
---|
1624 | auto. unfold globalenv, init_mem. rewrite <- surjective_pairing. |
---|
1625 | reflexivity. assumption. rewrite <- functions_globalenv. assumption. |
---|
1626 | Qed. |
---|
1627 | |
---|
1628 | Theorem find_symbol_not_nullptr: |
---|
1629 | forall (p: program F V) (id: ident) (b: block), |
---|
1630 | find_symbol ? (globalenv p) id = Some ? b → b <> nullptr. |
---|
1631 | Proof. |
---|
1632 | intros until b. |
---|
1633 | assert (forall fns, |
---|
1634 | find_symbol ? (add_functs empty fns) id = Some ? b → |
---|
1635 | b <> nullptr). |
---|
1636 | unfold find_symbol; induction fns; simpl. |
---|
1637 | rewrite PTree.gempty. congruence. |
---|
1638 | destruct a as [id1 f1]. simpl. rewrite PTree.gsspec. |
---|
1639 | destruct (peq id id1); intros. |
---|
1640 | inversion H. generalize (nextfunction_add_functs_neg fns). |
---|
1641 | unfold block, nullptr; omega. |
---|
1642 | auto. |
---|
1643 | set (g0 := add_functs empty p.(prog_funct)). |
---|
1644 | assert (forall vars g m, |
---|
1645 | add_globals (g0, Mem.empty) vars = (g, m) → |
---|
1646 | find_symbol ? g id = Some ? b → |
---|
1647 | b <> nullptr). |
---|
1648 | induction vars; simpl; intros until m. |
---|
1649 | intros. inversion H0. subst g. apply H with (prog_funct p). auto. |
---|
1650 | destruct a as [[id1 init1] info1]. |
---|
1651 | caseEq (add_globals (g0, Mem.empty) vars); intros g1 m1 EQ1 EQ2. |
---|
1652 | inv EQ2. unfold find_symbol, add_symbol; simpl. rewrite PTree.gsspec. |
---|
1653 | destruct (peq id id1); intros. |
---|
1654 | inv H0. generalize (nextblock_pos m1). unfold nullptr, block; omega. |
---|
1655 | eauto. |
---|
1656 | intros. eapply H0 with (vars := prog_vars p). apply surjective_pairing. auto. |
---|
1657 | Qed. |
---|
1658 | |
---|
1659 | Theorem global_addresses_distinct: |
---|
1660 | forall (p: program F V) id1 id2 b1 b2, |
---|
1661 | id1<>id2 → |
---|
1662 | find_symbol ? (globalenv p) id1 = Some ? b1 → |
---|
1663 | find_symbol ? (globalenv p) id2 = Some ? b2 → |
---|
1664 | b1<>b2. |
---|
1665 | Proof. |
---|
1666 | intros. |
---|
1667 | assert (forall fns, |
---|
1668 | find_symbol ? (add_functs empty fns) id1 = Some ? b1 → |
---|
1669 | find_symbol ? (add_functs empty fns) id2 = Some ? b2 → |
---|
1670 | b1 <> b2). |
---|
1671 | unfold find_symbol. induction fns; simpl; intros. |
---|
1672 | rewrite PTree.gempty in H2. discriminate. |
---|
1673 | destruct a as [id f]; simpl in *. |
---|
1674 | rewrite PTree.gsspec in H2. |
---|
1675 | destruct (peq id1 id). subst id. inv H2. |
---|
1676 | rewrite PTree.gso in H3; auto. |
---|
1677 | generalize (find_symbol_above_nextfunction _ _ H3). unfold block. omega. |
---|
1678 | rewrite PTree.gsspec in H3. |
---|
1679 | destruct (peq id2 id). subst id. inv H3. |
---|
1680 | generalize (find_symbol_above_nextfunction _ _ H2). unfold block. omega. |
---|
1681 | eauto. |
---|
1682 | set (ge0 := add_functs empty p.(prog_funct)). |
---|
1683 | assert (forall (vars: list (ident * list init_data * V)) ge m, |
---|
1684 | add_globals (ge0, Mem.empty) vars = (ge, m) → |
---|
1685 | find_symbol ? ge id1 = Some ? b1 → |
---|
1686 | find_symbol ? ge id2 = Some ? b2 → |
---|
1687 | b1 <> b2). |
---|
1688 | unfold find_symbol. induction vars; simpl. |
---|
1689 | intros. inv H3. subst ge. apply H2 with (p.(prog_funct)); auto. |
---|
1690 | intros ge m. destruct a as [[id init] info]. |
---|
1691 | caseEq (add_globals (ge0, Mem.empty) vars). intros ge1 m1 A B. inv B. |
---|
1692 | unfold add_symbol. simpl. intros. |
---|
1693 | rewrite PTree.gsspec in H3; destruct (peq id1 id). subst id. inv H3. |
---|
1694 | rewrite PTree.gso in H4; auto. |
---|
1695 | generalize (find_symbol_add_symbols_not_fresh _ _ _ A H4). unfold block; omega. |
---|
1696 | rewrite PTree.gsspec in H4; destruct (peq id2 id). subst id. inv H4. |
---|
1697 | generalize (find_symbol_add_symbols_not_fresh _ _ _ A H3). unfold block; omega. |
---|
1698 | eauto. |
---|
1699 | set (ge_m := add_globals (ge0, Mem.empty) p.(prog_vars)). |
---|
1700 | apply H3 with (p.(prog_vars)) (fst ge_m) (snd ge_m). |
---|
1701 | fold ge_m. apply surjective_pairing. auto. auto. |
---|
1702 | Qed. |
---|
1703 | |
---|
1704 | End GENV. |
---|
1705 | |
---|
1706 | (* Global environments and program transformations. *) |
---|
1707 | |
---|
1708 | Section MATCH_PROGRAM. |
---|
1709 | |
---|
1710 | Variable A B V W: Type. |
---|
1711 | Variable match_fun: A → B → Prop. |
---|
1712 | Variable match_var: V → W → Prop. |
---|
1713 | Variable p: program A V. |
---|
1714 | Variable p': program B W. |
---|
1715 | Hypothesis match_prog: |
---|
1716 | match_program match_fun match_var p p'. |
---|
1717 | |
---|
1718 | Lemma add_functs_match: |
---|
1719 | forall (fns: list (ident * A)) (tfns: list (ident * B)), |
---|
1720 | list_forall2 (match_funct_etry match_fun) fns tfns → |
---|
1721 | let r := add_functs (empty A) fns in |
---|
1722 | let tr := add_functs (empty B) tfns in |
---|
1723 | nextfunction tr = nextfunction r /\ |
---|
1724 | symbols tr = symbols r /\ |
---|
1725 | forall (b: block) (f: A), |
---|
1726 | ZMap.get b (functions r) = Some ? f → |
---|
1727 | ∃tf. ZMap.get b (functions tr) = Some ? tf /\ match_fun f tf. |
---|
1728 | Proof. |
---|
1729 | induction 1; simpl. |
---|
1730 | |
---|
1731 | split. reflexivity. split. reflexivity. |
---|
1732 | intros b f; repeat (rewrite ZMap.gi). intros; discriminate. |
---|
1733 | |
---|
1734 | destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. |
---|
1735 | simpl. red in H. destruct H. |
---|
1736 | destruct IHlist_forall2 as [X [Y Z]]. |
---|
1737 | rewrite X. rewrite Y. |
---|
1738 | split. auto. |
---|
1739 | split. congruence. |
---|
1740 | intros b f. |
---|
1741 | repeat (rewrite ZMap.gsspec). |
---|
1742 | destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))). |
---|
1743 | intro EQ; inv EQ. exists fn2; auto. |
---|
1744 | auto. |
---|
1745 | Qed. |
---|
1746 | |
---|
1747 | Lemma add_functs_rev_match: |
---|
1748 | forall (fns: list (ident * A)) (tfns: list (ident * B)), |
---|
1749 | list_forall2 (match_funct_etry match_fun) fns tfns → |
---|
1750 | let r := add_functs (empty A) fns in |
---|
1751 | let tr := add_functs (empty B) tfns in |
---|
1752 | nextfunction tr = nextfunction r /\ |
---|
1753 | symbols tr = symbols r /\ |
---|
1754 | forall (b: block) (tf: B), |
---|
1755 | ZMap.get b (functions tr) = Some ? tf → |
---|
1756 | ∃f. ZMap.get b (functions r) = Some ? f /\ match_fun f tf. |
---|
1757 | Proof. |
---|
1758 | induction 1; simpl. |
---|
1759 | |
---|
1760 | split. reflexivity. split. reflexivity. |
---|
1761 | intros b f; repeat (rewrite ZMap.gi). intros; discriminate. |
---|
1762 | |
---|
1763 | destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. |
---|
1764 | simpl. red in H. destruct H. |
---|
1765 | destruct IHlist_forall2 as [X [Y Z]]. |
---|
1766 | rewrite X. rewrite Y. |
---|
1767 | split. auto. |
---|
1768 | split. congruence. |
---|
1769 | intros b f. |
---|
1770 | repeat (rewrite ZMap.gsspec). |
---|
1771 | destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))). |
---|
1772 | intro EQ; inv EQ. exists fn1; auto. |
---|
1773 | auto. |
---|
1774 | Qed. |
---|
1775 | |
---|
1776 | Lemma mem_add_globals_match: |
---|
1777 | forall (g1: genv A) (g2: genv B) (m: mem) |
---|
1778 | (vars: list (ident * list init_data * V)) |
---|
1779 | (tvars: list (ident * list init_data * W)), |
---|
1780 | list_forall2 (match_var_etry match_var) vars tvars → |
---|
1781 | snd (add_globals (g1, m) vars) = snd (add_globals (g2, m) tvars). |
---|
1782 | Proof. |
---|
1783 | induction 1; simpl. |
---|
1784 | auto. |
---|
1785 | destruct a1 as [[id1 init1] info1]. |
---|
1786 | destruct b1 as [[id2 init2] info2]. |
---|
1787 | red in H. destruct H as [X [Y Z]]. subst id2 init2. |
---|
1788 | generalize IHlist_forall2. |
---|
1789 | destruct (add_globals (g1, m) al). |
---|
1790 | destruct (add_globals (g2, m) bl). |
---|
1791 | simpl. intro. subst m1. auto. |
---|
1792 | Qed. |
---|
1793 | |
---|
1794 | Lemma symbols_add_globals_match: |
---|
1795 | forall (g1: genv A) (g2: genv B) (m: mem), |
---|
1796 | symbols g1 = symbols g2 → |
---|
1797 | forall (vars: list (ident * list init_data * V)) |
---|
1798 | (tvars: list (ident * list init_data * W)), |
---|
1799 | list_forall2 (match_var_etry match_var) vars tvars → |
---|
1800 | symbols (fst (add_globals (g1, m) vars)) = |
---|
1801 | symbols (fst (add_globals (g2, m) tvars)). |
---|
1802 | Proof. |
---|
1803 | induction 2; simpl. |
---|
1804 | auto. |
---|
1805 | destruct a1 as [[id1 init1] info1]. |
---|
1806 | destruct b1 as [[id2 init2] info2]. |
---|
1807 | red in H0. destruct H0 as [X [Y Z]]. subst id2 init2. |
---|
1808 | generalize IHlist_forall2. |
---|
1809 | generalize (mem_add_globals_match g1 g2 m H1). |
---|
1810 | destruct (add_globals (g1, m) al). |
---|
1811 | destruct (add_globals (g2, m) bl). |
---|
1812 | simpl. intros. congruence. |
---|
1813 | Qed. |
---|
1814 | |
---|
1815 | Theorem find_funct_ptr_match: |
---|
1816 | forall (b: block) (f: A), |
---|
1817 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1818 | ∃tf. find_funct_ptr ? (globalenv p') b = Some ? tf /\ match_fun f tf. |
---|
1819 | Proof. |
---|
1820 | intros until f. destruct match_prog as [X [Y Z]]. |
---|
1821 | destruct (add_functs_match X) as [P [Q R]]. |
---|
1822 | unfold find_funct_ptr. repeat rewrite functions_globalenv. |
---|
1823 | auto. |
---|
1824 | Qed. |
---|
1825 | |
---|
1826 | Theorem find_funct_ptr_rev_match: |
---|
1827 | forall (b: block) (tf: B), |
---|
1828 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1829 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ match_fun f tf. |
---|
1830 | Proof. |
---|
1831 | intros until tf. destruct match_prog as [X [Y Z]]. |
---|
1832 | destruct (add_functs_rev_match X) as [P [Q R]]. |
---|
1833 | unfold find_funct_ptr. repeat rewrite functions_globalenv. |
---|
1834 | auto. |
---|
1835 | Qed. |
---|
1836 | |
---|
1837 | Theorem find_funct_match: |
---|
1838 | forall (v: val) (f: A), |
---|
1839 | find_funct (globalenv p) v = Some ? f → |
---|
1840 | ∃tf. find_funct (globalenv p') v = Some ? tf /\ match_fun f tf. |
---|
1841 | Proof. |
---|
1842 | intros until f. unfold find_funct. |
---|
1843 | case v; try (intros; discriminate). |
---|
1844 | intros b ofs. |
---|
1845 | case (Int.eq ofs Int.zero); try (intros; discriminate). |
---|
1846 | apply find_funct_ptr_match. |
---|
1847 | Qed. |
---|
1848 | |
---|
1849 | Theorem find_funct_rev_match: |
---|
1850 | forall (v: val) (tf: B), |
---|
1851 | find_funct (globalenv p') v = Some ? tf → |
---|
1852 | ∃f. find_funct (globalenv p) v = Some ? f /\ match_fun f tf. |
---|
1853 | Proof. |
---|
1854 | intros until tf. unfold find_funct. |
---|
1855 | case v; try (intros; discriminate). |
---|
1856 | intros b ofs. |
---|
1857 | case (Int.eq ofs Int.zero); try (intros; discriminate). |
---|
1858 | apply find_funct_ptr_rev_match. |
---|
1859 | Qed. |
---|
1860 | |
---|
1861 | Lemma symbols_init_match: |
---|
1862 | symbols (globalenv p') = symbols (globalenv p). |
---|
1863 | Proof. |
---|
1864 | unfold globalenv. unfold globalenv_initmem. |
---|
1865 | destruct match_prog as [X [Y Z]]. |
---|
1866 | destruct (add_functs_match X) as [P [Q R]]. |
---|
1867 | simpl. symmetry. apply symbols_add_globals_match. auto. auto. |
---|
1868 | Qed. |
---|
1869 | |
---|
1870 | Theorem find_symbol_match: |
---|
1871 | forall (s: ident), |
---|
1872 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
1873 | Proof. |
---|
1874 | intros. unfold find_symbol. |
---|
1875 | rewrite symbols_init_match. auto. |
---|
1876 | Qed. |
---|
1877 | |
---|
1878 | Theorem init_mem_match: |
---|
1879 | init_mem p' = init_mem p. |
---|
1880 | Proof. |
---|
1881 | unfold init_mem. unfold globalenv_initmem. |
---|
1882 | destruct match_prog as [X [Y Z]]. |
---|
1883 | symmetry. apply mem_add_globals_match. auto. |
---|
1884 | Qed. |
---|
1885 | |
---|
1886 | End MATCH_PROGRAM. |
---|
1887 | |
---|
1888 | Section TRANSF_PROGRAM_PARTIAL2. |
---|
1889 | |
---|
1890 | Variable A B V W: Type. |
---|
1891 | Variable transf_fun: A → res B. |
---|
1892 | Variable transf_var: V → res W. |
---|
1893 | Variable p: program A V. |
---|
1894 | Variable p': program B W. |
---|
1895 | Hypothesis transf_OK: |
---|
1896 | transform_partial_program2 transf_fun transf_var p = OK ? p'. |
---|
1897 | |
---|
1898 | Remark prog_match: |
---|
1899 | match_program |
---|
1900 | (fun fd tfd => transf_fun fd = OK ? tfd) |
---|
1901 | (fun info tinfo => transf_var info = OK ? tinfo) |
---|
1902 | p p'. |
---|
1903 | Proof. |
---|
1904 | apply transform_partial_program2_match; auto. |
---|
1905 | Qed. |
---|
1906 | |
---|
1907 | Theorem find_funct_ptr_transf_partial2: |
---|
1908 | forall (b: block) (f: A), |
---|
1909 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1910 | ∃f'. |
---|
1911 | find_funct_ptr ? (globalenv p') b = Some ? f' /\ transf_fun f = OK ? f'. |
---|
1912 | Proof. |
---|
1913 | intros. |
---|
1914 | exploit find_funct_ptr_match. eexact prog_match. eauto. |
---|
1915 | intros [tf [X Y]]. exists tf; auto. |
---|
1916 | Qed. |
---|
1917 | |
---|
1918 | Theorem find_funct_ptr_rev_transf_partial2: |
---|
1919 | forall (b: block) (tf: B), |
---|
1920 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1921 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf_fun f = OK ? tf. |
---|
1922 | Proof. |
---|
1923 | intros. |
---|
1924 | exploit find_funct_ptr_rev_match. eexact prog_match. eauto. auto. |
---|
1925 | Qed. |
---|
1926 | |
---|
1927 | Theorem find_funct_transf_partial2: |
---|
1928 | forall (v: val) (f: A), |
---|
1929 | find_funct (globalenv p) v = Some ? f → |
---|
1930 | ∃f'. |
---|
1931 | find_funct (globalenv p') v = Some ? f' /\ transf_fun f = OK ? f'. |
---|
1932 | Proof. |
---|
1933 | intros. |
---|
1934 | exploit find_funct_match. eexact prog_match. eauto. |
---|
1935 | intros [tf [X Y]]. exists tf; auto. |
---|
1936 | Qed. |
---|
1937 | |
---|
1938 | Theorem find_funct_rev_transf_partial2: |
---|
1939 | forall (v: val) (tf: B), |
---|
1940 | find_funct (globalenv p') v = Some ? tf → |
---|
1941 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf_fun f = OK ? tf. |
---|
1942 | Proof. |
---|
1943 | intros. |
---|
1944 | exploit find_funct_rev_match. eexact prog_match. eauto. auto. |
---|
1945 | Qed. |
---|
1946 | |
---|
1947 | Theorem find_symbol_transf_partial2: |
---|
1948 | forall (s: ident), |
---|
1949 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
1950 | Proof. |
---|
1951 | intros. eapply find_symbol_match. eexact prog_match. |
---|
1952 | Qed. |
---|
1953 | |
---|
1954 | Theorem init_mem_transf_partial2: |
---|
1955 | init_mem p' = init_mem p. |
---|
1956 | Proof. |
---|
1957 | intros. eapply init_mem_match. eexact prog_match. |
---|
1958 | Qed. |
---|
1959 | |
---|
1960 | End TRANSF_PROGRAM_PARTIAL2. |
---|
1961 | |
---|
1962 | Section TRANSF_PROGRAM_PARTIAL. |
---|
1963 | |
---|
1964 | Variable A B V: Type. |
---|
1965 | Variable transf: A → res B. |
---|
1966 | Variable p: program A V. |
---|
1967 | Variable p': program B V. |
---|
1968 | Hypothesis transf_OK: transform_partial_program transf p = OK ? p'. |
---|
1969 | |
---|
1970 | Remark transf2_OK: |
---|
1971 | transform_partial_program2 transf (fun x => OK ? x) p = OK ? p'. |
---|
1972 | Proof. |
---|
1973 | rewrite <- transf_OK. unfold transform_partial_program2, transform_partial_program. |
---|
1974 | destruct (map_partial prefix_funct_name transf (prog_funct p)); auto. |
---|
1975 | rewrite map_partial_identity; auto. |
---|
1976 | Qed. |
---|
1977 | |
---|
1978 | Theorem find_funct_ptr_transf_partial: |
---|
1979 | forall (b: block) (f: A), |
---|
1980 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1981 | ∃f'. |
---|
1982 | find_funct_ptr ? (globalenv p') b = Some ? f' /\ transf f = OK ? f'. |
---|
1983 | Proof. |
---|
1984 | exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1985 | Qed. |
---|
1986 | |
---|
1987 | Theorem find_funct_ptr_rev_transf_partial: |
---|
1988 | forall (b: block) (tf: B), |
---|
1989 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1990 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf f = OK ? tf. |
---|
1991 | Proof. |
---|
1992 | exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1993 | Qed. |
---|
1994 | |
---|
1995 | Theorem find_funct_transf_partial: |
---|
1996 | forall (v: val) (f: A), |
---|
1997 | find_funct (globalenv p) v = Some ? f → |
---|
1998 | ∃f'. |
---|
1999 | find_funct (globalenv p') v = Some ? f' /\ transf f = OK ? f'. |
---|
2000 | Proof. |
---|
2001 | exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
2002 | Qed. |
---|
2003 | |
---|
2004 | Theorem find_funct_rev_transf_partial: |
---|
2005 | forall (v: val) (tf: B), |
---|
2006 | find_funct (globalenv p') v = Some ? tf → |
---|
2007 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf f = OK ? tf. |
---|
2008 | Proof. |
---|
2009 | exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
2010 | Qed. |
---|
2011 | |
---|
2012 | Theorem find_symbol_transf_partial: |
---|
2013 | forall (s: ident), |
---|
2014 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
2015 | Proof. |
---|
2016 | exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
2017 | Qed. |
---|
2018 | |
---|
2019 | Theorem init_mem_transf_partial: |
---|
2020 | init_mem p' = init_mem p. |
---|
2021 | Proof. |
---|
2022 | exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
2023 | Qed. |
---|
2024 | |
---|
2025 | End TRANSF_PROGRAM_PARTIAL. |
---|
2026 | |
---|
2027 | Section TRANSF_PROGRAM. |
---|
2028 | |
---|
2029 | Variable A B V: Type. |
---|
2030 | Variable transf: A → B. |
---|
2031 | Variable p: program A V. |
---|
2032 | Let tp := transform_program transf p. |
---|
2033 | |
---|
2034 | Remark transf_OK: |
---|
2035 | transform_partial_program (fun x => OK ? (transf x)) p = OK ? tp. |
---|
2036 | Proof. |
---|
2037 | unfold tp, transform_program, transform_partial_program. |
---|
2038 | rewrite map_partial_total. reflexivity. |
---|
2039 | Qed. |
---|
2040 | |
---|
2041 | Theorem find_funct_ptr_transf: |
---|
2042 | forall (b: block) (f: A), |
---|
2043 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
2044 | find_funct_ptr ? (globalenv tp) b = Some ? (transf f). |
---|
2045 | Proof. |
---|
2046 | intros. |
---|
2047 | destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK ? _ _ H) |
---|
2048 | as [f' [X Y]]. congruence. |
---|
2049 | Qed. |
---|
2050 | |
---|
2051 | Theorem find_funct_ptr_rev_transf: |
---|
2052 | forall (b: block) (tf: B), |
---|
2053 | find_funct_ptr ? (globalenv tp) b = Some ? tf → |
---|
2054 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf f = tf. |
---|
2055 | Proof. |
---|
2056 | intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto. |
---|
2057 | intros [f [X Y]]. exists f; split. auto. congruence. |
---|
2058 | Qed. |
---|
2059 | |
---|
2060 | Theorem find_funct_transf: |
---|
2061 | forall (v: val) (f: A), |
---|
2062 | find_funct (globalenv p) v = Some ? f → |
---|
2063 | find_funct (globalenv tp) v = Some ? (transf f). |
---|
2064 | Proof. |
---|
2065 | intros. |
---|
2066 | destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK ? _ _ H) |
---|
2067 | as [f' [X Y]]. congruence. |
---|
2068 | Qed. |
---|
2069 | |
---|
2070 | Theorem find_funct_rev_transf: |
---|
2071 | forall (v: val) (tf: B), |
---|
2072 | find_funct (globalenv tp) v = Some ? tf → |
---|
2073 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf f = tf. |
---|
2074 | Proof. |
---|
2075 | intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto. |
---|
2076 | intros [f [X Y]]. exists f; split. auto. congruence. |
---|
2077 | Qed. |
---|
2078 | |
---|
2079 | Theorem find_symbol_transf: |
---|
2080 | forall (s: ident), |
---|
2081 | find_symbol ? (globalenv tp) s = find_symbol ? (globalenv p) s. |
---|
2082 | Proof. |
---|
2083 | exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK). |
---|
2084 | Qed. |
---|
2085 | |
---|
2086 | Theorem init_mem_transf: |
---|
2087 | init_mem tp = init_mem p. |
---|
2088 | Proof. |
---|
2089 | exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK). |
---|
2090 | Qed. |
---|
2091 | |
---|
2092 | End TRANSF_PROGRAM. |
---|
2093 | |
---|
2094 | End Genv. |
---|
2095 | *) |
---|
2096 | |
---|