1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Global environments are a component of the dynamic semantics of |
---|
17 | all languages involved in the compiler. A global environment |
---|
18 | maps symbol names (names of functions and of global variables) |
---|
19 | to the corresponding memory addresses. It also maps memory addresses |
---|
20 | of functions to the corresponding function descriptions. |
---|
21 | |
---|
22 | Global environments, along with the initial memory state at the beginning |
---|
23 | of program execution, are built from the program of interest, as follows: |
---|
24 | - A distinct memory address is assigned to each function of the program. |
---|
25 | These function addresses use negative numbers to distinguish them from |
---|
26 | addresses of memory blocks. The associations of function name to function |
---|
27 | address and function address to function description are recorded in |
---|
28 | the global environment. |
---|
29 | - For each global variable, a memory block is allocated and associated to |
---|
30 | the name of the variable. |
---|
31 | |
---|
32 | These operations reflect (at a high level of abstraction) what takes |
---|
33 | place during program linking and program loading in a real operating |
---|
34 | system. *) |
---|
35 | |
---|
36 | include "common/Errors.ma". |
---|
37 | include "common/AST.ma". |
---|
38 | (*include "Values.ma".*) |
---|
39 | include "common/Mem.ma". |
---|
40 | |
---|
41 | (* FIXME: unimplemented stuff in AST.ma |
---|
42 | axiom transform_partial_program: ∀A,B,V:Type[0]. (A → res B) → program A V → res (program B V). |
---|
43 | axiom transform_partial_program2: ∀A,B,V,W:Type[0]. (A → res B) → (V → res W) → program A V → res (program B W). |
---|
44 | axiom match_program: ∀A,B,V,W:Type[0]. program A V → program B W → Prop. |
---|
45 | *) |
---|
46 | |
---|
47 | record GENV : Type[2] ≝ { |
---|
48 | (* * ** Types and operations *) |
---|
49 | |
---|
50 | genv_t : Type[0] → Type[0]; |
---|
51 | (* * The type of global environments. The parameter [F] is the type |
---|
52 | of function descriptions. *) |
---|
53 | |
---|
54 | globalenv: ∀F,V. (V → list init_data) → ∀p:program F V. genv_t (F (prog_var_names … p)); |
---|
55 | (* * Return the global environment for the given program. *) |
---|
56 | |
---|
57 | init_mem: ∀F,V. (V → list init_data) → program F V → res mem; |
---|
58 | (* * Return the initial memory state for the given program. *) |
---|
59 | |
---|
60 | find_funct_ptr: ∀F: Type[0]. genv_t F → block → option F; |
---|
61 | (* * Return the function description associated with the given address, |
---|
62 | if any. *) |
---|
63 | |
---|
64 | find_funct: ∀F: Type[0]. genv_t F → val → option F; |
---|
65 | (* * Same as [find_funct_ptr] but the function address is given as |
---|
66 | a value, which must be a pointer with offset 0. *) |
---|
67 | |
---|
68 | find_symbol: ∀F: Type[0]. genv_t F → ident → option block (*; |
---|
69 | (* * Return the address of the given global symbol, if any. *) |
---|
70 | |
---|
71 | (* * ** Properties of the operations. *) |
---|
72 | |
---|
73 | find_funct_inv: |
---|
74 | ∀F: Type[0]. ∀ge: genv_t F. ∀v: val. ∀f: F. |
---|
75 | find_funct ? ge v = Some ? f → ∃b. v = Vptr Code b zero; |
---|
76 | find_funct_find_funct_ptr: |
---|
77 | ∀F: Type[0]. ∀ge: genv_t F. ∀sp. ∀b: block. |
---|
78 | find_funct ? ge (Vptr sp b zero) = find_funct_ptr ? ge b; |
---|
79 | |
---|
80 | find_symbol_exists: |
---|
81 | ∀F,V: Type[0]. ∀p: program F V. |
---|
82 | ∀id: ident. ∀sp. ∀init: list init_data. ∀v: V. |
---|
83 | in_list ? 〈〈〈id, init〉,sp〉, v〉 (prog_vars ?? p) → |
---|
84 | ∃b. find_symbol ? (globalenv ?? p) id = Some ? b; |
---|
85 | find_funct_ptr_exists: |
---|
86 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀f: F. |
---|
87 | list_norepet ? (prog_funct_names ?? p) → |
---|
88 | list_disjoint ? (prog_funct_names ?? p) (prog_var_names ?? p) → |
---|
89 | in_list ? 〈id, f〉 (prog_funct ?? p) → |
---|
90 | ∃sp,b. find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 |
---|
91 | ∧ find_funct_ptr ? (globalenv ?? p) b = Some ? f; |
---|
92 | |
---|
93 | find_funct_ptr_inversion: |
---|
94 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀b: block. ∀f: F. |
---|
95 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
96 | ∃id. in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
97 | find_funct_inversion: |
---|
98 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀v: val. ∀f: F. |
---|
99 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
100 | ∃id. in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
101 | find_funct_ptr_symbol_inversion: |
---|
102 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. ∀f: F. |
---|
103 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → |
---|
104 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
105 | in_list ? 〈id, f〉 (prog_funct ?? p); |
---|
106 | |
---|
107 | find_funct_ptr_prop: |
---|
108 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀b: block. ∀f: F. |
---|
109 | (∀id,f. in_list ? 〈id, f〉 (prog_funct ?? p) → P f) → |
---|
110 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
111 | P f; |
---|
112 | find_funct_prop: |
---|
113 | ∀F,V: Type[0]. ∀P: F → Prop. ∀p: program F V. ∀v: val. ∀f: F. |
---|
114 | (∀id,f. in_list ? 〈id, f〉 (prog_funct ?? p) → P f) → |
---|
115 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
116 | P f; |
---|
117 | |
---|
118 | initmem_nullptr: |
---|
119 | ∀F,V: Type[0]. ∀p: program F V. |
---|
120 | let m ≝ init_mem ?? p in |
---|
121 | valid_block m nullptr ∧ |
---|
122 | (blocks m) nullptr = empty_block 0 0 Any; |
---|
123 | (* initmem_inject_neutral: |
---|
124 | ∀F,V: Type[0]. ∀p: program F V. |
---|
125 | mem_inject_neutral (init_mem ?? p);*) |
---|
126 | find_funct_ptr_negative: |
---|
127 | ∀F,V: Type[0]. ∀p: program F V. ∀b: block. ∀f: F. |
---|
128 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → b < 0; |
---|
129 | find_symbol_not_fresh: |
---|
130 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. |
---|
131 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → b < nextblock (init_mem ?? p); |
---|
132 | find_symbol_not_nullptr: |
---|
133 | ∀F,V: Type[0]. ∀p: program F V. ∀id: ident. ∀sp. ∀b: block. |
---|
134 | find_symbol ? (globalenv ?? p) id = Some ? 〈sp,b〉 → b ≠ nullptr; |
---|
135 | global_addresses_distinct: |
---|
136 | ∀F,V: Type[0]. ∀p: program F V. ∀id1,id2,b1,b2. |
---|
137 | id1≠id2 → |
---|
138 | find_symbol ? (globalenv ?? p) id1 = Some ? b1 → |
---|
139 | find_symbol ? (globalenv ?? p) id2 = Some ? b2 → |
---|
140 | b1≠b2; |
---|
141 | |
---|
142 | (* * Commutation properties between program transformations |
---|
143 | and operations over global environments. *) |
---|
144 | |
---|
145 | find_funct_ptr_transf: |
---|
146 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
147 | ∀b: block. ∀f: A. |
---|
148 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
149 | find_funct_ptr ? (globalenv ?? (transform_program … transf p)) b = Some ? (transf f); |
---|
150 | find_funct_transf: |
---|
151 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
152 | ∀v: val. ∀f: A. |
---|
153 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
154 | find_funct ? (globalenv ?? (transform_program … transf p)) v = Some ? (transf f); |
---|
155 | find_symbol_transf: |
---|
156 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
157 | ∀s: ident. |
---|
158 | find_symbol ? (globalenv ?? (transform_program … transf p)) s = |
---|
159 | find_symbol ? (globalenv ?? p) s; |
---|
160 | init_mem_transf: |
---|
161 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
162 | init_mem ?? (transform_program … transf p) = init_mem ?? p; |
---|
163 | find_funct_ptr_rev_transf: |
---|
164 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
165 | ∀b : block. ∀tf : B. |
---|
166 | find_funct_ptr ? (globalenv ?? (transform_program … transf p)) b = Some ? tf → |
---|
167 | ∃f : A. find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf f = tf; |
---|
168 | find_funct_rev_transf: |
---|
169 | ∀A,B,V: Type[0]. ∀transf: A → B. ∀p: program A V. |
---|
170 | ∀v : val. ∀tf : B. |
---|
171 | find_funct ? (globalenv ?? (transform_program … transf p)) v = Some ? tf → |
---|
172 | ∃f : A. find_funct ? (globalenv ?? p) v = Some ? f ∧ transf f = tf; |
---|
173 | |
---|
174 | (* * Commutation properties between partial program transformations |
---|
175 | and operations over global environments. *) |
---|
176 | |
---|
177 | find_funct_ptr_transf_partial: |
---|
178 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
179 | transform_partial_program … transf p = OK ? p' → |
---|
180 | ∀b: block. ∀f: A. |
---|
181 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
182 | ∃f'. |
---|
183 | find_funct_ptr ? (globalenv ?? p') b = Some ? f' ∧ transf f = OK ? f'; |
---|
184 | find_funct_transf_partial: |
---|
185 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
186 | transform_partial_program … transf p = OK ? p' → |
---|
187 | ∀v: val. ∀f: A. |
---|
188 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
189 | ∃f'. |
---|
190 | find_funct ? (globalenv ?? p') v = Some ? f' ∧ transf f = OK ? f'; |
---|
191 | find_symbol_transf_partial: |
---|
192 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
193 | transform_partial_program … transf p = OK ? p' → |
---|
194 | ∀s: ident. |
---|
195 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
196 | init_mem_transf_partial: |
---|
197 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
198 | transform_partial_program … transf p = OK ? p' → |
---|
199 | init_mem ?? p' = init_mem ?? p; |
---|
200 | find_funct_ptr_rev_transf_partial: |
---|
201 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
202 | transform_partial_program … transf p = OK ? p' → |
---|
203 | ∀b : block. ∀tf : B. |
---|
204 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
205 | ∃f : A. |
---|
206 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf f = OK ? tf; |
---|
207 | find_funct_rev_transf_partial: |
---|
208 | ∀A,B,V: Type[0]. ∀transf: A → res B. ∀p: program A V. ∀p': program B V. |
---|
209 | transform_partial_program … transf p = OK ? p' → |
---|
210 | ∀v : val. ∀tf : B. |
---|
211 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
212 | ∃f : A. |
---|
213 | find_funct ? (globalenv ?? p) v = Some ? f ∧ transf f = OK ? tf(*; |
---|
214 | |
---|
215 | find_funct_ptr_transf_partial2: |
---|
216 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
217 | ∀p: program A V. ∀p': program B W. |
---|
218 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
219 | ∀b: block. ∀f: A. |
---|
220 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
221 | ∃f'. |
---|
222 | find_funct_ptr ? (globalenv ?? p') b = Some ? f' ∧ transf_fun f = OK ? f'; |
---|
223 | find_funct_transf_partial2: |
---|
224 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
225 | ∀p: program A V. ∀p': program B W. |
---|
226 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
227 | ∀v: val. ∀f: A. |
---|
228 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
229 | ∃f'. |
---|
230 | find_funct ? (globalenv ?? p') v = Some ? f' ∧ transf_fun f = OK ? f'; |
---|
231 | find_symbol_transf_partial2: |
---|
232 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
233 | ∀p: program A V. ∀p': program B W. |
---|
234 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
235 | ∀s: ident. |
---|
236 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
237 | init_mem_transf_partial2: |
---|
238 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
239 | ∀p: program A V. ∀p': program B W. |
---|
240 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
241 | init_mem ?? p' = init_mem ?? p; |
---|
242 | find_funct_ptr_rev_transf_partial2: |
---|
243 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
244 | ∀p: program A V. ∀p': program B W. |
---|
245 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
246 | ∀b: block. ∀tf: B. |
---|
247 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
248 | ∃f : A. |
---|
249 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ transf_fun f = OK ? tf; |
---|
250 | find_funct_rev_transf_partial2: |
---|
251 | ∀A,B,V,W: Type[0]. ∀transf_fun: A → res B. ∀transf_var: V → res W. |
---|
252 | ∀p: program A V. ∀p': program B W. |
---|
253 | transform_partial_program2 … transf_fun transf_var p = OK ? p' → |
---|
254 | ∀v: val. ∀tf: B. |
---|
255 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
256 | ∃f : A. |
---|
257 | find_funct ? (globalenv ?? p) v = Some ? f ∧ transf_fun f = OK ? tf}. ; |
---|
258 | |
---|
259 | (* * Commutation properties between matching between programs |
---|
260 | and operations over global environments. *) |
---|
261 | |
---|
262 | find_funct_ptr_match: |
---|
263 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
264 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
265 | match_program … match_fun match_var p p' → |
---|
266 | ∀b: block. ∀f: A. |
---|
267 | find_funct_ptr ? (globalenv ?? p) b = Some ? f → |
---|
268 | ∃tf : B. |
---|
269 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf ∧ match_fun f tf; |
---|
270 | find_funct_ptr_rev_match: |
---|
271 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
272 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
273 | match_program … match_fun match_var p p' → |
---|
274 | ∀b: block. ∀tf: B. |
---|
275 | find_funct_ptr ? (globalenv ?? p') b = Some ? tf → |
---|
276 | ∃f : A. |
---|
277 | find_funct_ptr ? (globalenv ?? p) b = Some ? f ∧ match_fun f tf; |
---|
278 | find_funct_match: |
---|
279 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
280 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
281 | match_program … match_fun match_var p p' → |
---|
282 | ∀v: val. ∀f: A. |
---|
283 | find_funct ? (globalenv ?? p) v = Some ? f → |
---|
284 | ∃tf : B. find_funct ? (globalenv ?? p') v = Some ? tf ∧ match_fun f tf; |
---|
285 | find_funct_rev_match: |
---|
286 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
287 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
288 | match_program … match_fun match_var p p' → |
---|
289 | ∀v: val. ∀tf: B. |
---|
290 | find_funct ? (globalenv ?? p') v = Some ? tf → |
---|
291 | ∃f : A. find_funct ? (globalenv ?? p) v = Some ? f ∧ match_fun f tf; |
---|
292 | find_symbol_match: |
---|
293 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
294 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
295 | match_program … match_fun match_var p p' → |
---|
296 | ∀s: ident. |
---|
297 | find_symbol ? (globalenv ?? p') s = find_symbol ? (globalenv ?? p) s; |
---|
298 | init_mem_match: |
---|
299 | ∀A,B,V,W: Type[0]. ∀match_fun: A → B → Prop. |
---|
300 | ∀match_var: V → W → Prop. ∀p: program A V. ∀p': program B W. |
---|
301 | match_program … match_fun match_var p p' → |
---|
302 | init_mem ?? p' = init_mem ?? p*)*) |
---|
303 | }. |
---|
304 | |
---|
305 | |
---|
306 | let rec foldl (A,B:Type[0]) (f:A → B → A) (a:A) (l:list B) on l : A ≝ |
---|
307 | match l with |
---|
308 | [ nil ⇒ a |
---|
309 | | cons h t ⇒ foldl A B f (f a h) t |
---|
310 | ]. |
---|
311 | |
---|
312 | (* Functions are given negative block numbers *) |
---|
313 | |
---|
314 | (* XXX: temporary definition |
---|
315 | NB: only global functions, no global variables *) |
---|
316 | record genv (F:Type[0]) : Type[0] ≝ { |
---|
317 | functions: block → option F; |
---|
318 | nextfunction: Z; |
---|
319 | symbols: ident → option block |
---|
320 | }. |
---|
321 | (* |
---|
322 | (** The rest of this library is a straightforward implementation of |
---|
323 | the module signature above. *) |
---|
324 | |
---|
325 | Module Genv: GENV. |
---|
326 | |
---|
327 | Section GENV. |
---|
328 | |
---|
329 | Variable F: Type[0]. (* The type of functions *) |
---|
330 | Variable V: Type. (* The type of information over variables *) |
---|
331 | |
---|
332 | Record genv : Type := mkgenv { |
---|
333 | functions: ZMap.t (option F); (* mapping function ptr → function *) |
---|
334 | nextfunction: Z; |
---|
335 | symbols: PTree.t block (* mapping symbol → block *) |
---|
336 | }. |
---|
337 | |
---|
338 | Definition t := genv. |
---|
339 | *) |
---|
340 | |
---|
341 | definition add_funct : ∀F:Type[0]. (ident × F) → genv F → genv F ≝ |
---|
342 | λF,name_fun,g. |
---|
343 | let blk_id ≝ nextfunction ? g in |
---|
344 | let b ≝ mk_block Code blk_id in |
---|
345 | mk_genv F ((*ZMap.set*) λb'. if eq_block b b' then (Some ? (\snd name_fun)) else (functions ? g b')) |
---|
346 | (Zpred blk_id) |
---|
347 | ((*PTree.set*) λi. match ident_eq (\fst name_fun) i with [ inl _ ⇒ Some ? b | inr _ ⇒ (symbols ? g i) ]). |
---|
348 | |
---|
349 | definition add_symbol : ∀F:Type[0]. ident → block → genv F → genv F ≝ |
---|
350 | λF,name,b,g. |
---|
351 | mk_genv F (functions ? g) |
---|
352 | (nextfunction ? g) |
---|
353 | ((*PTree.set*) λi. match ident_eq name i with [ inl _ ⇒ Some ? b | inr _ ⇒ symbols ? g i ]). |
---|
354 | (* |
---|
355 | Definition find_funct_ptr ? (g: genv) (b: block) : option F := |
---|
356 | ZMap.get b g.(functions). |
---|
357 | |
---|
358 | Definition find_funct (g: genv) (v: val) : option F := |
---|
359 | match v with |
---|
360 | | Vptr b ofs => |
---|
361 | if Int.eq ofs Int.zero then find_funct_ptr ? g b else None |
---|
362 | | _ => |
---|
363 | None |
---|
364 | end. |
---|
365 | |
---|
366 | Definition find_symbol ? (g: genv) (symb: ident) : option block := |
---|
367 | PTree.get symb g.(symbols). |
---|
368 | |
---|
369 | Lemma find_funct_inv: |
---|
370 | forall (ge: t) (v: val) (f: F), |
---|
371 | find_funct ge v = Some ? f → ∃b. v = Vptr b Int.zero. |
---|
372 | Proof. |
---|
373 | intros until f. unfold find_funct. destruct v; try (intros; discriminate). |
---|
374 | generalize (Int.eq_spec i Int.zero). case (Int.eq i Int.zero); intros. |
---|
375 | exists b. congruence. |
---|
376 | discriminate. |
---|
377 | Qed. |
---|
378 | |
---|
379 | Lemma find_funct_find_funct_ptr: |
---|
380 | forall (ge: t) (b: block), |
---|
381 | find_funct ge (Vptr b Int.zero) = find_funct_ptr ? ge b. |
---|
382 | Proof. |
---|
383 | intros. simpl. |
---|
384 | generalize (Int.eq_spec Int.zero Int.zero). |
---|
385 | case (Int.eq Int.zero Int.zero); intros. |
---|
386 | auto. tauto. |
---|
387 | Qed. |
---|
388 | *) |
---|
389 | (* Construct environment and initial memory store *) |
---|
390 | definition empty_mem ≝ empty. (* XXX*) |
---|
391 | definition empty : ∀F. genv F ≝ |
---|
392 | λF. mk_genv F (λ_. None ?) (-2) (λ_. None ?). |
---|
393 | (* mkgenv (ZMap.init None) (-2) (PTree.empty block).*) |
---|
394 | |
---|
395 | definition add_functs : ∀F:Type[0]. genv F → list (ident × F) → genv F ≝ |
---|
396 | λF,init,fns. |
---|
397 | foldr ?? (add_funct F) init fns. |
---|
398 | |
---|
399 | (* init *) |
---|
400 | |
---|
401 | definition store_init_data : ∀F.genv F → mem → block → Z → init_data → option mem ≝ |
---|
402 | λF,ge,m,b,p,id. |
---|
403 | (* store checks that the address came from something capable of representing |
---|
404 | addresses of the memory region in question - here there are no real |
---|
405 | pointers, so use the real region. *) |
---|
406 | let r ≝ block_region m b in |
---|
407 | match id with |
---|
408 | [ Init_int8 n ⇒ store Mint8unsigned m r b p (Vint I8 n) |
---|
409 | | Init_int16 n ⇒ store Mint16unsigned m r b p (Vint I16 n) |
---|
410 | | Init_int32 n ⇒ store Mint32 m r b p (Vint I32 n) |
---|
411 | | Init_float32 n ⇒ store Mfloat32 m r b p (Vfloat n) |
---|
412 | | Init_float64 n ⇒ store Mfloat64 m r b p (Vfloat n) |
---|
413 | | Init_addrof r' symb ofs ⇒ |
---|
414 | match (*find_symbol ge symb*) symbols ? ge symb with |
---|
415 | [ None ⇒ None ? |
---|
416 | | Some b' ⇒ |
---|
417 | match pointer_compat_dec b' r' with |
---|
418 | [ inl pc ⇒ store (Mpointer r') m r b p (Vptr r' b' pc (shift_offset ? zero_offset (repr I16 ofs))) |
---|
419 | | inr _ ⇒ None ? |
---|
420 | ] |
---|
421 | ] |
---|
422 | | Init_space n ⇒ Some ? m |
---|
423 | | Init_null r' ⇒ store (Mpointer r') m r b p (Vnull r') |
---|
424 | ]. |
---|
425 | |
---|
426 | definition size_init_data : init_data → nat ≝ |
---|
427 | λi_data.match i_data with |
---|
428 | [ Init_int8 _ ⇒ 1 |
---|
429 | | Init_int16 _ ⇒ 2 |
---|
430 | | Init_int32 _ ⇒ 4 |
---|
431 | | Init_float32 _ ⇒ 4 |
---|
432 | | Init_float64 _ ⇒ 8 |
---|
433 | | Init_space n ⇒ max n 0 |
---|
434 | | Init_null r ⇒ size_pointer r |
---|
435 | | Init_addrof r _ _ ⇒ size_pointer r]. |
---|
436 | |
---|
437 | let rec store_init_data_list (F:Type[0]) (ge:genv F) |
---|
438 | (m: mem) (b: block) (p: Z) (idl: list init_data) |
---|
439 | on idl : option mem ≝ |
---|
440 | match idl with |
---|
441 | [ nil ⇒ Some ? m |
---|
442 | | cons id idl' ⇒ |
---|
443 | match store_init_data F ge m b p id with |
---|
444 | [ None ⇒ None ? |
---|
445 | | Some m' ⇒ store_init_data_list F ge m' b (p + size_init_data id) idl' |
---|
446 | ] |
---|
447 | ]. |
---|
448 | |
---|
449 | definition size_init_data_list : list init_data → nat ≝ |
---|
450 | λi_data.foldr ?? (λi_data,sz. size_init_data i_data + sz) O i_data. |
---|
451 | |
---|
452 | (* Nonessential properties that may require arithmetic |
---|
453 | nremark size_init_data_list_pos: |
---|
454 | ∀i_data. OZ ≤ size_init_data_list i_data. |
---|
455 | #i_data;elim i_data;//; |
---|
456 | #a;#tl;cut (OZ ≤ size_init_data a) |
---|
457 | ##[cases a;normalize;//; |
---|
458 | #x;cases x;normalize;//; |
---|
459 | ##|#Hsize;#IH;nchange in ⊢ (??%) with (size_init_data a + (foldr ??? OZ tl)); |
---|
460 | cut (size_init_data a = OZ ∨ ∃m.size_init_data a = pos m) |
---|
461 | ##[cases (size_init_data a) in Hsize IH; |
---|
462 | ##[##1,2:/3/ |
---|
463 | ##|normalize;#n;#Hfalse;elim Hfalse] |
---|
464 | ##|#Hdisc;cases Hdisc |
---|
465 | ##[#Heq;nrewrite > Heq;//; |
---|
466 | ##|#Heq;cases Heq;#x;#Heq2;nrewrite > Heq2; |
---|
467 | (* TODO: arithmetics *) napply daemon] |
---|
468 | ##] |
---|
469 | ##] |
---|
470 | qed. |
---|
471 | *) |
---|
472 | |
---|
473 | definition alloc_init_data : mem → list init_data → region → mem × block ≝ |
---|
474 | λm,i_data,r. |
---|
475 | let b ≝ mk_block r (nextblock m) in |
---|
476 | 〈mk_mem (update_block ? b |
---|
477 | (mk_block_contents OZ (size_init_data_list i_data) (λ_.Undef)) |
---|
478 | (blocks m)) |
---|
479 | (Zsucc (nextblock m)) |
---|
480 | (succ_nextblock_pos m), |
---|
481 | b〉. |
---|
482 | |
---|
483 | (* init *) |
---|
484 | |
---|
485 | axiom InitDataStoreFailed : String. |
---|
486 | |
---|
487 | definition add_globals : ∀F,V:Type[0]. |
---|
488 | (V → (list init_data)) → |
---|
489 | genv F × mem → list (ident × region × V) → |
---|
490 | (genv F × mem) ≝ |
---|
491 | λF,V,extract_init,init_env,vars. |
---|
492 | foldl ?? |
---|
493 | (λg_st: genv F × mem. λid_init: ident × region × V. |
---|
494 | let 〈id, r, init_info〉 ≝ id_init in |
---|
495 | let init ≝ extract_init init_info in |
---|
496 | let 〈g,st〉 ≝ g_st in |
---|
497 | match alloc_init_data st init r with [ pair st' b ⇒ |
---|
498 | let g' ≝ add_symbol ? id b g in |
---|
499 | 〈g', st'〉 |
---|
500 | ] ) |
---|
501 | init_env vars. |
---|
502 | |
---|
503 | definition init_globals : ∀F,V:Type[0]. |
---|
504 | (V → (list init_data)) → |
---|
505 | genv F → mem → list (ident × region × V) → |
---|
506 | res mem ≝ |
---|
507 | λF,V,extract_init,g,m,vars. |
---|
508 | foldl ?? |
---|
509 | (λst: res mem. λid_init: ident × region × V. |
---|
510 | let 〈id, r, init_info〉 ≝ id_init in |
---|
511 | let init ≝ extract_init init_info in |
---|
512 | do st ← st; |
---|
513 | match symbols ? g id with |
---|
514 | [ Some b ⇒ opt_to_res ? (msg InitDataStoreFailed) (store_init_data_list F g st b OZ init) |
---|
515 | | None ⇒ Error ? (msg InitDataStoreFailed) (* ought to be impossible *) |
---|
516 | ] ) |
---|
517 | (OK ? m) vars. |
---|
518 | |
---|
519 | definition globalenv_allocmem : ∀F,V. (V → (list init_data)) → ∀p:program F V. (genv (F (prog_var_names … p)) × mem) ≝ |
---|
520 | λF,V,init_info,p. |
---|
521 | add_globals … init_info |
---|
522 | 〈add_functs ? (empty …) (prog_funct F ? p), empty_mem〉 |
---|
523 | (prog_vars ?? p). |
---|
524 | |
---|
525 | definition globalenv_ : ∀F,V. (V → list init_data) → ∀p:program F V. genv (F (prog_var_names … p)) ≝ |
---|
526 | λF,V,i,p. |
---|
527 | \fst (globalenv_allocmem F V i p). |
---|
528 | |
---|
529 | definition init_mem_ : ∀F,V. (V → list init_data) → program F V → res (mem) ≝ |
---|
530 | λF,V,i,p. |
---|
531 | let 〈g,m〉 ≝ globalenv_allocmem F V i p in |
---|
532 | init_globals ? V i g m (prog_vars ?? p). |
---|
533 | |
---|
534 | |
---|
535 | |
---|
536 | |
---|
537 | definition Genv : GENV ≝ mk_GENV |
---|
538 | genv (* genv_t *) |
---|
539 | globalenv_ |
---|
540 | init_mem_ |
---|
541 | (λF,ge. functions ? ge) (* find_funct_ptr *) |
---|
542 | (λF,ge,v. match v with [ Vptr _ b _ o ⇒ if eq_offset o zero_offset then functions ? ge b else None ? | _ ⇒ None ? ]) (* find_funct *) |
---|
543 | (λF,ge. symbols ? ge) (* find_symbol *) |
---|
544 | (* ? |
---|
545 | ? |
---|
546 | ? |
---|
547 | ? |
---|
548 | ? |
---|
549 | ?*) |
---|
550 | . |
---|
551 | (* |
---|
552 | ##[ #A B C transf p b f; elim p; #fns main vars; |
---|
553 | elim fns; |
---|
554 | ##[ whd in match globalenv_ in ⊢ %; whd in match globalenv_initmem in ⊢ %; whd in ⊢ (??%? → ??%?); normalize; #H; destruct; |
---|
555 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??(??%?)? → ??(??%?)?); |
---|
556 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
557 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
558 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
559 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
560 | ##[ ##2: elim t; ##[ //; ##| #h t IH; whd in ⊢ (??%?); nrewrite > IH; |
---|
561 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
562 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??%?); |
---|
563 | ##[ #H; destruct (H); //; |
---|
564 | ##| #H; napply IH; napply H; |
---|
565 | ##] |
---|
566 | ##] |
---|
567 | ##] |
---|
568 | ##] |
---|
569 | ##| #A B C transf p v f; elim v; |
---|
570 | ##[ whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
571 | ##| ##2,3: #x; whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
572 | ##| #pcl b off; whd in ⊢ (??%? → ??%?); elim (eq off zero); |
---|
573 | whd in ⊢ (??%? → ??%?); |
---|
574 | ##[ elim p; #fns main vars; elim fns; |
---|
575 | ##[ whd in ⊢ (??%? → ??%?); #H; destruct; |
---|
576 | ##| #h t; elim h; #f fn IH; |
---|
577 | whd in ⊢ (??%? → ??%?); |
---|
578 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
579 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
580 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
581 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
582 | ##[ ##2: elim t; ##[ //; ##| #h t IH; whd in ⊢ (??%?); nrewrite > IH; |
---|
583 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
584 | ##| napply eqZb_elim; #e; whd in ⊢ (??%? → ??%?); #H; |
---|
585 | ##[ destruct (H); //; |
---|
586 | ##| napply IH; napply H; |
---|
587 | ##] |
---|
588 | ##] |
---|
589 | ##] |
---|
590 | ##] |
---|
591 | ##| #H; destruct; |
---|
592 | ##] |
---|
593 | ##] |
---|
594 | ##| #A B C transf p id; elim p; #fns main vars; |
---|
595 | elim fns; |
---|
596 | ##[ normalize; // |
---|
597 | ##| #h t; elim h; #fid fd; whd in ⊢ (??%% → ??%%); #IH; |
---|
598 | elim (ident_eq fid id); #e; |
---|
599 | ##[ whd in ⊢ (??%%); |
---|
600 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
601 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
602 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
603 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
604 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
605 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
606 | ##| // |
---|
607 | ##] |
---|
608 | ##] |
---|
609 | ##| whd in ⊢ (??%%); nrewrite > IH; napply refl; |
---|
610 | ##] |
---|
611 | ##] |
---|
612 | ##| //; |
---|
613 | ##| #A B C transf p b tf; elim p; #fns main vars; |
---|
614 | elim fns; |
---|
615 | ##[ normalize; #H; destruct; |
---|
616 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
617 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
618 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
619 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
620 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
621 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
622 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
623 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
624 | ##[ #H; @fd; @; //; elim (grumpydestruct1 ??? H); //; |
---|
625 | ##| #H; napply IH; napply H; |
---|
626 | ##] |
---|
627 | ##] |
---|
628 | ##] |
---|
629 | ##] |
---|
630 | ##| #A B C transf p v tf; elim p; #fns main vars; elim v; |
---|
631 | ##[ normalize; #H; destruct; |
---|
632 | ##| ##2,3: #x; normalize; #H; destruct; |
---|
633 | ##| #pcl b off; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); elim (eq off zero); |
---|
634 | ##[ whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
635 | elim fns; |
---|
636 | ##[ normalize; #H; destruct; |
---|
637 | ##| #h t; elim h; #fid fd; #IH; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
638 | nrewrite > (?:nextfunction ?? = length ? t); |
---|
639 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; |
---|
640 | nrewrite > IH; whd in ⊢ (??%(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
641 | ##| nrewrite > (?:nextfunction ?? = length ? t); |
---|
642 | ##[ ##2: elim t; ##[ //; ##| #h t; elim h; #h1 h2; whd in ⊢ (??%? → ??%?); #IH; nrewrite > IH; |
---|
643 | whd in ⊢ (???(?%)); nrewrite > (Zsucc_pos …); //; ##] |
---|
644 | ##| napply eqZb_elim; #eb; whd in ⊢ (??%? → ??(λ_.?(??%?)?)); |
---|
645 | ##[ #H; @fd; @; //; elim (grumpydestruct1 ??? H); //; |
---|
646 | ##| #H; napply IH; napply H; |
---|
647 | ##] |
---|
648 | ##] |
---|
649 | ##] |
---|
650 | ##] |
---|
651 | ##| normalize; #H; destruct; |
---|
652 | ##] |
---|
653 | ##] |
---|
654 | ##] qed. |
---|
655 | |
---|
656 | |
---|
657 | Lemma functions_globalenv: |
---|
658 | forall (p: program F V), |
---|
659 | functions (globalenv p) = functions (add_functs empty p.(prog_funct)). |
---|
660 | Proof. |
---|
661 | assert (forall init vars, |
---|
662 | functions (fst (add_globals init vars)) = functions (fst init)). |
---|
663 | induction vars; simpl. |
---|
664 | reflexivity. |
---|
665 | destruct a as [[id1 init1] info1]. destruct (add_globals init vars). |
---|
666 | simpl. exact IHvars. |
---|
667 | |
---|
668 | unfold add_globals; simpl. |
---|
669 | intros. unfold globalenv; unfold globalenv_initmem. |
---|
670 | rewrite H. reflexivity. |
---|
671 | Qed. |
---|
672 | |
---|
673 | Lemma initmem_nullptr: |
---|
674 | forall (p: program F V), |
---|
675 | let m := init_mem p in |
---|
676 | valid_block m nullptr /\ |
---|
677 | m.(blocks) nullptr = mkblock 0 0 (fun y => Undef). |
---|
678 | Proof. |
---|
679 | pose (P := fun m => valid_block m nullptr /\ |
---|
680 | m.(blocks) nullptr = mkblock 0 0 (fun y => Undef)). |
---|
681 | assert (forall init, P (snd init) → forall vars, P (snd (add_globals init vars))). |
---|
682 | induction vars; simpl; intros. |
---|
683 | auto. |
---|
684 | destruct a as [[id1 in1] inf1]. |
---|
685 | destruct (add_globals init vars) as [g st]. |
---|
686 | simpl in *. destruct IHvars. split. |
---|
687 | red; simpl. red in H0. omega. |
---|
688 | simpl. rewrite update_o. auto. unfold block. red in H0. omega. |
---|
689 | |
---|
690 | intro. unfold init_mem, globalenv_initmem. apply H. |
---|
691 | red; simpl. split. compute. auto. reflexivity. |
---|
692 | Qed. |
---|
693 | |
---|
694 | Lemma initmem_inject_neutral: |
---|
695 | forall (p: program F V), |
---|
696 | mem_inject_neutral (init_mem p). |
---|
697 | Proof. |
---|
698 | assert (forall g0 vars g1 m, |
---|
699 | add_globals (g0, Mem.empty) vars = (g1, m) → |
---|
700 | mem_inject_neutral m). |
---|
701 | Opaque alloc_init_data. |
---|
702 | induction vars; simpl. |
---|
703 | intros. inv H. red; intros. destruct (load_inv _ _ _ _ _ H). |
---|
704 | simpl in H1. rewrite Mem.getN_init in H1. |
---|
705 | replace v with Vundef. auto. destruct chunk; simpl in H1; auto. |
---|
706 | destruct a as [[id1 init1] info1]. |
---|
707 | caseEq (add_globals (g0, Mem.empty) vars). intros g1 m1 EQ. |
---|
708 | caseEq (alloc_init_data m1 init1). intros m2 b ALLOC. |
---|
709 | intros. inv H. |
---|
710 | eapply Mem.alloc_init_data_neutral; eauto. |
---|
711 | intros. caseEq (globalenv_initmem p). intros g m EQ. |
---|
712 | unfold init_mem; rewrite EQ; simpl. |
---|
713 | unfold globalenv_initmem in EQ. eauto. |
---|
714 | Qed. |
---|
715 | |
---|
716 | Remark nextfunction_add_functs_neg: |
---|
717 | forall fns, nextfunction (add_functs empty fns) < 0. |
---|
718 | Proof. |
---|
719 | induction fns; simpl; intros. omega. unfold Zpred. omega. |
---|
720 | Qed. |
---|
721 | |
---|
722 | Theorem find_funct_ptr_negative: |
---|
723 | forall (p: program F V) (b: block) (f: F), |
---|
724 | find_funct_ptr ? (globalenv p) b = Some ? f → b < 0. |
---|
725 | Proof. |
---|
726 | intros until f. |
---|
727 | assert (forall fns, ZMap.get b (functions (add_functs empty fns)) = Some ? f → b < 0). |
---|
728 | induction fns; simpl. |
---|
729 | rewrite ZMap.gi. congruence. |
---|
730 | rewrite ZMap.gsspec. case (ZIndexed.eq b (nextfunction (add_functs empty fns))); intro. |
---|
731 | intro. rewrite e. apply nextfunction_add_functs_neg. |
---|
732 | auto. |
---|
733 | unfold find_funct_ptr. rewrite functions_globalenv. |
---|
734 | intros. eauto. |
---|
735 | Qed. |
---|
736 | |
---|
737 | Remark find_symbol_add_functs_negative: |
---|
738 | forall (fns: list (ident * F)) s b, |
---|
739 | (symbols (add_functs empty fns)) ! s = Some ? b → b < 0. |
---|
740 | Proof. |
---|
741 | induction fns; simpl; intros until b. |
---|
742 | rewrite PTree.gempty. congruence. |
---|
743 | rewrite PTree.gsspec. destruct a; simpl. case (peq s i); intro. |
---|
744 | intro EQ; inversion EQ. apply nextfunction_add_functs_neg. |
---|
745 | eauto. |
---|
746 | Qed. |
---|
747 | |
---|
748 | Remark find_symbol_add_symbols_not_fresh: |
---|
749 | forall fns vars g m s b, |
---|
750 | add_globals (add_functs empty fns, Mem.empty) vars = (g, m) → |
---|
751 | (symbols g)!s = Some ? b → |
---|
752 | b < nextblock m. |
---|
753 | Proof. |
---|
754 | induction vars; simpl; intros until b. |
---|
755 | intros. inversion H. subst g m. simpl. |
---|
756 | generalize (find_symbol_add_functs_negative fns s H0). omega. |
---|
757 | Transparent alloc_init_data. |
---|
758 | destruct a as [[id1 init1] info1]. |
---|
759 | caseEq (add_globals (add_functs empty fns, Mem.empty) vars). |
---|
760 | intros g1 m1 ADG EQ. inversion EQ; subst g m; clear EQ. |
---|
761 | unfold add_symbol; simpl. rewrite PTree.gsspec. case (peq s id1); intro. |
---|
762 | intro EQ; inversion EQ. omega. |
---|
763 | intro. generalize (IHvars _ _ _ _ ADG H). omega. |
---|
764 | Qed. |
---|
765 | |
---|
766 | Theorem find_symbol_not_fresh: |
---|
767 | forall (p: program F V) (id: ident) (b: block), |
---|
768 | find_symbol ? (globalenv p) id = Some ? b → b < nextblock (init_mem p). |
---|
769 | Proof. |
---|
770 | intros until b. unfold find_symbol, globalenv, init_mem, globalenv_initmem; simpl. |
---|
771 | caseEq (add_globals (add_functs empty (prog_funct p), Mem.empty) |
---|
772 | (prog_vars p)); intros g m EQ. |
---|
773 | simpl; intros. eapply find_symbol_add_symbols_not_fresh; eauto. |
---|
774 | Qed. |
---|
775 | |
---|
776 | Lemma find_symbol_exists: |
---|
777 | forall (p: program F V) |
---|
778 | (id: ident) (init: list init_data) (v: V), |
---|
779 | In (id, init, v) (prog_vars p) → |
---|
780 | ∃b. find_symbol ? (globalenv p) id = Some ? b. |
---|
781 | Proof. |
---|
782 | intros until v. |
---|
783 | assert (forall initm vl, In (id, init, v) vl → |
---|
784 | ∃b. PTree.get id (symbols (fst (add_globals initm vl))) = Some ? b). |
---|
785 | induction vl; simpl; intros. |
---|
786 | elim H. |
---|
787 | destruct a as [[id0 init0] v0]. |
---|
788 | caseEq (add_globals initm vl). intros g1 m1 EQ. simpl. |
---|
789 | rewrite PTree.gsspec. destruct (peq id id0). econstructor; eauto. |
---|
790 | elim H; intro. congruence. generalize (IHvl H0). rewrite EQ. auto. |
---|
791 | intros. unfold globalenv, find_symbol, globalenv_initmem. auto. |
---|
792 | Qed. |
---|
793 | |
---|
794 | Remark find_symbol_above_nextfunction: |
---|
795 | forall (id: ident) (b: block) (fns: list (ident * F)), |
---|
796 | let g := add_functs empty fns in |
---|
797 | PTree.get id g.(symbols) = Some ? b → |
---|
798 | b > g.(nextfunction). |
---|
799 | Proof. |
---|
800 | induction fns; simpl. |
---|
801 | rewrite PTree.gempty. congruence. |
---|
802 | rewrite PTree.gsspec. case (peq id (fst a)); intro. |
---|
803 | intro EQ. inversion EQ. unfold Zpred. omega. |
---|
804 | intros. generalize (IHfns H). unfold Zpred; omega. |
---|
805 | Qed. |
---|
806 | |
---|
807 | Remark find_symbol_add_globals: |
---|
808 | forall (id: ident) (ge_m: t * mem) (vars: list (ident * list init_data * V)), |
---|
809 | ~In id (map (fun x: ident * list init_data * V => fst(fst x)) vars) → |
---|
810 | find_symbol ? (fst (add_globals ge_m vars)) id = |
---|
811 | find_symbol ? (fst ge_m) id. |
---|
812 | Proof. |
---|
813 | unfold find_symbol; induction vars; simpl; intros. |
---|
814 | auto. |
---|
815 | destruct a as [[id0 init0] var0]. simpl in *. |
---|
816 | caseEq (add_globals ge_m vars); intros ge' m' EQ. |
---|
817 | simpl. rewrite PTree.gso. rewrite EQ in IHvars. simpl in IHvars. |
---|
818 | apply IHvars. tauto. intuition congruence. |
---|
819 | Qed. |
---|
820 | |
---|
821 | Lemma find_funct_ptr_exists: |
---|
822 | forall (p: program F V) (id: ident) (f: F), |
---|
823 | list_norepet (prog_funct_names p) → |
---|
824 | list_disjoint (prog_funct_names p) (prog_var_names p) → |
---|
825 | In (id, f) (prog_funct p) → |
---|
826 | ∃b. find_symbol ? (globalenv p) id = Some ? b |
---|
827 | /\ find_funct_ptr ? (globalenv p) b = Some ? f. |
---|
828 | Proof. |
---|
829 | intros until f. |
---|
830 | assert (forall (fns: list (ident * F)), |
---|
831 | list_norepet (map (@fst ident F) fns) → |
---|
832 | In (id, f) fns → |
---|
833 | ∃b. find_symbol ? (add_functs empty fns) id = Some ? b |
---|
834 | /\ find_funct_ptr ? (add_functs empty fns) b = Some ? f). |
---|
835 | unfold find_symbol, find_funct_ptr. induction fns; intros. |
---|
836 | elim H0. |
---|
837 | destruct a as [id0 f0]; simpl in *. inv H. |
---|
838 | unfold add_funct; simpl. |
---|
839 | rewrite PTree.gsspec. destruct (peq id id0). |
---|
840 | subst id0. econstructor; split. eauto. |
---|
841 | replace f0 with f. apply ZMap.gss. |
---|
842 | elim H0; intro. congruence. elim H3. |
---|
843 | change id with (@fst ident F (id, f)). apply List.in_map. auto. |
---|
844 | exploit IHfns; eauto. elim H0; intro. congruence. auto. |
---|
845 | intros [b [X Y]]. exists b; split. auto. rewrite ZMap.gso. auto. |
---|
846 | generalize (find_symbol_above_nextfunction _ _ X). |
---|
847 | unfold block; unfold ZIndexed.t; intro; omega. |
---|
848 | |
---|
849 | intros. exploit H; eauto. intros [b [X Y]]. |
---|
850 | exists b; split. |
---|
851 | unfold globalenv, globalenv_initmem. rewrite find_symbol_add_globals. |
---|
852 | assumption. apply list_disjoint_notin with (prog_funct_names p). assumption. |
---|
853 | unfold prog_funct_names. change id with (fst (id, f)). |
---|
854 | apply List.in_map; auto. |
---|
855 | unfold find_funct_ptr. rewrite functions_globalenv. |
---|
856 | assumption. |
---|
857 | Qed. |
---|
858 | |
---|
859 | Lemma find_funct_ptr_inversion: |
---|
860 | forall (P: F → Prop) (p: program F V) (b: block) (f: F), |
---|
861 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
862 | ∃id. In (id, f) (prog_funct p). |
---|
863 | Proof. |
---|
864 | intros until f. |
---|
865 | assert (forall fns: list (ident * F), |
---|
866 | find_funct_ptr ? (add_functs empty fns) b = Some ? f → |
---|
867 | ∃id. In (id, f) fns). |
---|
868 | unfold find_funct_ptr. induction fns; simpl. |
---|
869 | rewrite ZMap.gi. congruence. |
---|
870 | destruct a as [id0 f0]; simpl. |
---|
871 | rewrite ZMap.gsspec. destruct (ZIndexed.eq b (nextfunction (add_functs empty fns))). |
---|
872 | intro. inv H. exists id0; auto. |
---|
873 | intro. exploit IHfns; eauto. intros [id A]. exists id; auto. |
---|
874 | unfold find_funct_ptr; rewrite functions_globalenv. intros; apply H; auto. |
---|
875 | Qed. |
---|
876 | |
---|
877 | Lemma find_funct_ptr_prop: |
---|
878 | forall (P: F → Prop) (p: program F V) (b: block) (f: F), |
---|
879 | (forall id f, In (id, f) (prog_funct p) → P f) → |
---|
880 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
881 | P f. |
---|
882 | Proof. |
---|
883 | intros. exploit find_funct_ptr_inversion; eauto. intros [id A]. eauto. |
---|
884 | Qed. |
---|
885 | |
---|
886 | Lemma find_funct_inversion: |
---|
887 | forall (P: F → Prop) (p: program F V) (v: val) (f: F), |
---|
888 | find_funct (globalenv p) v = Some ? f → |
---|
889 | ∃id. In (id, f) (prog_funct p). |
---|
890 | Proof. |
---|
891 | intros. exploit find_funct_inv; eauto. intros [b EQ]. rewrite EQ in H. |
---|
892 | rewrite find_funct_find_funct_ptr ? in H. |
---|
893 | eapply find_funct_ptr_inversion; eauto. |
---|
894 | Qed. |
---|
895 | |
---|
896 | Lemma find_funct_prop: |
---|
897 | forall (P: F → Prop) (p: program F V) (v: val) (f: F), |
---|
898 | (forall id f, In (id, f) (prog_funct p) → P f) → |
---|
899 | find_funct (globalenv p) v = Some ? f → |
---|
900 | P f. |
---|
901 | Proof. |
---|
902 | intros. exploit find_funct_inversion; eauto. intros [id A]. eauto. |
---|
903 | Qed. |
---|
904 | |
---|
905 | Lemma find_funct_ptr_symbol_inversion: |
---|
906 | forall (p: program F V) (id: ident) (b: block) (f: F), |
---|
907 | find_symbol ? (globalenv p) id = Some ? b → |
---|
908 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
909 | In (id, f) p.(prog_funct). |
---|
910 | Proof. |
---|
911 | intros until f. |
---|
912 | assert (forall fns, |
---|
913 | let g := add_functs empty fns in |
---|
914 | PTree.get id g.(symbols) = Some ? b → |
---|
915 | ZMap.get b g.(functions) = Some ? f → |
---|
916 | In (id, f) fns). |
---|
917 | induction fns; simpl. |
---|
918 | rewrite ZMap.gi. congruence. |
---|
919 | set (g := add_functs empty fns). |
---|
920 | rewrite PTree.gsspec. rewrite ZMap.gsspec. |
---|
921 | case (peq id (fst a)); intro. |
---|
922 | intro EQ. inversion EQ. unfold ZIndexed.eq. rewrite zeq_true. |
---|
923 | intro EQ2. left. destruct a. simpl in *. congruence. |
---|
924 | intro. unfold ZIndexed.eq. rewrite zeq_false. intro. eauto. |
---|
925 | generalize (find_symbol_above_nextfunction _ _ H). fold g. unfold block. omega. |
---|
926 | assert (forall g0 m0, b < 0 → |
---|
927 | forall vars g m, |
---|
928 | add_globals (g0, m0) vars = (g, m) → |
---|
929 | PTree.get id g.(symbols) = Some ? b → |
---|
930 | PTree.get id g0.(symbols) = Some ? b). |
---|
931 | induction vars; simpl. |
---|
932 | intros. inv H1. auto. |
---|
933 | destruct a as [[id1 init1] info1]. caseEq (add_globals (g0, m0) vars). |
---|
934 | intros g1 m1 EQ g m EQ1. injection EQ1; simpl; clear EQ1. |
---|
935 | unfold add_symbol; intros A B. rewrite <- B. simpl. |
---|
936 | rewrite PTree.gsspec. case (peq id id1); intros. |
---|
937 | assert (b > 0). inv H1. apply nextblock_pos. |
---|
938 | omegaContradiction. |
---|
939 | eauto. |
---|
940 | intros. |
---|
941 | generalize (find_funct_ptr_negative _ _ H2). intro. |
---|
942 | pose (g := add_functs empty (prog_funct p)). |
---|
943 | apply H. |
---|
944 | apply H0 with Mem.empty (prog_vars p) (globalenv p) (init_mem p). |
---|
945 | auto. unfold globalenv, init_mem. rewrite <- surjective_pairing. |
---|
946 | reflexivity. assumption. rewrite <- functions_globalenv. assumption. |
---|
947 | Qed. |
---|
948 | |
---|
949 | Theorem find_symbol_not_nullptr: |
---|
950 | forall (p: program F V) (id: ident) (b: block), |
---|
951 | find_symbol ? (globalenv p) id = Some ? b → b <> nullptr. |
---|
952 | Proof. |
---|
953 | intros until b. |
---|
954 | assert (forall fns, |
---|
955 | find_symbol ? (add_functs empty fns) id = Some ? b → |
---|
956 | b <> nullptr). |
---|
957 | unfold find_symbol; induction fns; simpl. |
---|
958 | rewrite PTree.gempty. congruence. |
---|
959 | destruct a as [id1 f1]. simpl. rewrite PTree.gsspec. |
---|
960 | destruct (peq id id1); intros. |
---|
961 | inversion H. generalize (nextfunction_add_functs_neg fns). |
---|
962 | unfold block, nullptr; omega. |
---|
963 | auto. |
---|
964 | set (g0 := add_functs empty p.(prog_funct)). |
---|
965 | assert (forall vars g m, |
---|
966 | add_globals (g0, Mem.empty) vars = (g, m) → |
---|
967 | find_symbol ? g id = Some ? b → |
---|
968 | b <> nullptr). |
---|
969 | induction vars; simpl; intros until m. |
---|
970 | intros. inversion H0. subst g. apply H with (prog_funct p). auto. |
---|
971 | destruct a as [[id1 init1] info1]. |
---|
972 | caseEq (add_globals (g0, Mem.empty) vars); intros g1 m1 EQ1 EQ2. |
---|
973 | inv EQ2. unfold find_symbol, add_symbol; simpl. rewrite PTree.gsspec. |
---|
974 | destruct (peq id id1); intros. |
---|
975 | inv H0. generalize (nextblock_pos m1). unfold nullptr, block; omega. |
---|
976 | eauto. |
---|
977 | intros. eapply H0 with (vars := prog_vars p). apply surjective_pairing. auto. |
---|
978 | Qed. |
---|
979 | |
---|
980 | Theorem global_addresses_distinct: |
---|
981 | forall (p: program F V) id1 id2 b1 b2, |
---|
982 | id1<>id2 → |
---|
983 | find_symbol ? (globalenv p) id1 = Some ? b1 → |
---|
984 | find_symbol ? (globalenv p) id2 = Some ? b2 → |
---|
985 | b1<>b2. |
---|
986 | Proof. |
---|
987 | intros. |
---|
988 | assert (forall fns, |
---|
989 | find_symbol ? (add_functs empty fns) id1 = Some ? b1 → |
---|
990 | find_symbol ? (add_functs empty fns) id2 = Some ? b2 → |
---|
991 | b1 <> b2). |
---|
992 | unfold find_symbol. induction fns; simpl; intros. |
---|
993 | rewrite PTree.gempty in H2. discriminate. |
---|
994 | destruct a as [id f]; simpl in *. |
---|
995 | rewrite PTree.gsspec in H2. |
---|
996 | destruct (peq id1 id). subst id. inv H2. |
---|
997 | rewrite PTree.gso in H3; auto. |
---|
998 | generalize (find_symbol_above_nextfunction _ _ H3). unfold block. omega. |
---|
999 | rewrite PTree.gsspec in H3. |
---|
1000 | destruct (peq id2 id). subst id. inv H3. |
---|
1001 | generalize (find_symbol_above_nextfunction _ _ H2). unfold block. omega. |
---|
1002 | eauto. |
---|
1003 | set (ge0 := add_functs empty p.(prog_funct)). |
---|
1004 | assert (forall (vars: list (ident * list init_data * V)) ge m, |
---|
1005 | add_globals (ge0, Mem.empty) vars = (ge, m) → |
---|
1006 | find_symbol ? ge id1 = Some ? b1 → |
---|
1007 | find_symbol ? ge id2 = Some ? b2 → |
---|
1008 | b1 <> b2). |
---|
1009 | unfold find_symbol. induction vars; simpl. |
---|
1010 | intros. inv H3. subst ge. apply H2 with (p.(prog_funct)); auto. |
---|
1011 | intros ge m. destruct a as [[id init] info]. |
---|
1012 | caseEq (add_globals (ge0, Mem.empty) vars). intros ge1 m1 A B. inv B. |
---|
1013 | unfold add_symbol. simpl. intros. |
---|
1014 | rewrite PTree.gsspec in H3; destruct (peq id1 id). subst id. inv H3. |
---|
1015 | rewrite PTree.gso in H4; auto. |
---|
1016 | generalize (find_symbol_add_symbols_not_fresh _ _ _ A H4). unfold block; omega. |
---|
1017 | rewrite PTree.gsspec in H4; destruct (peq id2 id). subst id. inv H4. |
---|
1018 | generalize (find_symbol_add_symbols_not_fresh _ _ _ A H3). unfold block; omega. |
---|
1019 | eauto. |
---|
1020 | set (ge_m := add_globals (ge0, Mem.empty) p.(prog_vars)). |
---|
1021 | apply H3 with (p.(prog_vars)) (fst ge_m) (snd ge_m). |
---|
1022 | fold ge_m. apply surjective_pairing. auto. auto. |
---|
1023 | Qed. |
---|
1024 | |
---|
1025 | End GENV. |
---|
1026 | |
---|
1027 | (* Global environments and program transformations. *) |
---|
1028 | |
---|
1029 | Section MATCH_PROGRAM. |
---|
1030 | |
---|
1031 | Variable A B V W: Type. |
---|
1032 | Variable match_fun: A → B → Prop. |
---|
1033 | Variable match_var: V → W → Prop. |
---|
1034 | Variable p: program A V. |
---|
1035 | Variable p': program B W. |
---|
1036 | Hypothesis match_prog: |
---|
1037 | match_program match_fun match_var p p'. |
---|
1038 | |
---|
1039 | Lemma add_functs_match: |
---|
1040 | forall (fns: list (ident * A)) (tfns: list (ident * B)), |
---|
1041 | list_forall2 (match_funct_etry match_fun) fns tfns → |
---|
1042 | let r := add_functs (empty A) fns in |
---|
1043 | let tr := add_functs (empty B) tfns in |
---|
1044 | nextfunction tr = nextfunction r /\ |
---|
1045 | symbols tr = symbols r /\ |
---|
1046 | forall (b: block) (f: A), |
---|
1047 | ZMap.get b (functions r) = Some ? f → |
---|
1048 | ∃tf. ZMap.get b (functions tr) = Some ? tf /\ match_fun f tf. |
---|
1049 | Proof. |
---|
1050 | induction 1; simpl. |
---|
1051 | |
---|
1052 | split. reflexivity. split. reflexivity. |
---|
1053 | intros b f; repeat (rewrite ZMap.gi). intros; discriminate. |
---|
1054 | |
---|
1055 | destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. |
---|
1056 | simpl. red in H. destruct H. |
---|
1057 | destruct IHlist_forall2 as [X [Y Z]]. |
---|
1058 | rewrite X. rewrite Y. |
---|
1059 | split. auto. |
---|
1060 | split. congruence. |
---|
1061 | intros b f. |
---|
1062 | repeat (rewrite ZMap.gsspec). |
---|
1063 | destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))). |
---|
1064 | intro EQ; inv EQ. exists fn2; auto. |
---|
1065 | auto. |
---|
1066 | Qed. |
---|
1067 | |
---|
1068 | Lemma add_functs_rev_match: |
---|
1069 | forall (fns: list (ident * A)) (tfns: list (ident * B)), |
---|
1070 | list_forall2 (match_funct_etry match_fun) fns tfns → |
---|
1071 | let r := add_functs (empty A) fns in |
---|
1072 | let tr := add_functs (empty B) tfns in |
---|
1073 | nextfunction tr = nextfunction r /\ |
---|
1074 | symbols tr = symbols r /\ |
---|
1075 | forall (b: block) (tf: B), |
---|
1076 | ZMap.get b (functions tr) = Some ? tf → |
---|
1077 | ∃f. ZMap.get b (functions r) = Some ? f /\ match_fun f tf. |
---|
1078 | Proof. |
---|
1079 | induction 1; simpl. |
---|
1080 | |
---|
1081 | split. reflexivity. split. reflexivity. |
---|
1082 | intros b f; repeat (rewrite ZMap.gi). intros; discriminate. |
---|
1083 | |
---|
1084 | destruct a1 as [id1 fn1]. destruct b1 as [id2 fn2]. |
---|
1085 | simpl. red in H. destruct H. |
---|
1086 | destruct IHlist_forall2 as [X [Y Z]]. |
---|
1087 | rewrite X. rewrite Y. |
---|
1088 | split. auto. |
---|
1089 | split. congruence. |
---|
1090 | intros b f. |
---|
1091 | repeat (rewrite ZMap.gsspec). |
---|
1092 | destruct (ZIndexed.eq b (nextfunction (add_functs (empty A) al))). |
---|
1093 | intro EQ; inv EQ. exists fn1; auto. |
---|
1094 | auto. |
---|
1095 | Qed. |
---|
1096 | |
---|
1097 | Lemma mem_add_globals_match: |
---|
1098 | forall (g1: genv A) (g2: genv B) (m: mem) |
---|
1099 | (vars: list (ident * list init_data * V)) |
---|
1100 | (tvars: list (ident * list init_data * W)), |
---|
1101 | list_forall2 (match_var_etry match_var) vars tvars → |
---|
1102 | snd (add_globals (g1, m) vars) = snd (add_globals (g2, m) tvars). |
---|
1103 | Proof. |
---|
1104 | induction 1; simpl. |
---|
1105 | auto. |
---|
1106 | destruct a1 as [[id1 init1] info1]. |
---|
1107 | destruct b1 as [[id2 init2] info2]. |
---|
1108 | red in H. destruct H as [X [Y Z]]. subst id2 init2. |
---|
1109 | generalize IHlist_forall2. |
---|
1110 | destruct (add_globals (g1, m) al). |
---|
1111 | destruct (add_globals (g2, m) bl). |
---|
1112 | simpl. intro. subst m1. auto. |
---|
1113 | Qed. |
---|
1114 | |
---|
1115 | Lemma symbols_add_globals_match: |
---|
1116 | forall (g1: genv A) (g2: genv B) (m: mem), |
---|
1117 | symbols g1 = symbols g2 → |
---|
1118 | forall (vars: list (ident * list init_data * V)) |
---|
1119 | (tvars: list (ident * list init_data * W)), |
---|
1120 | list_forall2 (match_var_etry match_var) vars tvars → |
---|
1121 | symbols (fst (add_globals (g1, m) vars)) = |
---|
1122 | symbols (fst (add_globals (g2, m) tvars)). |
---|
1123 | Proof. |
---|
1124 | induction 2; simpl. |
---|
1125 | auto. |
---|
1126 | destruct a1 as [[id1 init1] info1]. |
---|
1127 | destruct b1 as [[id2 init2] info2]. |
---|
1128 | red in H0. destruct H0 as [X [Y Z]]. subst id2 init2. |
---|
1129 | generalize IHlist_forall2. |
---|
1130 | generalize (mem_add_globals_match g1 g2 m H1). |
---|
1131 | destruct (add_globals (g1, m) al). |
---|
1132 | destruct (add_globals (g2, m) bl). |
---|
1133 | simpl. intros. congruence. |
---|
1134 | Qed. |
---|
1135 | |
---|
1136 | Theorem find_funct_ptr_match: |
---|
1137 | forall (b: block) (f: A), |
---|
1138 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1139 | ∃tf. find_funct_ptr ? (globalenv p') b = Some ? tf /\ match_fun f tf. |
---|
1140 | Proof. |
---|
1141 | intros until f. destruct match_prog as [X [Y Z]]. |
---|
1142 | destruct (add_functs_match X) as [P [Q R]]. |
---|
1143 | unfold find_funct_ptr. repeat rewrite functions_globalenv. |
---|
1144 | auto. |
---|
1145 | Qed. |
---|
1146 | |
---|
1147 | Theorem find_funct_ptr_rev_match: |
---|
1148 | forall (b: block) (tf: B), |
---|
1149 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1150 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ match_fun f tf. |
---|
1151 | Proof. |
---|
1152 | intros until tf. destruct match_prog as [X [Y Z]]. |
---|
1153 | destruct (add_functs_rev_match X) as [P [Q R]]. |
---|
1154 | unfold find_funct_ptr. repeat rewrite functions_globalenv. |
---|
1155 | auto. |
---|
1156 | Qed. |
---|
1157 | |
---|
1158 | Theorem find_funct_match: |
---|
1159 | forall (v: val) (f: A), |
---|
1160 | find_funct (globalenv p) v = Some ? f → |
---|
1161 | ∃tf. find_funct (globalenv p') v = Some ? tf /\ match_fun f tf. |
---|
1162 | Proof. |
---|
1163 | intros until f. unfold find_funct. |
---|
1164 | case v; try (intros; discriminate). |
---|
1165 | intros b ofs. |
---|
1166 | case (Int.eq ofs Int.zero); try (intros; discriminate). |
---|
1167 | apply find_funct_ptr_match. |
---|
1168 | Qed. |
---|
1169 | |
---|
1170 | Theorem find_funct_rev_match: |
---|
1171 | forall (v: val) (tf: B), |
---|
1172 | find_funct (globalenv p') v = Some ? tf → |
---|
1173 | ∃f. find_funct (globalenv p) v = Some ? f /\ match_fun f tf. |
---|
1174 | Proof. |
---|
1175 | intros until tf. unfold find_funct. |
---|
1176 | case v; try (intros; discriminate). |
---|
1177 | intros b ofs. |
---|
1178 | case (Int.eq ofs Int.zero); try (intros; discriminate). |
---|
1179 | apply find_funct_ptr_rev_match. |
---|
1180 | Qed. |
---|
1181 | |
---|
1182 | Lemma symbols_init_match: |
---|
1183 | symbols (globalenv p') = symbols (globalenv p). |
---|
1184 | Proof. |
---|
1185 | unfold globalenv. unfold globalenv_initmem. |
---|
1186 | destruct match_prog as [X [Y Z]]. |
---|
1187 | destruct (add_functs_match X) as [P [Q R]]. |
---|
1188 | simpl. symmetry. apply symbols_add_globals_match. auto. auto. |
---|
1189 | Qed. |
---|
1190 | |
---|
1191 | Theorem find_symbol_match: |
---|
1192 | forall (s: ident), |
---|
1193 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
1194 | Proof. |
---|
1195 | intros. unfold find_symbol. |
---|
1196 | rewrite symbols_init_match. auto. |
---|
1197 | Qed. |
---|
1198 | |
---|
1199 | Theorem init_mem_match: |
---|
1200 | init_mem p' = init_mem p. |
---|
1201 | Proof. |
---|
1202 | unfold init_mem. unfold globalenv_initmem. |
---|
1203 | destruct match_prog as [X [Y Z]]. |
---|
1204 | symmetry. apply mem_add_globals_match. auto. |
---|
1205 | Qed. |
---|
1206 | |
---|
1207 | End MATCH_PROGRAM. |
---|
1208 | |
---|
1209 | Section TRANSF_PROGRAM_PARTIAL2. |
---|
1210 | |
---|
1211 | Variable A B V W: Type. |
---|
1212 | Variable transf_fun: A → res B. |
---|
1213 | Variable transf_var: V → res W. |
---|
1214 | Variable p: program A V. |
---|
1215 | Variable p': program B W. |
---|
1216 | Hypothesis transf_OK: |
---|
1217 | transform_partial_program2 transf_fun transf_var p = OK ? p'. |
---|
1218 | |
---|
1219 | Remark prog_match: |
---|
1220 | match_program |
---|
1221 | (fun fd tfd => transf_fun fd = OK ? tfd) |
---|
1222 | (fun info tinfo => transf_var info = OK ? tinfo) |
---|
1223 | p p'. |
---|
1224 | Proof. |
---|
1225 | apply transform_partial_program2_match; auto. |
---|
1226 | Qed. |
---|
1227 | |
---|
1228 | Theorem find_funct_ptr_transf_partial2: |
---|
1229 | forall (b: block) (f: A), |
---|
1230 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1231 | ∃f'. |
---|
1232 | find_funct_ptr ? (globalenv p') b = Some ? f' /\ transf_fun f = OK ? f'. |
---|
1233 | Proof. |
---|
1234 | intros. |
---|
1235 | exploit find_funct_ptr_match. eexact prog_match. eauto. |
---|
1236 | intros [tf [X Y]]. exists tf; auto. |
---|
1237 | Qed. |
---|
1238 | |
---|
1239 | Theorem find_funct_ptr_rev_transf_partial2: |
---|
1240 | forall (b: block) (tf: B), |
---|
1241 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1242 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf_fun f = OK ? tf. |
---|
1243 | Proof. |
---|
1244 | intros. |
---|
1245 | exploit find_funct_ptr_rev_match. eexact prog_match. eauto. auto. |
---|
1246 | Qed. |
---|
1247 | |
---|
1248 | Theorem find_funct_transf_partial2: |
---|
1249 | forall (v: val) (f: A), |
---|
1250 | find_funct (globalenv p) v = Some ? f → |
---|
1251 | ∃f'. |
---|
1252 | find_funct (globalenv p') v = Some ? f' /\ transf_fun f = OK ? f'. |
---|
1253 | Proof. |
---|
1254 | intros. |
---|
1255 | exploit find_funct_match. eexact prog_match. eauto. |
---|
1256 | intros [tf [X Y]]. exists tf; auto. |
---|
1257 | Qed. |
---|
1258 | |
---|
1259 | Theorem find_funct_rev_transf_partial2: |
---|
1260 | forall (v: val) (tf: B), |
---|
1261 | find_funct (globalenv p') v = Some ? tf → |
---|
1262 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf_fun f = OK ? tf. |
---|
1263 | Proof. |
---|
1264 | intros. |
---|
1265 | exploit find_funct_rev_match. eexact prog_match. eauto. auto. |
---|
1266 | Qed. |
---|
1267 | |
---|
1268 | Theorem find_symbol_transf_partial2: |
---|
1269 | forall (s: ident), |
---|
1270 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
1271 | Proof. |
---|
1272 | intros. eapply find_symbol_match. eexact prog_match. |
---|
1273 | Qed. |
---|
1274 | |
---|
1275 | Theorem init_mem_transf_partial2: |
---|
1276 | init_mem p' = init_mem p. |
---|
1277 | Proof. |
---|
1278 | intros. eapply init_mem_match. eexact prog_match. |
---|
1279 | Qed. |
---|
1280 | |
---|
1281 | End TRANSF_PROGRAM_PARTIAL2. |
---|
1282 | |
---|
1283 | Section TRANSF_PROGRAM_PARTIAL. |
---|
1284 | |
---|
1285 | Variable A B V: Type. |
---|
1286 | Variable transf: A → res B. |
---|
1287 | Variable p: program A V. |
---|
1288 | Variable p': program B V. |
---|
1289 | Hypothesis transf_OK: transform_partial_program transf p = OK ? p'. |
---|
1290 | |
---|
1291 | Remark transf2_OK: |
---|
1292 | transform_partial_program2 transf (fun x => OK ? x) p = OK ? p'. |
---|
1293 | Proof. |
---|
1294 | rewrite <- transf_OK. unfold transform_partial_program2, transform_partial_program. |
---|
1295 | destruct (map_partial prefix_funct_name transf (prog_funct p)); auto. |
---|
1296 | rewrite map_partial_identity; auto. |
---|
1297 | Qed. |
---|
1298 | |
---|
1299 | Theorem find_funct_ptr_transf_partial: |
---|
1300 | forall (b: block) (f: A), |
---|
1301 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1302 | ∃f'. |
---|
1303 | find_funct_ptr ? (globalenv p') b = Some ? f' /\ transf f = OK ? f'. |
---|
1304 | Proof. |
---|
1305 | exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1306 | Qed. |
---|
1307 | |
---|
1308 | Theorem find_funct_ptr_rev_transf_partial: |
---|
1309 | forall (b: block) (tf: B), |
---|
1310 | find_funct_ptr ? (globalenv p') b = Some ? tf → |
---|
1311 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf f = OK ? tf. |
---|
1312 | Proof. |
---|
1313 | exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1314 | Qed. |
---|
1315 | |
---|
1316 | Theorem find_funct_transf_partial: |
---|
1317 | forall (v: val) (f: A), |
---|
1318 | find_funct (globalenv p) v = Some ? f → |
---|
1319 | ∃f'. |
---|
1320 | find_funct (globalenv p') v = Some ? f' /\ transf f = OK ? f'. |
---|
1321 | Proof. |
---|
1322 | exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1323 | Qed. |
---|
1324 | |
---|
1325 | Theorem find_funct_rev_transf_partial: |
---|
1326 | forall (v: val) (tf: B), |
---|
1327 | find_funct (globalenv p') v = Some ? tf → |
---|
1328 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf f = OK ? tf. |
---|
1329 | Proof. |
---|
1330 | exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1331 | Qed. |
---|
1332 | |
---|
1333 | Theorem find_symbol_transf_partial: |
---|
1334 | forall (s: ident), |
---|
1335 | find_symbol ? (globalenv p') s = find_symbol ? (globalenv p) s. |
---|
1336 | Proof. |
---|
1337 | exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1338 | Qed. |
---|
1339 | |
---|
1340 | Theorem init_mem_transf_partial: |
---|
1341 | init_mem p' = init_mem p. |
---|
1342 | Proof. |
---|
1343 | exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). |
---|
1344 | Qed. |
---|
1345 | |
---|
1346 | End TRANSF_PROGRAM_PARTIAL. |
---|
1347 | |
---|
1348 | Section TRANSF_PROGRAM. |
---|
1349 | |
---|
1350 | Variable A B V: Type. |
---|
1351 | Variable transf: A → B. |
---|
1352 | Variable p: program A V. |
---|
1353 | Let tp := transform_program transf p. |
---|
1354 | |
---|
1355 | Remark transf_OK: |
---|
1356 | transform_partial_program (fun x => OK ? (transf x)) p = OK ? tp. |
---|
1357 | Proof. |
---|
1358 | unfold tp, transform_program, transform_partial_program. |
---|
1359 | rewrite map_partial_total. reflexivity. |
---|
1360 | Qed. |
---|
1361 | |
---|
1362 | Theorem find_funct_ptr_transf: |
---|
1363 | forall (b: block) (f: A), |
---|
1364 | find_funct_ptr ? (globalenv p) b = Some ? f → |
---|
1365 | find_funct_ptr ? (globalenv tp) b = Some ? (transf f). |
---|
1366 | Proof. |
---|
1367 | intros. |
---|
1368 | destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK ? _ _ H) |
---|
1369 | as [f' [X Y]]. congruence. |
---|
1370 | Qed. |
---|
1371 | |
---|
1372 | Theorem find_funct_ptr_rev_transf: |
---|
1373 | forall (b: block) (tf: B), |
---|
1374 | find_funct_ptr ? (globalenv tp) b = Some ? tf → |
---|
1375 | ∃f. find_funct_ptr ? (globalenv p) b = Some ? f /\ transf f = tf. |
---|
1376 | Proof. |
---|
1377 | intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto. |
---|
1378 | intros [f [X Y]]. exists f; split. auto. congruence. |
---|
1379 | Qed. |
---|
1380 | |
---|
1381 | Theorem find_funct_transf: |
---|
1382 | forall (v: val) (f: A), |
---|
1383 | find_funct (globalenv p) v = Some ? f → |
---|
1384 | find_funct (globalenv tp) v = Some ? (transf f). |
---|
1385 | Proof. |
---|
1386 | intros. |
---|
1387 | destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK ? _ _ H) |
---|
1388 | as [f' [X Y]]. congruence. |
---|
1389 | Qed. |
---|
1390 | |
---|
1391 | Theorem find_funct_rev_transf: |
---|
1392 | forall (v: val) (tf: B), |
---|
1393 | find_funct (globalenv tp) v = Some ? tf → |
---|
1394 | ∃f. find_funct (globalenv p) v = Some ? f /\ transf f = tf. |
---|
1395 | Proof. |
---|
1396 | intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto. |
---|
1397 | intros [f [X Y]]. exists f; split. auto. congruence. |
---|
1398 | Qed. |
---|
1399 | |
---|
1400 | Theorem find_symbol_transf: |
---|
1401 | forall (s: ident), |
---|
1402 | find_symbol ? (globalenv tp) s = find_symbol ? (globalenv p) s. |
---|
1403 | Proof. |
---|
1404 | exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK). |
---|
1405 | Qed. |
---|
1406 | |
---|
1407 | Theorem init_mem_transf: |
---|
1408 | init_mem tp = init_mem p. |
---|
1409 | Proof. |
---|
1410 | exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK). |
---|
1411 | Qed. |
---|
1412 | |
---|
1413 | End TRANSF_PROGRAM. |
---|
1414 | |
---|
1415 | End Genv. |
---|
1416 | *) |
---|
1417 | |
---|