1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Representation of observable events and execution traces. *) |
---|
17 | (* |
---|
18 | Require Import Coqlib. |
---|
19 | *) |
---|
20 | (*include "AST.ma".*) |
---|
21 | (*include "Integers.ma".*) |
---|
22 | (*include "Floats.ma".*) |
---|
23 | include "common/Values.ma". |
---|
24 | include "basics/lists/list.ma". |
---|
25 | include "utilities/extralib.ma". |
---|
26 | include "common/CostLabel.ma". |
---|
27 | |
---|
28 | (* * The observable behaviour of programs is stated in terms of |
---|
29 | input/output events, which can also be thought of as system calls |
---|
30 | to the operating system. An event is generated each time an |
---|
31 | external function (see module AST) is invoked. The event records |
---|
32 | the name of the external function, the arguments to the function |
---|
33 | invocation provided by the program, and the return value provided by |
---|
34 | the outside world (e.g. the operating system). Arguments and values |
---|
35 | are either integers or floating-point numbers. We currently do not |
---|
36 | allow pointers to be exchanged between the program and the outside |
---|
37 | world. *) |
---|
38 | |
---|
39 | inductive eventval: Type[0] ≝ |
---|
40 | | EVint: ∀sz. bvint sz → eventval |
---|
41 | | EVfloat: float → eventval. |
---|
42 | |
---|
43 | inductive event : Type[0] ≝ |
---|
44 | | EVcost: costlabel → event |
---|
45 | | EVextcall: ∀ev_name: ident. ∀ev_args: list eventval. ∀ev_res: eventval. event. |
---|
46 | |
---|
47 | (* * The dynamic semantics for programs collect traces of events. |
---|
48 | Traces are of two kinds: finite (type [trace]) or infinite (type [traceinf]). *) |
---|
49 | |
---|
50 | definition trace := list event. |
---|
51 | |
---|
52 | definition E0 : trace := nil ?. |
---|
53 | |
---|
54 | definition Echarge : costlabel → trace ≝ |
---|
55 | λlabel. EVcost label :: (nil ?). |
---|
56 | |
---|
57 | definition Eextcall : ident → list eventval → eventval → trace ≝ |
---|
58 | λname: ident. λargs: list eventval. λres: eventval. |
---|
59 | EVextcall name args res :: (nil ?). |
---|
60 | |
---|
61 | definition Eapp : trace → trace → trace ≝ λt1,t2. t1 @ t2. |
---|
62 | |
---|
63 | coinductive traceinf : Type[0] := |
---|
64 | | Econsinf: event -> traceinf -> traceinf. |
---|
65 | |
---|
66 | let rec Eappinf (t: trace) (T: traceinf) on t : traceinf := |
---|
67 | match t with |
---|
68 | [ nil => T |
---|
69 | | cons ev t' => Econsinf ev (Eappinf t' T) |
---|
70 | ]. |
---|
71 | |
---|
72 | (* Useful for testing programs. *) |
---|
73 | definition remove_costs : trace → trace ≝ |
---|
74 | filter … (λe. match e with [ EVcost _ ⇒ false | _ ⇒ true ]). |
---|
75 | |
---|
76 | (* * Concatenation of traces is written [**] in the finite case |
---|
77 | or [***] in the infinite case. *) |
---|
78 | |
---|
79 | notation "hvbox(l1 break ⧺ l2)" |
---|
80 | right associative with precedence 47 |
---|
81 | for @{'doubleplus $l1 $l2 }. |
---|
82 | |
---|
83 | notation "hvbox(l1 break ⧻ l2)" |
---|
84 | right associative with precedence 47 |
---|
85 | for @{'tripleplus $l1 $l2 }. |
---|
86 | |
---|
87 | interpretation "trace concatenation" 'doubleplus l1 l2 = (Eapp l1 l2). |
---|
88 | interpretation "infinite trace concatenation" 'tripleplus l1 l2 = (Eappinf l1 l2). |
---|
89 | (* |
---|
90 | Infix "**" := Eapp (at level 60, right associativity). |
---|
91 | Infix "***" := Eappinf (at level 60, right associativity). |
---|
92 | *) |
---|
93 | lemma E0_left: ∀t. E0 ⧺ t = t. |
---|
94 | //; qed. |
---|
95 | |
---|
96 | lemma E0_right: ∀t. t ⧺ E0 = t. |
---|
97 | @append_nil qed. |
---|
98 | |
---|
99 | lemma Eapp_assoc: ∀t1,t2,t3. (t1 ⧺ t2) ⧺ t3 = t1 ⧺ (t2 ⧺ t3). |
---|
100 | @associative_append qed. |
---|
101 | |
---|
102 | lemma Eapp_E0_inv: ∀t1,t2. t1 ⧺ t2 = E0 → t1 = E0 ∧ t2 = E0. |
---|
103 | @nil_append_nil_both qed. |
---|
104 | |
---|
105 | lemma E0_left_inf: ∀T. E0 ⧻ T = T. |
---|
106 | //; qed. |
---|
107 | |
---|
108 | lemma Eappinf_assoc: ∀t1,t2,T. (t1 ⧺ t2) ⧻ T = t1 ⧻ (t2 ⧻ T). |
---|
109 | #t1 elim t1; #t2 #T normalize; //; qed. |
---|
110 | |
---|
111 | (* |
---|
112 | Hint Rewrite E0_left E0_right Eapp_assoc |
---|
113 | E0_left_inf Eappinf_assoc: trace_rewrite. |
---|
114 | |
---|
115 | Opaque trace E0 Eextcall Eapp Eappinf. |
---|
116 | |
---|
117 | (** The following [traceEq] tactic proves equalities between traces |
---|
118 | or infinite traces. *) |
---|
119 | |
---|
120 | Ltac substTraceHyp := |
---|
121 | match goal with |
---|
122 | | [ H: (@eq trace ?x ?y) |- _ ] => |
---|
123 | subst x || clear H |
---|
124 | end. |
---|
125 | |
---|
126 | Ltac decomposeTraceEq := |
---|
127 | match goal with |
---|
128 | | [ |- (_ ** _) = (_ ** _) ] => |
---|
129 | apply (f_equal2 Eapp); auto; decomposeTraceEq |
---|
130 | | _ => |
---|
131 | auto |
---|
132 | end. |
---|
133 | |
---|
134 | Ltac traceEq := |
---|
135 | repeat substTraceHyp; autorewrite with trace_rewrite; decomposeTraceEq. |
---|
136 | *) |
---|
137 | |
---|
138 | (* Ported from CompCert 1.7.1 >>> *) |
---|
139 | |
---|
140 | (* * An alternate presentation of infinite traces as |
---|
141 | infinite concatenations of nonempty finite traces. *) |
---|
142 | |
---|
143 | coinductive traceinf': Type[0] ≝ |
---|
144 | | Econsinf': ∀t: trace. ∀T: traceinf'. t ≠ E0 → traceinf'. |
---|
145 | |
---|
146 | definition split_traceinf' : ∀t:trace. traceinf' → t ≠ E0 → event × traceinf' ≝ |
---|
147 | λt,T. |
---|
148 | match t return λt0.t0 ≠ E0 → ? with |
---|
149 | [ nil ⇒ ? |
---|
150 | | cons e t' ⇒ λ_. |
---|
151 | (match t' return λt0. t' = t0 → ? with |
---|
152 | [ nil ⇒ λ_.〈e, T〉 |
---|
153 | | cons e' t'' ⇒ λE.〈e, Econsinf' t' T ?〉 |
---|
154 | ]) (refl ? t') |
---|
155 | ]. |
---|
156 | [ *; #NE @False_rect_Type0 @NE @refl |
---|
157 | | % #E' >E' in E; #E whd in E:(??%%); destruct (E); |
---|
158 | ] qed. |
---|
159 | |
---|
160 | let corec traceinf_of_traceinf' (T': traceinf') : traceinf ≝ |
---|
161 | match T' with |
---|
162 | [ Econsinf' t T'' NOTEMPTY ⇒ |
---|
163 | let 〈e,tl〉 ≝ split_traceinf' t T'' NOTEMPTY in |
---|
164 | Econsinf e (traceinf_of_traceinf' tl) |
---|
165 | ]. |
---|
166 | |
---|
167 | lemma unroll_traceinf': |
---|
168 | ∀T. T = match T with [ Econsinf' t T' NE ⇒ Econsinf' t T' NE ]. |
---|
169 | #T cases T; //; qed. |
---|
170 | |
---|
171 | lemma unroll_traceinf: |
---|
172 | ∀T. T = match T with [ Econsinf t T' ⇒ Econsinf t T' ]. |
---|
173 | #T cases T #ev #tr @refl (* XXX //; *) |
---|
174 | qed. |
---|
175 | |
---|
176 | lemma traceinf_traceinfp_app: |
---|
177 | ∀t,T,NE. |
---|
178 | traceinf_of_traceinf' (Econsinf' t T NE) = t ⧻ traceinf_of_traceinf' T. |
---|
179 | #t elim t; |
---|
180 | [ #T #NE cases NE; #NE' @False_ind @NE' @refl |
---|
181 | | #h #t' cases t'; [ 2: #h' #t'' ] #IH #T #NE |
---|
182 | >(unroll_traceinf (traceinf_of_traceinf' ?)) |
---|
183 | whd in ⊢ (??%?); //; >(IH …) @refl |
---|
184 | ] qed. |
---|
185 | |
---|
186 | (* <<< *) |
---|
187 | |
---|
188 | (* * The predicate [event_match ef vargs t vres] expresses that |
---|
189 | the event [t] is generated when invoking external function [ef] |
---|
190 | with arguments [vargs], and obtaining [vres] as a return value |
---|
191 | from the operating system. *) |
---|
192 | |
---|
193 | inductive eventval_match: eventval -> typ -> val -> Prop := |
---|
194 | | ev_match_int: |
---|
195 | ∀sz,sg,i. eventval_match (EVint sz i) (ASTint sz sg) (Vint sz i) |
---|
196 | | ev_match_float: |
---|
197 | ∀f,sz. eventval_match (EVfloat f) (ASTfloat sz) (Vfloat f). |
---|
198 | |
---|
199 | inductive eventval_list_match: list eventval -> list typ -> list val -> Prop := |
---|
200 | | evl_match_nil: |
---|
201 | eventval_list_match (nil ?) (nil ?) (nil ?) |
---|
202 | | evl_match_cons: |
---|
203 | ∀ev1,evl,ty1,tyl,v1,vl. |
---|
204 | eventval_match ev1 ty1 v1 -> |
---|
205 | eventval_list_match evl tyl vl -> |
---|
206 | eventval_list_match (ev1::evl) (ty1::tyl) (v1::vl). |
---|
207 | |
---|
208 | inductive event_match: |
---|
209 | external_function -> list val -> trace -> val -> Prop := |
---|
210 | event_match_intro: |
---|
211 | ∀ef,vargs,vres,eargs,eres. |
---|
212 | eventval_list_match eargs (sig_args (ef_sig ef)) vargs -> |
---|
213 | eventval_match eres (proj_sig_res (ef_sig ef)) vres -> |
---|
214 | event_match ef vargs (Eextcall (ef_id ef) eargs eres) vres. |
---|
215 | (* |
---|
216 | (** The following section shows that [event_match] is stable under |
---|
217 | relocation of pointer values, as performed by memory injections |
---|
218 | (see module [Mem]). *) |
---|
219 | |
---|
220 | Require Import Mem. |
---|
221 | |
---|
222 | Section EVENT_MATCH_INJECT. |
---|
223 | |
---|
224 | Variable f: meminj. |
---|
225 | |
---|
226 | Remark eventval_match_inject: |
---|
227 | forall ev ty v1, eventval_match ev ty v1 -> |
---|
228 | forall v2, val_inject f v1 v2 -> |
---|
229 | eventval_match ev ty v2. |
---|
230 | Proof. |
---|
231 | induction 1; intros; inversion H; constructor. |
---|
232 | Qed. |
---|
233 | |
---|
234 | Remark eventval_list_match_inject: |
---|
235 | forall evl tyl vl1, eventval_list_match evl tyl vl1 -> |
---|
236 | forall vl2, val_list_inject f vl1 vl2 -> |
---|
237 | eventval_list_match evl tyl vl2. |
---|
238 | Proof. |
---|
239 | induction 1; intros. |
---|
240 | inversion H; constructor. |
---|
241 | inversion H1; constructor. |
---|
242 | eapply eventval_match_inject; eauto. |
---|
243 | eauto. |
---|
244 | Qed. |
---|
245 | |
---|
246 | Lemma event_match_inject: |
---|
247 | forall ef args1 t res args2, |
---|
248 | event_match ef args1 t res -> |
---|
249 | val_list_inject f args1 args2 -> |
---|
250 | event_match ef args2 t res /\ val_inject f res res. |
---|
251 | Proof. |
---|
252 | intros. inversion H; subst. |
---|
253 | split. constructor. eapply eventval_list_match_inject; eauto. auto. |
---|
254 | inversion H2; constructor. |
---|
255 | Qed. |
---|
256 | |
---|
257 | End EVENT_MATCH_INJECT. |
---|
258 | |
---|
259 | (** The following section shows that [event_match] is stable under |
---|
260 | replacement of [Vundef] values by more defined values. *) |
---|
261 | |
---|
262 | Section EVENT_MATCH_LESSDEF. |
---|
263 | |
---|
264 | Remark eventval_match_lessdef: |
---|
265 | forall ev ty v1, eventval_match ev ty v1 -> |
---|
266 | forall v2, Val.lessdef v1 v2 -> |
---|
267 | eventval_match ev ty v2. |
---|
268 | Proof. |
---|
269 | induction 1; intros; inv H; constructor. |
---|
270 | Qed. |
---|
271 | |
---|
272 | Remark eventval_list_match_moredef: |
---|
273 | forall evl tyl vl1, eventval_list_match evl tyl vl1 -> |
---|
274 | forall vl2, Val.lessdef_list vl1 vl2 -> |
---|
275 | eventval_list_match evl tyl vl2. |
---|
276 | Proof. |
---|
277 | induction 1; intros. |
---|
278 | inversion H; constructor. |
---|
279 | inversion H1; constructor. |
---|
280 | eapply eventval_match_lessdef; eauto. |
---|
281 | eauto. |
---|
282 | Qed. |
---|
283 | |
---|
284 | Lemma event_match_lessdef: |
---|
285 | forall ef args1 t res1 args2, |
---|
286 | event_match ef args1 t res1 -> |
---|
287 | Val.lessdef_list args1 args2 -> |
---|
288 | exists res2, event_match ef args2 t res2 /\ Val.lessdef res1 res2. |
---|
289 | Proof. |
---|
290 | intros. inversion H; subst. exists res1; split. |
---|
291 | constructor. eapply eventval_list_match_moredef; eauto. auto. |
---|
292 | auto. |
---|
293 | Qed. |
---|
294 | |
---|
295 | End EVENT_MATCH_LESSDEF. |
---|
296 | |
---|
297 | (** Bisimilarity between infinite traces. *) |
---|
298 | |
---|
299 | CoInductive traceinf_sim: traceinf -> traceinf -> Prop := |
---|
300 | | traceinf_sim_cons: forall e T1 T2, |
---|
301 | traceinf_sim T1 T2 -> |
---|
302 | traceinf_sim (Econsinf e T1) (Econsinf e T2). |
---|
303 | |
---|
304 | Lemma traceinf_sim_refl: |
---|
305 | forall T, traceinf_sim T T. |
---|
306 | Proof. |
---|
307 | cofix COINDHYP; intros. |
---|
308 | destruct T. constructor. apply COINDHYP. |
---|
309 | Qed. |
---|
310 | |
---|
311 | Lemma traceinf_sim_sym: |
---|
312 | forall T1 T2, traceinf_sim T1 T2 -> traceinf_sim T2 T1. |
---|
313 | Proof. |
---|
314 | cofix COINDHYP; intros. inv H; constructor; auto. |
---|
315 | Qed. |
---|
316 | |
---|
317 | Lemma traceinf_sim_trans: |
---|
318 | forall T1 T2 T3, |
---|
319 | traceinf_sim T1 T2 -> traceinf_sim T2 T3 -> traceinf_sim T1 T3. |
---|
320 | Proof. |
---|
321 | cofix COINDHYP;intros. inv H; inv H0; constructor; eauto. |
---|
322 | Qed. |
---|
323 | |
---|
324 | (** The "is prefix of" relation between a finite and an infinite trace. *) |
---|
325 | |
---|
326 | Inductive traceinf_prefix: trace -> traceinf -> Prop := |
---|
327 | | traceinf_prefix_nil: forall T, |
---|
328 | traceinf_prefix nil T |
---|
329 | | traceinf_prefix_cons: forall e t1 T2, |
---|
330 | traceinf_prefix t1 T2 -> |
---|
331 | traceinf_prefix (e :: t1) (Econsinf e T2). |
---|
332 | |
---|
333 | (* |
---|
334 | Lemma traceinf_prefix_compat: |
---|
335 | forall T1 T2 T1' T2', |
---|
336 | traceinf_prefix T1 T2 -> traceinf_sim T1 T1' -> traceinf_sim T2 T2' -> |
---|
337 | traceinf_prefix T1' T2'. |
---|
338 | Proof. |
---|
339 | cofix COINDHYP; intros. |
---|
340 | inv H; inv H0; inv H1; constructor; eapply COINDHYP; eauto. |
---|
341 | Qed. |
---|
342 | |
---|
343 | Transparent trace E0 Eapp Eappinf. |
---|
344 | *) |
---|
345 | |
---|
346 | Lemma traceinf_prefix_app: |
---|
347 | forall t1 T2 t, |
---|
348 | traceinf_prefix t1 T2 -> |
---|
349 | traceinf_prefix (t ** t1) (t *** T2). |
---|
350 | Proof. |
---|
351 | induction t; simpl; intros. auto. |
---|
352 | change ((a :: t) ** t1) with (a :: (t ** t1)). |
---|
353 | change ((a :: t) *** T2) with (Econsinf a (t *** T2)). |
---|
354 | constructor. auto. |
---|
355 | Qed. |
---|
356 | |
---|
357 | *) |
---|