1 | include "basics/logic.ma". |
---|
2 | |
---|
3 | include "common/AST.ma". |
---|
4 | include "common/CostLabel.ma". |
---|
5 | include "common/FrontEndOps.ma". |
---|
6 | include "common/Registers.ma". |
---|
7 | |
---|
8 | include "ASM/Vector.ma". |
---|
9 | include "common/Graphs.ma". |
---|
10 | |
---|
11 | inductive statement : Type[0] ≝ |
---|
12 | | St_skip : label → statement |
---|
13 | | St_cost : costlabel → label → statement |
---|
14 | | St_const : register → constant → label → statement |
---|
15 | | St_op1 : ∀t,t'. unary_operation t' t → register → register → label → statement (* destination source *) |
---|
16 | | St_op2 : binary_operation → register → register → register → label → statement (* destination source1 source2 *) |
---|
17 | | St_load : memory_chunk → register → register → label → statement |
---|
18 | | St_store : memory_chunk → register → register → label → statement |
---|
19 | | St_call_id : ident → list register → option register → label → statement |
---|
20 | | St_call_ptr : register → list register → option register → label → statement |
---|
21 | | St_tailcall_id : ident → list register → statement |
---|
22 | | St_tailcall_ptr : register → list register → statement |
---|
23 | | St_cond : register → label → label → statement |
---|
24 | | St_jumptable : register → list label → statement |
---|
25 | | St_return : statement |
---|
26 | . |
---|
27 | |
---|
28 | definition env_has : list (register × typ) → register → typ → Prop ≝ |
---|
29 | λl,r,t. Exists ? (λx. 〈r,t〉 = x) l. |
---|
30 | |
---|
31 | definition statement_typed : list (register × typ) → statement → Prop ≝ |
---|
32 | λe,s. match s with |
---|
33 | [ St_op1 t t' _ r r' _ ⇒ env_has e r t ∧ env_has e r' t' |
---|
34 | | _ ⇒ True |
---|
35 | ]. |
---|
36 | |
---|
37 | definition labels_P : (label → Prop) → statement → Prop ≝ |
---|
38 | λP,s. match s with |
---|
39 | [ St_skip l ⇒ P l |
---|
40 | | St_cost _ l ⇒ P l |
---|
41 | | St_const _ _ l ⇒ P l |
---|
42 | | St_op1 _ _ _ _ _ l ⇒ P l |
---|
43 | | St_op2 _ _ _ _ l ⇒ P l |
---|
44 | | St_load _ _ _ l ⇒ P l |
---|
45 | | St_store _ _ _ l ⇒ P l |
---|
46 | | St_call_id _ _ _ l ⇒ P l |
---|
47 | | St_call_ptr _ _ _ l ⇒ P l |
---|
48 | | St_tailcall_id _ _ ⇒ True |
---|
49 | | St_tailcall_ptr _ _ ⇒ True |
---|
50 | | St_cond _ l1 l2 ⇒ P l1 ∧ P l2 |
---|
51 | | St_jumptable _ ls ⇒ All ? P ls |
---|
52 | | St_return ⇒ True |
---|
53 | ]. |
---|
54 | |
---|
55 | lemma labels_P_mp : ∀P,Q. (∀l. P l → Q l) → ∀s.labels_P P s → labels_P Q s. |
---|
56 | #P #Q #H * /3/ |
---|
57 | #r #l #l' * /3/ |
---|
58 | qed. |
---|
59 | |
---|
60 | definition labels_present : graph statement → statement → Prop ≝ |
---|
61 | λg,s. labels_P (present ?? g) s. |
---|
62 | |
---|
63 | definition forall_nodes : ∀A.∀P:A → Prop. graph A → Prop ≝ |
---|
64 | λA,P,g. ∀l,n. lookup ?? g l = Some ? n → P n. |
---|
65 | |
---|
66 | definition graph_closed : graph statement → Prop ≝ |
---|
67 | λg. forall_nodes ? (labels_present g) g. |
---|
68 | definition graph_typed : list (register × typ) → graph statement → Prop ≝ |
---|
69 | λe. forall_nodes ? (statement_typed e). |
---|
70 | |
---|
71 | record internal_function : Type[0] ≝ |
---|
72 | { f_labgen : universe LabelTag |
---|
73 | ; f_reggen : universe RegisterTag |
---|
74 | ; f_result : option (register × typ) |
---|
75 | ; f_params : list (register × typ) |
---|
76 | ; f_locals : list (register × typ) |
---|
77 | ; f_stacksize : nat |
---|
78 | ; f_graph : graph statement |
---|
79 | ; f_closed : graph_closed f_graph |
---|
80 | ; f_typed : graph_typed (f_locals @ f_params) f_graph |
---|
81 | ; f_entry : Σl:label. present ?? f_graph l |
---|
82 | ; f_exit : Σl:label. present ?? f_graph l |
---|
83 | }. |
---|
84 | |
---|
85 | (* Note that the global variables will be initialised by the code in main |
---|
86 | by this stage, so the only initialisation data is the amount of space to |
---|
87 | allocate. *) |
---|
88 | |
---|
89 | definition RTLabs_program ≝ program (λ_.fundef internal_function) nat. |
---|