1 | |
---|
2 | include "RTLabs/RTLabs_semantics.ma". |
---|
3 | |
---|
4 | let rec n_idents (n:nat) (tag:identifierTag) (g:universe tag) : Vector (identifier tag) n × (universe tag) ≝ |
---|
5 | match n with |
---|
6 | [ O ⇒ 〈[[ ]], g〉 |
---|
7 | | S m ⇒ let 〈ls, g'〉 ≝ n_idents m tag g in |
---|
8 | let 〈l, g''〉 ≝ fresh ? g' in |
---|
9 | 〈l:::ls, g''〉 |
---|
10 | ]. |
---|
11 | |
---|
12 | definition pre_register ≝ nat. |
---|
13 | |
---|
14 | record pre_internal_function : Type[0] ≝ |
---|
15 | { pf_result : option (pre_register × typ) |
---|
16 | ; pf_params : list (pre_register × typ) |
---|
17 | ; pf_locals : list (pre_register × typ) |
---|
18 | ; pf_stacksize : nat |
---|
19 | ; pf_graph : list (nat × ((pre_register → res (register×typ)) → (nat → res label) → res statement)) |
---|
20 | ; pf_entry : nat |
---|
21 | ; pf_exit : nat |
---|
22 | }. |
---|
23 | |
---|
24 | definition make_register : |
---|
25 | (pre_register → option (register×typ)) → pre_register → typ → universe RegisterTag → |
---|
26 | (nat → option (register×typ)) × (universe RegisterTag) × register ≝ |
---|
27 | λm,reg,ty,g. |
---|
28 | match m reg with |
---|
29 | [ Some r' ⇒ 〈〈m,g〉,\fst r'〉 |
---|
30 | | None ⇒ let 〈r',g'〉 ≝ fresh ? g in |
---|
31 | 〈〈λn. if eqb reg n then Some ? 〈r',ty〉 else m n,g'〉,r'〉 |
---|
32 | ] |
---|
33 | . |
---|
34 | |
---|
35 | definition make_registers_list : |
---|
36 | (nat → option (register×typ)) → list (pre_register × typ) → universe RegisterTag → |
---|
37 | (nat → option (register×typ)) × (universe RegisterTag) × (list (register×typ)) ≝ |
---|
38 | λm,lrs,g. |
---|
39 | foldr ?? (λrst,acc. let 〈acc',l〉 ≝ acc in |
---|
40 | let 〈rs,ty〉 ≝ rst in |
---|
41 | let 〈m,g〉 ≝ acc' in |
---|
42 | let 〈mg,rs'〉 ≝ make_register m rs ty g in |
---|
43 | 〈mg,〈rs',ty〉::l〉) 〈〈m,g〉,[ ]〉 lrs. |
---|
44 | |
---|
45 | (* Doesn't check for identifier overflow, but don't really need to care here. *) |
---|
46 | definition make_internal_function : pre_internal_function → res (fundef internal_function) ≝ |
---|
47 | λpre_f. |
---|
48 | let rgen0 ≝ new_universe RegisterTag in |
---|
49 | let 〈rmapgen1, result〉 ≝ match pf_result pre_f with |
---|
50 | [ None ⇒ 〈〈λ_.None ?, rgen0〉, None ?〉 |
---|
51 | | Some rt ⇒ let 〈x,y〉 ≝ make_register (λ_.None ?) (\fst rt) (\snd rt) rgen0 in 〈x,Some ? 〈y,\snd rt〉〉 |
---|
52 | ] in |
---|
53 | let 〈rmap1, rgen1〉 ≝ rmapgen1 in |
---|
54 | let 〈rmapgen2, params〉 ≝ make_registers_list rmap1 (pf_params pre_f) rgen1 in |
---|
55 | let 〈rmap2, rgen2〉 ≝ rmapgen2 in |
---|
56 | let 〈rmapgen3, locals〉 ≝ make_registers_list rmap2 (pf_locals pre_f) rgen2 in |
---|
57 | let 〈rmap3, rgen3〉 ≝ rmapgen3 in |
---|
58 | let rmap ≝ λn. opt_to_res … (msg MissingRegister) (rmap3 n) in |
---|
59 | let max_stmt ≝ foldr ?? (λp,m. max (\fst p) m) 0 (pf_graph pre_f) in |
---|
60 | let 〈labels, gen〉 ≝ n_idents (S max_stmt) ? (new_universe LabelTag) in |
---|
61 | let get_label ≝ λn. opt_to_res … (msg MissingLabel) (get_index_weak_v ?? labels n) in |
---|
62 | do graph ← foldr ?? (λp:nat × ((pre_register → res (register×typ)) → (nat → res label) → res statement).λg0. |
---|
63 | do g ← g0; |
---|
64 | let 〈l,s〉 ≝ p in |
---|
65 | do l' ← get_label l; |
---|
66 | do s' ← s rmap get_label; |
---|
67 | OK ? (add ?? g l' s')) (OK ? (empty_map ??)) (pf_graph pre_f); |
---|
68 | do entry ← get_label (pf_entry pre_f); |
---|
69 | do exit ← get_label (pf_exit pre_f); |
---|
70 | (* We could figure out that entry and exit are in the graph, but why bother |
---|
71 | for some testing code? *) |
---|
72 | match lookup … graph entry return λx. (x ≠ None ? → ?) → ? with |
---|
73 | [ None ⇒ λ_. Error ? (msg MissingLabel) |
---|
74 | | Some _ ⇒ |
---|
75 | match lookup … graph exit return λx. (? → x ≠ None ? → ?) → ? with |
---|
76 | [ None ⇒ λ_. Error ? (msg MissingLabel) |
---|
77 | | Some _ ⇒ λx. x ?? |
---|
78 | ] |
---|
79 | ] (λp,q. OK ? (Internal ? (mk_internal_function |
---|
80 | gen |
---|
81 | rgen3 |
---|
82 | result |
---|
83 | params |
---|
84 | locals |
---|
85 | (pf_stacksize pre_f) |
---|
86 | graph |
---|
87 | ? |
---|
88 | ? |
---|
89 | (mk_Sig ?? entry p) |
---|
90 | (mk_Sig ?? exit q) |
---|
91 | ))) |
---|
92 | . |
---|
93 | [ 1,2: % #E destruct (E) |
---|
94 | | 3,4: cases daemon |
---|
95 | ] |
---|
96 | qed. |
---|
97 | |
---|
98 | definition make_reg_list : (nat → res (register×typ)) → list pre_register → res (list register) ≝ |
---|
99 | λm,ps. foldr ?? (λp,rs0. do rs ← rs0; do 〈r,t〉 ← m p; OK ? (r::rs)) (OK ? [ ]) ps. |
---|
100 | |
---|
101 | (* XXX move somewhere sensible *) |
---|
102 | let rec mmap_vec (A:Type[0]) (B:Type[0]) (f:A → res B) (n:nat) (v:Vector A n) on v : res (Vector B n) ≝ |
---|
103 | match v with |
---|
104 | [ VEmpty ⇒ OK ? (VEmpty …) |
---|
105 | | VCons m hd tl ⇒ do hd' ← f hd; |
---|
106 | do tl' ← mmap_vec A B f m tl; |
---|
107 | OK ? (hd':::tl') |
---|
108 | ]. |
---|
109 | |
---|
110 | definition make_opt_reg : (pre_register → res (register×typ)) → option pre_register → res (option register) ≝ |
---|
111 | λm,o. match o with [ None ⇒ OK ? (None ?) | Some r ⇒ do 〈r',t'〉 ← m r; OK ? (Some ? r') ]. |
---|
112 | |
---|
113 | inductive pre_op1 : Type[0] ≝ |
---|
114 | | POcastint: intsize → signedness → intsize → pre_op1 |
---|
115 | | POnegint: pre_op1 |
---|
116 | | POnotbool: pre_op1 |
---|
117 | | POnotint: pre_op1 |
---|
118 | | POid: pre_op1 |
---|
119 | | POptrofint: pre_op1 |
---|
120 | | POintofptr: pre_op1 |
---|
121 | . |
---|
122 | |
---|
123 | (* duplicated from Clight/toCminor.ma. *) |
---|
124 | definition region_should_eq : ∀r1,r2. ∀P:region → Type[0]. P r1 → res (P r2). |
---|
125 | * * #P #p try @(OK ? p) @(Error ? (msg TypeMismatch)) |
---|
126 | qed. |
---|
127 | |
---|
128 | definition typ_should_eq : ∀ty1,ty2. ∀P:typ → Type[0]. P ty1 → res (P ty2). |
---|
129 | * [ #sz1 #sg1 | #r1 | #sz1 ] |
---|
130 | * [ 1,5,9: | *: #a #b #c try #d @(Error ? (msg TypeMismatch)) ] |
---|
131 | [ *; cases sz1 [ 1,5,9: | *: #a #b #c @(Error ? (msg TypeMismatch)) ] |
---|
132 | *; cases sg1 #P #p try @(OK ? p) @(Error ? (msg TypeMismatch)) |
---|
133 | | *; #P #p @(region_should_eq r1 ?? p) |
---|
134 | | *; cases sz1 #P #p try @(OK ? p) @(Error ? (msg TypeMismatch)) |
---|
135 | ] qed. |
---|
136 | |
---|
137 | definition is_bool_src : ∀ty. res (boolsrc ty) ≝ |
---|
138 | λty. match ty return λt.res (boolsrc t) with [ ASTint _ _ ⇒ OK ? I | ASTptr _ ⇒ OK ? I | _ ⇒ Error ? (msg TypeMismatch) ]. |
---|
139 | |
---|
140 | definition make_op1 : ∀t,t'. pre_op1 → res (unary_operation t' t) ≝ |
---|
141 | λt,t',op. |
---|
142 | match op with |
---|
143 | [ POcastint sz sg sz' ⇒ |
---|
144 | match t' return λt'. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
145 | do o ← typ_should_eq ? t (λt. unary_operation ? t) (Ocastint sz sg sz' sg2); |
---|
146 | typ_should_eq ? (ASTint sz2 sg2) (λt'. unary_operation t' ?) o |
---|
147 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
148 | | POnegint ⇒ |
---|
149 | match t' return λt'. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
150 | do o ← typ_should_eq ? t (λt. unary_operation ? t) (Onegint sz2 sg2); |
---|
151 | typ_should_eq ? (ASTint sz2 sg2) (λt'. unary_operation t' ?) o |
---|
152 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
153 | | POnotbool ⇒ |
---|
154 | match t return λt. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
155 | do p ← is_bool_src t'; |
---|
156 | OK ? (Onotbool t' sz2 sg2 p) |
---|
157 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
158 | | POnotint ⇒ |
---|
159 | match t' return λt'. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
160 | do o ← typ_should_eq ? t (λt. unary_operation ? t) (Onotint sz2 sg2); |
---|
161 | typ_should_eq ? (ASTint sz2 sg2) (λt'. unary_operation t' ?) o |
---|
162 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
163 | | POid ⇒ typ_should_eq t t' (λt'. unary_operation t' t) (Oid t) |
---|
164 | | POptrofint ⇒ |
---|
165 | match t' return λt'. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
166 | match t return λt. res (unary_operation ? t) with [ ASTptr r1 ⇒ |
---|
167 | OK ? (Optrofint …) |
---|
168 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
169 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
170 | | POintofptr ⇒ |
---|
171 | match t return λt. res (unary_operation t' t) with [ ASTint sz2 sg2 ⇒ |
---|
172 | match t' return λt'. res (unary_operation t' ?) with [ ASTptr r1 ⇒ |
---|
173 | OK ? (Ointofptr …) |
---|
174 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
175 | | _ ⇒ Error ? (msg TypeMismatch) ] |
---|
176 | ]. |
---|
177 | |
---|
178 | let rec make_St_skip l ≝ λr:nat → res (register×typ).λf:nat → res label. do l' ← f l; OK ? (St_skip l'). |
---|
179 | let rec make_St_cost cl l ≝ λr:nat → res (register×typ).λf:nat → res label. do l' ← f l; OK ? (St_cost cl l'). |
---|
180 | let rec make_St_const rs cst l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈rs',ty'〉 ← r rs; do l' ← f l; OK ? (St_const rs' cst l'). |
---|
181 | let rec make_St_op1 op dst src l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈dst',dty〉 ← r dst; do 〈src',sty〉 ← r src; do l' ← f l; do op ← make_op1 dty sty op; OK ? (St_op1 dty sty op dst' src' l'). |
---|
182 | let rec make_St_op2 op dst src1 src2 l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈dst',dty〉 ← r dst; do 〈src1',sty1〉 ← r src1; do 〈src2',sty2〉 ← r src2; do l' ← f l; OK ? (St_op2 op dst' src1' src2' l'). |
---|
183 | let rec make_St_load chunk addr dst l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈addr',aty〉 ← r addr; do 〈dst',dty〉 ← r dst; do l' ← f l; OK ? (St_load chunk addr' dst' l'). |
---|
184 | let rec make_St_store chunk addr src l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈addr',aty〉 ← r addr; do 〈src',sty〉 ← r src; do l' ← f l; OK ? (St_store chunk addr' src' l'). |
---|
185 | let rec make_St_call_id id args dst l ≝ λr:nat → res (register×typ).λf:nat → res label. do args' ← make_reg_list r args; do dst' ← make_opt_reg r dst; do l' ← f l; OK ? (St_call_id id args' dst' l'). |
---|
186 | let rec make_St_call_ptr frs args dst l ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈frs',fty〉 ← r frs; do args' ← make_reg_list r args; do dst' ← make_opt_reg r dst; do l' ← f l; OK ? (St_call_ptr frs' args' dst' l'). |
---|
187 | let rec make_St_tailcall_id id args ≝ λr:nat → res (register×typ).λf:nat → res label. do args' ← make_reg_list r args; OK statement (St_tailcall_id id args'). |
---|
188 | let rec make_St_tailcall_ptr frs args ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈frs',fty〉 ← r frs; do args' ← make_reg_list r args; OK statement (St_tailcall_ptr frs' args'). |
---|
189 | let rec make_St_cond src ltrue lfalse ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈src',sty〉 ← r src; do ltrue' ← f ltrue; do lfalse' ← f lfalse; OK ? (St_cond src' ltrue' lfalse'). |
---|
190 | let rec make_St_jumptable rs ls ≝ λr:nat → res (register×typ).λf:nat → res label. do 〈rs',rty〉 ← r rs; do ls' ← foldr ?? (λl,ls0. do ls ← ls0; do l' ← f l; OK ? (l'::ls)) (OK ? [ ]) ls; OK ? (St_jumptable rs' ls'). |
---|
191 | definition make_St_return ≝ λr:nat → res (register×typ).λf:nat → res label. OK statement St_return. |
---|
192 | |
---|