1 | |
---|
2 | include "RTLabs/semantics.ma". |
---|
3 | |
---|
4 | let rec n_idents (n:nat) (tag:String) (g:universe tag) : res (Vector (identifier tag) n × (universe tag)) ≝ |
---|
5 | match n with |
---|
6 | [ O ⇒ OK ? 〈[[ ]], g〉 |
---|
7 | | S m ⇒ do 〈ls, g'〉 ← n_idents m tag g; |
---|
8 | do 〈l, g''〉 ← fresh ? g'; |
---|
9 | OK ? 〈l:::ls, g''〉 |
---|
10 | ]. |
---|
11 | |
---|
12 | definition pre_register ≝ nat. |
---|
13 | |
---|
14 | record pre_internal_function : Type[0] ≝ |
---|
15 | { pf_result : option (pre_register × typ) |
---|
16 | ; pf_params : list (pre_register × typ) |
---|
17 | ; pf_locals : list (pre_register × typ) |
---|
18 | ; pf_stacksize : nat |
---|
19 | ; pf_graph : list (nat × ((pre_register → res register) → (nat → res label) → res statement)) |
---|
20 | ; pf_entry : nat |
---|
21 | ; pf_exit : nat |
---|
22 | }. |
---|
23 | |
---|
24 | definition make_register : |
---|
25 | (pre_register → option register) → pre_register → universe RegisterTag → |
---|
26 | res ((nat → option register) × (universe RegisterTag) × register) ≝ |
---|
27 | λm,reg,g. |
---|
28 | match m reg with |
---|
29 | [ Some r' ⇒ OK ? 〈〈m,g〉,r'〉 |
---|
30 | | None ⇒ do 〈r',g'〉 ← fresh ? g; |
---|
31 | OK ? 〈〈λn. if eqb reg n then Some ? r' else m n,g'〉,r'〉 |
---|
32 | ] |
---|
33 | . |
---|
34 | |
---|
35 | definition make_registers_list : |
---|
36 | (nat → option register) → list (pre_register × typ) → universe RegisterTag → |
---|
37 | res ((nat → option register) × (universe RegisterTag) × (list (register×typ))) ≝ |
---|
38 | λm,lrs,g. |
---|
39 | foldr ?? (λrst,acc. do 〈acc',l〉 ← acc; |
---|
40 | let 〈rs,ty〉 ≝ rst in |
---|
41 | let 〈m,g〉 ≝ acc' in |
---|
42 | do 〈mg,rs'〉 ← make_register m rs g; |
---|
43 | OK ? 〈mg,〈rs',ty〉::l〉) (OK ? 〈〈m,g〉,[ ]〉) lrs. |
---|
44 | |
---|
45 | axiom MissingRegister : String. |
---|
46 | axiom MissingLabel : String. |
---|
47 | |
---|
48 | definition make_internal_function : pre_internal_function → res (fundef internal_function) ≝ |
---|
49 | λpre_f. |
---|
50 | let rgen0 ≝ new_universe RegisterTag in |
---|
51 | do 〈rmapgen1, result〉 ← match pf_result pre_f with |
---|
52 | [ None ⇒ OK ? 〈〈λ_.None ?, rgen0〉, None ?〉 |
---|
53 | | Some rt ⇒ do 〈x,y〉 ← make_register (λ_.None ?) (\fst rt) rgen0; OK ? 〈x,Some ? 〈y,\snd rt〉〉 |
---|
54 | ]; |
---|
55 | let 〈rmap1, rgen1〉 ≝ rmapgen1 in |
---|
56 | do 〈rmapgen2, params〉 ← make_registers_list rmap1 (pf_params pre_f) rgen1; |
---|
57 | let 〈rmap2, rgen2〉 ≝ rmapgen2 in |
---|
58 | do 〈rmapgen3, locals〉 ← make_registers_list rmap2 (pf_locals pre_f) rgen2; |
---|
59 | let 〈rmap3, rgen3〉 ≝ rmapgen3 in |
---|
60 | let rmap ≝ λn. opt_to_res … (msg MissingRegister) (rmap3 n) in |
---|
61 | let max_stmt ≝ foldr ?? (λp,m. max (\fst p) m) 0 (pf_graph pre_f) in |
---|
62 | do 〈labels, gen〉 ← n_idents (S max_stmt) ? (new_universe LabelTag); |
---|
63 | let get_label ≝ λn. opt_to_res … (msg MissingLabel) (get_index_weak_v ?? labels n) in |
---|
64 | do graph ← foldr ?? (λp:nat × ((pre_register → res register) → (nat → res label) → res statement).λg0. |
---|
65 | do g ← g0; |
---|
66 | let 〈l,s〉 ≝ p in |
---|
67 | do l' ← get_label l; |
---|
68 | do s' ← s rmap get_label; |
---|
69 | OK ? (add ?? g l' s')) (OK ? (empty_map ??)) (pf_graph pre_f); |
---|
70 | do entry ← get_label (pf_entry pre_f); |
---|
71 | do exit ← get_label (pf_exit pre_f); |
---|
72 | OK ? (Internal ? (mk_internal_function |
---|
73 | gen |
---|
74 | rgen3 |
---|
75 | result |
---|
76 | params |
---|
77 | locals |
---|
78 | (pf_stacksize pre_f) |
---|
79 | graph |
---|
80 | entry |
---|
81 | exit |
---|
82 | )). |
---|
83 | |
---|
84 | definition make_reg_list : (nat → res register) → list pre_register → res (list register) ≝ |
---|
85 | λm,ps. foldr ?? (λp,rs0. do rs ← rs0; do r ← m p; OK ? (r::rs)) (OK ? [ ]) ps. |
---|
86 | |
---|
87 | (* XXX move somewhere sensible *) |
---|
88 | let rec mmap_vec (A:Type[0]) (B:Type[0]) (f:A → res B) (n:nat) (v:Vector A n) on v : res (Vector B n) ≝ |
---|
89 | match v with |
---|
90 | [ VEmpty ⇒ OK ? (VEmpty …) |
---|
91 | | VCons m hd tl ⇒ do hd' ← f hd; |
---|
92 | do tl' ← mmap_vec A B f m tl; |
---|
93 | OK ? (hd':::tl') |
---|
94 | ]. |
---|
95 | |
---|
96 | definition make_opt_reg : (pre_register → res register) → option pre_register → res (option register) ≝ |
---|
97 | λm,o. match o with [ None ⇒ OK ? (None ?) | Some r ⇒ do r' ← m r; OK ? (Some ? r') ]. |
---|
98 | |
---|
99 | let rec make_St_skip l ≝ λr:nat → res register.λf:nat → res label. do l' ← f l; OK ? (St_skip l'). |
---|
100 | let rec make_St_cost cl l ≝ λr:nat → res register.λf:nat → res label. do l' ← f l; OK ? (St_cost cl l'). |
---|
101 | let rec make_St_const rs cst l ≝ λr:nat → res register.λf:nat → res label. do rs' ← r rs; do l' ← f l; OK ? (St_const rs' cst l'). |
---|
102 | let rec make_St_op1 op dst src l ≝ λr:nat → res register.λf:nat → res label. do dst' ← r dst; do src' ← r src; do l' ← f l; OK ? (St_op1 op dst' src' l'). |
---|
103 | let rec make_St_op2 op dst src1 src2 l ≝ λr:nat → res register.λf:nat → res label. do dst' ← r dst; do src1' ← r src1; do src2' ← r src2; do l' ← f l; OK ? (St_op2 op dst' src1' src2' l'). |
---|
104 | let rec make_St_load chunk addr dst l ≝ λr:nat → res register.λf:nat → res label. do addr' ← r addr; do dst' ← r dst; do l' ← f l; OK ? (St_load chunk addr' dst' l'). |
---|
105 | let rec make_St_store chunk addr src l ≝ λr:nat → res register.λf:nat → res label. do addr' ← r addr; do src' ← r src; do l' ← f l; OK ? (St_store chunk addr' src' l'). |
---|
106 | let rec make_St_call_id id args dst l ≝ λr:nat → res register.λf:nat → res label. do args' ← make_reg_list r args; do dst' ← make_opt_reg r dst; do l' ← f l; OK ? (St_call_id id args' dst' l'). |
---|
107 | let rec make_St_call_ptr frs args dst l ≝ λr:nat → res register.λf:nat → res label. do frs' ← r frs; do args' ← make_reg_list r args; do dst' ← make_opt_reg r dst; do l' ← f l; OK ? (St_call_ptr frs' args' dst' l'). |
---|
108 | let rec make_St_tailcall_id id args ≝ λr:nat → res register.λf:nat → res label. do args' ← make_reg_list r args; OK statement (St_tailcall_id id args'). |
---|
109 | let rec make_St_tailcall_ptr frs args ≝ λr:nat → res register.λf:nat → res label. do frs' ← r frs; do args' ← make_reg_list r args; OK statement (St_tailcall_ptr frs' args'). |
---|
110 | let rec make_St_cond src ltrue lfalse ≝ λr:nat → res register.λf:nat → res label. do src' ← r src; do ltrue' ← f ltrue; do lfalse' ← f lfalse; OK ? (St_cond src' ltrue' lfalse'). |
---|
111 | let rec make_St_jumptable rs ls ≝ λr:nat → res register.λf:nat → res label. do rs' ← r rs; do ls' ← foldr ?? (λl,ls0. do ls ← ls0; do l' ← f l; OK ? (l'::ls)) (OK ? [ ]) ls; OK ? (St_jumptable rs' ls'). |
---|
112 | definition make_St_return ≝ λr:nat → res register.λf:nat → res label. OK statement St_return. |
---|
113 | |
---|