1 | |
---|
2 | include "RTLabs/semantics.ma". |
---|
3 | include "common/StructuredTraces.ma". |
---|
4 | |
---|
5 | discriminator status_class. |
---|
6 | |
---|
7 | (* NB: For RTLabs we only classify branching behaviour as jumps. Other jumps |
---|
8 | will be added later (LTL → LIN). *) |
---|
9 | |
---|
10 | definition RTLabs_classify : state → status_class ≝ |
---|
11 | λs. match s with |
---|
12 | [ State f _ _ ⇒ |
---|
13 | match lookup_present ?? (f_graph (func f)) (next f) (next_ok f) with |
---|
14 | [ St_cond _ _ _ ⇒ cl_jump |
---|
15 | | St_jumptable _ _ ⇒ cl_jump |
---|
16 | | _ ⇒ cl_other |
---|
17 | ] |
---|
18 | | Callstate _ _ _ _ _ ⇒ cl_call |
---|
19 | | Returnstate _ _ _ _ ⇒ cl_return |
---|
20 | ]. |
---|
21 | |
---|
22 | definition is_cost_label : statement → bool ≝ |
---|
23 | λs. match s with [ St_cost _ _ ⇒ true | _ ⇒ false ]. |
---|
24 | |
---|
25 | definition RTLabs_cost : state → bool ≝ |
---|
26 | λs. match s with |
---|
27 | [ State f fs m ⇒ |
---|
28 | is_cost_label (lookup_present ?? (f_graph (func f)) (next f) (next_ok f)) |
---|
29 | | _ ⇒ false |
---|
30 | ]. |
---|
31 | |
---|
32 | definition RTLabs_status : genv → abstract_status ≝ |
---|
33 | λge. |
---|
34 | mk_abstract_status |
---|
35 | state |
---|
36 | (λs,s'. ∃t. eval_statement ge s = Value ??? 〈t,s'〉) |
---|
37 | (λs,c. RTLabs_classify s = c) |
---|
38 | (λs. RTLabs_cost s = true) |
---|
39 | (λs,s'. match s with |
---|
40 | [ mk_Sig s p ⇒ |
---|
41 | match s return λs. RTLabs_classify s = cl_call → ? with |
---|
42 | [ Callstate fd args dst stk m ⇒ |
---|
43 | λ_. match s' with |
---|
44 | [ State f fs m ⇒ match stk with [ nil ⇒ False | cons h t ⇒ next h = next f ] |
---|
45 | | _ ⇒ False |
---|
46 | ] |
---|
47 | | State f fs m ⇒ λH.⊥ |
---|
48 | | _ ⇒ λH.⊥ |
---|
49 | ] p |
---|
50 | ]). |
---|
51 | [ normalize in H; destruct |
---|
52 | | whd in H:(??%?); |
---|
53 | cases (lookup_present LabelTag statement (f_graph (func f)) (next f) (next_ok f)) in H; |
---|
54 | normalize try #a try #b try #c try #d try #e try #g try #h destruct |
---|
55 | ] qed. |
---|
56 | |
---|
57 | (* Before attempting to construct a structured trace, let's show that we can |
---|
58 | form flat traces with evidence that they were constructed from an execution. |
---|
59 | |
---|
60 | For now we don't consider I/O. *) |
---|
61 | |
---|
62 | |
---|
63 | coinductive exec_no_io (o:Type[0]) (i:o → Type[0]) : execution state o i → Prop ≝ |
---|
64 | | noio_stop : ∀a,b,c. exec_no_io o i (e_stop … a b c) |
---|
65 | | noio_step : ∀a,b,e. exec_no_io o i e → exec_no_io o i (e_step … a b e) |
---|
66 | | noio_wrong : ∀m. exec_no_io o i (e_wrong … m). |
---|
67 | |
---|
68 | (* add I/O? *) |
---|
69 | coinductive flat_trace (o:Type[0]) (i:o → Type[0]) (ge:genv) : state → Type[0] ≝ |
---|
70 | | ft_stop : ∀s. RTLabs_is_final s ≠ None ? → flat_trace o i ge s |
---|
71 | | ft_step : ∀s,tr,s'. eval_statement ge s = Value ??? 〈tr,s'〉 → flat_trace o i ge s' → flat_trace o i ge s |
---|
72 | | ft_wrong : ∀s,m. eval_statement ge s = Wrong ??? m → flat_trace o i ge s. |
---|
73 | |
---|
74 | let corec make_flat_trace ge s |
---|
75 | (H:exec_no_io … (exec_inf_aux … RTLabs_fullexec ge (eval_statement ge s))) : |
---|
76 | flat_trace io_out io_in ge s ≝ |
---|
77 | let e ≝ exec_inf_aux … RTLabs_fullexec ge (eval_statement ge s) in |
---|
78 | match e return λx. e = x → ? with |
---|
79 | [ e_stop tr i s' ⇒ λE. ft_step … s tr s' ? (ft_stop … s' ?) |
---|
80 | | e_step tr s' e' ⇒ λE. ft_step … s tr s' ? (make_flat_trace ge s' ?) |
---|
81 | | e_wrong m ⇒ λE. ft_wrong … s m ? |
---|
82 | | e_interact o f ⇒ λE. ⊥ |
---|
83 | ] (refl ? e). |
---|
84 | [ 1,2: whd in E:(??%?); >exec_inf_aux_unfold in E; |
---|
85 | cases (eval_statement ge s) |
---|
86 | [ 1,4: #O #K whd in ⊢ (??%? → ?); #E destruct |
---|
87 | | 2,5: * #tr #s1 whd in ⊢ (??%? → ?); |
---|
88 | >(?:is_final ????? = RTLabs_is_final s1) // |
---|
89 | lapply (refl ? (RTLabs_is_final s1)) |
---|
90 | cases (RTLabs_is_final s1) in ⊢ (???% → %); |
---|
91 | [ 1,3: #_ whd in ⊢ (??%? → ?); #E destruct |
---|
92 | | #i #_ whd in ⊢ (??%? → ?); #E destruct /2/ @refl |
---|
93 | | #i #E whd in ⊢ (??%? → ?); #E2 destruct >E % #E' destruct |
---|
94 | ] |
---|
95 | | *: #m whd in ⊢ (??%? → ?); #E destruct |
---|
96 | ] |
---|
97 | | whd in E:(??%?); >exec_inf_aux_unfold in E; |
---|
98 | cases (eval_statement ge s) |
---|
99 | [ #O #K whd in ⊢ (??%? → ?); #E destruct |
---|
100 | | * #tr #s1 whd in ⊢ (??%? → ?); |
---|
101 | cases (is_final ?????) |
---|
102 | [ whd in ⊢ (??%? → ?); #E destruct @refl |
---|
103 | | #i whd in ⊢ (??%? → ?); #E destruct |
---|
104 | ] |
---|
105 | | #m whd in ⊢ (??%? → ?); #E destruct |
---|
106 | ] |
---|
107 | | whd in E:(??%?); >E in H; #H >exec_inf_aux_unfold in E; |
---|
108 | cases (eval_statement ge s) |
---|
109 | [ #O #K whd in ⊢ (??%? → ?); #E destruct |
---|
110 | | * #tr #s1 whd in ⊢ (??%? → ?); |
---|
111 | cases (is_final ?????) |
---|
112 | [ whd in ⊢ (??%? → ?); #E |
---|
113 | change with (eval_statement ge s1) in E:(??(??????(?????%))?); |
---|
114 | destruct |
---|
115 | inversion H |
---|
116 | [ #a #b #c #E1 destruct |
---|
117 | | #trx #sx #ex #H1 #E2 #E3 destruct @H1 |
---|
118 | | #m #E1 destruct |
---|
119 | ] |
---|
120 | | #i whd in ⊢ (??%? → ?); #E destruct |
---|
121 | ] |
---|
122 | | #m whd in ⊢ (??%? → ?); #E destruct |
---|
123 | ] |
---|
124 | | whd in E:(??%?); >exec_inf_aux_unfold in E; |
---|
125 | cases (eval_statement ge s) |
---|
126 | [ #O #K whd in ⊢ (??%? → ?); #E destruct |
---|
127 | | * #tr1 #s1 whd in ⊢ (??%? → ?); |
---|
128 | cases (is_final ?????) |
---|
129 | [ whd in ⊢ (??%? → ?); #E destruct |
---|
130 | | #i whd in ⊢ (??%? → ?); #E destruct |
---|
131 | ] |
---|
132 | | #m whd in ⊢ (??%? → ?); #E destruct @refl |
---|
133 | ] |
---|
134 | | whd in E:(??%?); >E in H; #H |
---|
135 | inversion H |
---|
136 | [ #a #b #c #E destruct |
---|
137 | | #a #b #c #d #E1 destruct |
---|
138 | | #m #E1 destruct |
---|
139 | ] |
---|
140 | ] qed. |
---|
141 | |
---|
142 | let corec make_whole_flat_trace p s |
---|
143 | (H:exec_no_io … (exec_inf … RTLabs_fullexec p)) |
---|
144 | (I:make_initial_state ??? p = OK ? s) : |
---|
145 | flat_trace io_out io_in (make_global … RTLabs_fullexec p) s ≝ |
---|
146 | let ge ≝ make_global … p in |
---|
147 | let e ≝ exec_inf_aux ?? RTLabs_fullexec ge (Value … 〈E0, s〉) in |
---|
148 | match e return λx. e = x → ? with |
---|
149 | [ e_stop tr i s' ⇒ λE. ft_stop ?? ge s ? |
---|
150 | | e_step _ _ e' ⇒ λE. make_flat_trace ge s ? |
---|
151 | | e_wrong m ⇒ λE. ⊥ |
---|
152 | | e_interact o f ⇒ λE. ⊥ |
---|
153 | ] (refl ? e). |
---|
154 | [ whd in E:(??%?); >exec_inf_aux_unfold in E; |
---|
155 | whd in ⊢ (??%? → ?); |
---|
156 | >(?:is_final ????? = RTLabs_is_final s) // |
---|
157 | lapply (refl ? (RTLabs_is_final s)) |
---|
158 | cases (RTLabs_is_final s) in ⊢ (???% → %); |
---|
159 | [ #_ whd in ⊢ (??%? → ?); #E destruct |
---|
160 | | #i #E whd in ⊢ (??%? → ?); #E2 % #E3 destruct |
---|
161 | ] |
---|
162 | | whd in H:(???%); >I in H; whd in ⊢ (???% → ?); whd in E:(??%?); |
---|
163 | >exec_inf_aux_unfold in E ⊢ %; whd in ⊢ (??%? → ???% → ?); cases (is_final ?????) |
---|
164 | [ whd in ⊢ (??%? → ???% → ?); #E #H inversion H |
---|
165 | [ #a #b #c #E1 destruct |
---|
166 | | #tr1 #s1 #e1 #H1 #E1 #E2 -E2 -I destruct (E1) |
---|
167 | @H1 |
---|
168 | | #m #E1 destruct |
---|
169 | ] |
---|
170 | | #i whd in ⊢ (??%? → ???% → ?); #E destruct |
---|
171 | ] |
---|
172 | | whd in E:(??%?); >exec_inf_aux_unfold in E; whd in ⊢ (??%? → ?); |
---|
173 | cases (is_final ?????) [2:#i] whd in ⊢ (??%? → ?); #E destruct |
---|
174 | | whd in E:(??%?); >exec_inf_aux_unfold in E; whd in ⊢ (??%? → ?); |
---|
175 | cases (is_final ?????) [2:#i] whd in ⊢ (??%? → ?); #E destruct |
---|
176 | ] qed. |
---|
177 | |
---|
178 | (* Need a way to choose whether a called function terminates. Then, |
---|
179 | if the initial function terminates we generate a purely inductive structured trace, |
---|
180 | otherwise we start generating the coinductive one, and on every function call |
---|
181 | use the choice method again to decide whether to step over or keep going. |
---|
182 | |
---|
183 | Not quite what we need - have to decide on seeing each label whether we will see |
---|
184 | another or hit a non-terminating call? |
---|
185 | |
---|
186 | Also - need the notion of well-labelled in order to break loops. |
---|
187 | |
---|
188 | |
---|
189 | |
---|
190 | outline: |
---|
191 | |
---|
192 | does function terminate? |
---|
193 | - yes, get (bound on the number of steps until return), generate finite |
---|
194 | structure using bound as termination witness |
---|
195 | - no, get (¬ bound on steps to return), start building infinite trace out of |
---|
196 | finite steps. At calls, check for termination, generate appr. form. |
---|
197 | |
---|
198 | generating the finite parts: |
---|
199 | |
---|
200 | We start with the status after the call has been executed; well-labelling tells |
---|
201 | us that this is a labelled state. Now we want to generate a trace_label_return |
---|
202 | and also return the remainder of the flat trace. |
---|
203 | |
---|
204 | *) |
---|
205 | |
---|
206 | (* [will_return ge depth s trace] says that after a finite number of steps of |
---|
207 | [trace] from [s] we reach the return state for the current function. [depth] |
---|
208 | performs the call/return counting necessary for handling deeper function |
---|
209 | calls. It should be zero at the top level. *) |
---|
210 | inductive will_return (ge:genv) : nat → ∀s. flat_trace io_out io_in ge s → Type[0] ≝ |
---|
211 | | wr_step : ∀s,tr,s',depth,EX,trace. |
---|
212 | RTLabs_classify s = cl_other ∨ RTLabs_classify s = cl_jump → |
---|
213 | will_return ge depth s' trace → |
---|
214 | will_return ge depth s (ft_step ?? ge s tr s' EX trace) |
---|
215 | | wr_call : ∀s,tr,s',depth,EX,trace. |
---|
216 | RTLabs_classify s = cl_call → |
---|
217 | will_return ge (S depth) s' trace → |
---|
218 | will_return ge depth s (ft_step ?? ge s tr s' EX trace) |
---|
219 | | wr_ret : ∀s,tr,s',depth,EX,trace. |
---|
220 | RTLabs_classify s = cl_return → |
---|
221 | will_return ge depth s' trace → |
---|
222 | will_return ge (S depth) s (ft_step ?? ge s tr s' EX trace) |
---|
223 | (* Note that we require the ability to make a step after the return (this |
---|
224 | corresponds to somewhere that will be guaranteed to be a label at the |
---|
225 | end of the compilation chain). *) |
---|
226 | | wr_base : ∀s,tr,s',EX,trace. |
---|
227 | RTLabs_classify s = cl_return → |
---|
228 | will_return ge O s (ft_step ?? ge s tr s' EX trace) |
---|
229 | . |
---|
230 | |
---|
231 | (* The way we will use [will_return] won't satisfy Matita's guardedness check, |
---|
232 | so we will measure the length of these termination proofs and use an upper |
---|
233 | bound to show termination of the finite structured trace construction |
---|
234 | functions. *) |
---|
235 | |
---|
236 | let rec will_return_length ge d s tr (T:will_return ge d s tr) on T : nat ≝ |
---|
237 | match T with |
---|
238 | [ wr_step _ _ _ _ _ _ _ T' ⇒ S (will_return_length … T') |
---|
239 | | wr_call _ _ _ _ _ _ _ T' ⇒ S (will_return_length … T') |
---|
240 | | wr_ret _ _ _ _ _ _ _ T' ⇒ S (will_return_length … T') |
---|
241 | | wr_base _ _ _ _ _ _ ⇒ S O |
---|
242 | ]. |
---|
243 | |
---|
244 | include alias "arithmetics/nat.ma". |
---|
245 | |
---|
246 | (* Specialised to the particular situation it is used in. *) |
---|
247 | lemma wrl_nonzero : ∀ge,d,s,tr,T. O ≥ 3 * (will_return_length ge d s tr T) → False. |
---|
248 | #ge #d #s #tr * #s1 #tr1 #s2 [ 1,2,3: #d ] #EX #tr' #CL [1,2,3:#IH] |
---|
249 | whd in ⊢ (??(??%) → ?); |
---|
250 | >commutative_times |
---|
251 | #H lapply (le_plus_b … H) |
---|
252 | #H lapply (le_to_leb_true … H) |
---|
253 | normalize #E destruct |
---|
254 | qed. |
---|
255 | |
---|
256 | (* Inversion lemmas on [will_return] that also note the effect on the length |
---|
257 | of the proof. *) |
---|
258 | lemma will_return_call : ∀ge,d,s,tr,s',EX,trace. |
---|
259 | RTLabs_classify s = cl_call → |
---|
260 | ∀TM:will_return ge d s (ft_step ?? ge s tr s' EX trace). |
---|
261 | ΣTM':will_return ge (S d) s' trace. will_return_length … TM > will_return_length … TM'. |
---|
262 | #ge #d #s #tr #s' #EX #trace #CL #TERM inversion TERM |
---|
263 | [ #H19 #H20 #H21 #H22 #H23 #H24 #H25 #H26 #H27 #H28 #H29 #H30 #H31 @⊥ destruct >CL in H25; * #E destruct |
---|
264 | | #H33 #H34 #H35 #H36 #H37 #H38 #H39 #H40 #H41 #H42 #H43 #H44 #H45 destruct % // |
---|
265 | | #H47 #H48 #H49 #H50 #H51 #H52 #H53 #H54 #H55 #H56 #H57 #H58 #H59 @⊥ destruct >CL in H53; #E destruct |
---|
266 | | #H61 #H62 #H63 #H64 #H65 #H66 #H67 #H68 #H69 #H70 @⊥ destruct >CL in H66; #E destruct |
---|
267 | ] qed. |
---|
268 | |
---|
269 | lemma will_return_return : ∀ge,d,s,tr,s',EX,trace. |
---|
270 | RTLabs_classify s = cl_return → |
---|
271 | ∀TM:will_return ge d s (ft_step ?? ge s tr s' EX trace). |
---|
272 | match d with |
---|
273 | [ O ⇒ True |
---|
274 | | S d' ⇒ |
---|
275 | ΣTM':will_return ge d' s' trace. will_return_length … TM > will_return_length … TM' |
---|
276 | ]. |
---|
277 | #ge #d #s #tr #s' #EX #trace #CL #TERM inversion TERM |
---|
278 | [ #H19 #H20 #H21 #H22 #H23 #H24 #H25 #H26 #H27 #H28 #H29 #H30 #H31 @⊥ destruct >CL in H25; * #E destruct |
---|
279 | | #H33 #H34 #H35 #H36 #H37 #H38 #H39 #H40 #H41 #H42 #H43 #H44 #H45 @⊥ destruct >CL in H39; #E destruct |
---|
280 | | #H47 #H48 #H49 #H50 #H51 #H52 #H53 #H54 #H55 #H56 #H57 #H58 #H59 destruct % // |
---|
281 | | #H61 #H62 #H63 #H64 #H65 #H66 #H67 #H68 #H69 #H70 destruct @I |
---|
282 | ] qed. |
---|
283 | |
---|
284 | lemma will_return_notfn : ∀ge,d,s,tr,s',EX,trace. |
---|
285 | (RTLabs_classify s = cl_other) ⊎ (RTLabs_classify s = cl_jump) → |
---|
286 | ∀TM:will_return ge d s (ft_step ?? ge s tr s' EX trace). |
---|
287 | ΣTM':will_return ge d s' trace. will_return_length … TM > will_return_length … TM'. |
---|
288 | #ge #d #s #tr #s' #EX #trace * #CL #TERM inversion TERM |
---|
289 | [ #H290 #H291 #H292 #H293 #H294 #H295 #H296 #H297 #H298 #H299 #H300 #H301 #H302 destruct % // |
---|
290 | | #H304 #H305 #H306 #H307 #H308 #H309 #H310 #H311 #H312 #H313 #H314 #H315 #H316 @⊥ destruct >CL in H310; #E destruct |
---|
291 | | #H318 #H319 #H320 #H321 #H322 #H323 #H324 #H325 #H326 #H327 #H328 #H329 #H330 @⊥ destruct >CL in H324; #E destruct |
---|
292 | | #H332 #H333 #H334 #H335 #H336 #H337 #H338 #H339 #H340 #H341 @⊥ destruct >CL in H337; #E destruct |
---|
293 | | #H343 #H344 #H345 #H346 #H347 #H348 #H349 #H350 #H351 #H352 #H353 #H354 #H355 destruct % // |
---|
294 | | #H357 #H358 #H359 #H360 #H361 #H362 #H363 #H364 #H365 #H366 #H367 #H368 #H369 @⊥ destruct >CL in H363; #E destruct |
---|
295 | | #H371 #H372 #H373 #H374 #H375 #H376 #H377 #H378 #H379 #H380 #H381 #H382 #H383 @⊥ destruct >CL in H377; #E destruct |
---|
296 | | #H385 #H386 #H387 #H388 #H389 #H390 #H391 #H392 #H393 #H394 @⊥ destruct >CL in H390; #E destruct |
---|
297 | ] qed. |
---|
298 | |
---|
299 | (* We require that labels appear after branch instructions and at the start of |
---|
300 | functions. The first is required for preciseness, the latter for soundness. |
---|
301 | We will make a separate requirement for there to be a finite number of steps |
---|
302 | between labels to catch loops for soundness (is this sufficient?). *) |
---|
303 | |
---|
304 | definition well_cost_labelled_statement : ∀f:internal_function. ∀s. labels_present (f_graph f) s → Prop ≝ |
---|
305 | λf,s. match s return λs. labels_present ? s → Prop with |
---|
306 | [ St_cond _ l1 l2 ⇒ λH. |
---|
307 | is_cost_label (lookup_present … (f_graph f) l1 ?) = true ∧ |
---|
308 | is_cost_label (lookup_present … (f_graph f) l2 ?) = true |
---|
309 | | St_jumptable _ ls ⇒ λH. |
---|
310 | (* I did have a dependent version of All here, but it's a pain. *) |
---|
311 | All … (λl. ∃H. is_cost_label (lookup_present … (f_graph f) l H) = true) ls |
---|
312 | | _ ⇒ λ_. True |
---|
313 | ]. whd in H; |
---|
314 | [ @(proj1 … H) |
---|
315 | | @(proj2 … H) |
---|
316 | ] qed. |
---|
317 | |
---|
318 | definition well_cost_labelled_fn : internal_function → Prop ≝ |
---|
319 | λf. (∀l. ∀H:present … (f_graph f) l. |
---|
320 | well_cost_labelled_statement f (lookup_present … (f_graph f) l H) (f_closed f l …)) ∧ |
---|
321 | is_cost_label (lookup_present … (f_graph f) (f_entry f) ?) = true. |
---|
322 | [ @lookup_lookup_present | cases (f_entry f) // ] qed. |
---|
323 | |
---|
324 | (* We need to ensure that any code we come across is well-cost-labelled. We may |
---|
325 | get function code from either the global environment or the state. *) |
---|
326 | |
---|
327 | definition well_cost_labelled_ge : genv → Prop ≝ |
---|
328 | λge. ∀b,f. find_funct_ptr ?? ge b = Some ? (Internal ? f) → well_cost_labelled_fn f. |
---|
329 | |
---|
330 | definition well_cost_labelled_state : state → Prop ≝ |
---|
331 | λs. match s with |
---|
332 | [ State f fs m ⇒ well_cost_labelled_fn (func f) ∧ All ? (λf. well_cost_labelled_fn (func f)) fs |
---|
333 | | Callstate fd _ _ fs _ ⇒ match fd with [ Internal fn ⇒ well_cost_labelled_fn fn | External _ ⇒ True ] ∧ |
---|
334 | All ? (λf. well_cost_labelled_fn (func f)) fs |
---|
335 | | Returnstate _ _ fs _ ⇒ All ? (λf. well_cost_labelled_fn (func f)) fs |
---|
336 | ]. |
---|
337 | |
---|
338 | lemma well_cost_labelled_state_step : ∀ge,s,tr,s'. |
---|
339 | eval_statement ge s = Value ??? 〈tr,s'〉 → |
---|
340 | well_cost_labelled_ge ge → |
---|
341 | well_cost_labelled_state s → |
---|
342 | well_cost_labelled_state s'. |
---|
343 | #ge #s #tr' #s' #EV cases (eval_perserves … EV) |
---|
344 | [ #ge #f #f' #fs #m #m' * #func #locals #next #next_ok #sp #retdst #locals' #next' #next_ok' #Hge * #H1 #H2 % // |
---|
345 | | #ge #f #fs #m * #fn #args #f' #dst * #func #locals #next #next_ok #sp #retdst #locals' #next' #next_ok' #b #Hfn #Hge * #H1 #H2 % /2/ |
---|
346 | | #ge #f #fs #m * #fn #args #f' #dst #m' #b #Hge * #H1 #H2 % /2/ |
---|
347 | | #ge #fn #locals #next #nok #sp #fs #m #args #dst #m' #Hge * #H1 #H2 % /2/ |
---|
348 | | #ge #f #fs #m #rtv #dst #m' #Hge * #H1 #H2 @H2 |
---|
349 | | #ge #f #fs #rtv #dst #f' #m * #func #locals #next #nok #sp #retdst #locals' #next' #nok' #Hge * #H1 #H2 % // |
---|
350 | ] qed. |
---|
351 | |
---|
352 | lemma rtlabs_jump_inv : ∀s. |
---|
353 | RTLabs_classify s = cl_jump → |
---|
354 | ∃f,fs,m. s = State f fs m ∧ |
---|
355 | let stmt ≝ lookup_present ?? (f_graph (func f)) (next f) (next_ok f) in |
---|
356 | (∃r,l1,l2. stmt = St_cond r l1 l2) ∨ (∃r,ls. stmt = St_jumptable r ls). |
---|
357 | * |
---|
358 | [ #f #fs #m #E |
---|
359 | %{f} %{fs} %{m} % |
---|
360 | [ @refl |
---|
361 | | whd in E:(??%?); cases (lookup_present ? statement ???) in E ⊢ %; |
---|
362 | try (normalize try #A try #B try #C try #D try #F try #G try #H destruct) |
---|
363 | [ %1 %{A} %{B} %{C} @refl |
---|
364 | | %2 %{A} %{B} @refl |
---|
365 | ] |
---|
366 | ] |
---|
367 | | normalize #H1 #H2 #H3 #H4 #H5 #H6 destruct |
---|
368 | | normalize #H8 #H9 #H10 #H11 #H12 destruct |
---|
369 | ] qed. |
---|
370 | |
---|
371 | lemma well_cost_labelled_jump : ∀ge,s,tr,s'. |
---|
372 | eval_statement ge s = Value ??? 〈tr,s'〉 → |
---|
373 | well_cost_labelled_state s → |
---|
374 | RTLabs_classify s = cl_jump → |
---|
375 | RTLabs_cost s' = true. |
---|
376 | #ge #s #tr #s' #EV #H #CL |
---|
377 | cases (rtlabs_jump_inv s CL) |
---|
378 | #fr * #fs * #m * #Es * |
---|
379 | [ * #r * #l1 * #l2 #Estmt |
---|
380 | >Es in H; whd in ⊢ (% → ?); * * #Hbody #_ #Hfs |
---|
381 | >Es in EV; whd in ⊢ (??%? → ?); generalize in ⊢ (??(?%)? → ?); |
---|
382 | >Estmt #LP whd in ⊢ (??%? → ?); |
---|
383 | (* replace with lemma on successors? *) |
---|
384 | @bindIO_value #v #Ev @bindIO_value * #Eb whd in ⊢ (??%? → ?); #E destruct |
---|
385 | lapply (Hbody (next fr) (next_ok fr)) |
---|
386 | generalize in ⊢ (???% → ?); |
---|
387 | >Estmt #LP' |
---|
388 | whd in ⊢ (% → ?); |
---|
389 | * #H1 #H2 [ @H1 | @H2 ] |
---|
390 | | * #r * #ls #Estmt |
---|
391 | >Es in H; whd in ⊢ (% → ?); * * #Hbody #_ #Hfs |
---|
392 | >Es in EV; whd in ⊢ (??%? → ?); generalize in ⊢ (??(?%)? → ?); |
---|
393 | >Estmt #LP whd in ⊢ (??%? → ?); |
---|
394 | (* replace with lemma on successors? *) |
---|
395 | @bindIO_value #a cases a [ | #sz #i | #f | #r | #ptr ] #Ea whd in ⊢ (??%? → ?); |
---|
396 | [ 2: (* later *) |
---|
397 | | *: #E destruct |
---|
398 | ] |
---|
399 | lapply (Hbody (next fr) (next_ok fr)) |
---|
400 | generalize in ⊢ (???% → ?); >Estmt #LP' whd in ⊢ (% → ?); #CP |
---|
401 | generalize in ⊢ (??(?%)? → ?); |
---|
402 | cases (nth_opt label (nat_of_bitvector (bitsize_of_intsize sz) i) ls) in ⊢ (???% → ??(match % with [_⇒?|_⇒?]?)? → ?); |
---|
403 | [ #E1 #E2 whd in E2:(??%?); destruct |
---|
404 | | #l' #E1 #E2 whd in E2:(??%?); destruct |
---|
405 | cases (All_nth ???? CP ? E1) |
---|
406 | #H1 #H2 @H2 |
---|
407 | ] |
---|
408 | ] qed. |
---|
409 | |
---|
410 | lemma rtlabs_call_inv : ∀s. |
---|
411 | RTLabs_classify s = cl_call → |
---|
412 | ∃fd,args,dst,stk,m. s = Callstate fd args dst stk m. |
---|
413 | * [ #f #fs #m whd in ⊢ (??%? → ?); |
---|
414 | cases (lookup_present … (next f) (next_ok f)) normalize |
---|
415 | try #A try #B try #C try #D try #E try #F try #G destruct |
---|
416 | | #fd #args #dst #stk #m #E %{fd} %{args} %{dst} %{stk} %{m} @refl |
---|
417 | | normalize #H411 #H412 #H413 #H414 #H415 destruct |
---|
418 | ] qed. |
---|
419 | |
---|
420 | lemma well_cost_labelled_call : ∀ge,s,tr,s'. |
---|
421 | eval_statement ge s = Value ??? 〈tr,s'〉 → |
---|
422 | well_cost_labelled_state s → |
---|
423 | RTLabs_classify s = cl_call → |
---|
424 | RTLabs_cost s' = true. |
---|
425 | #ge #s #tr #s' #EV #WCL #CL |
---|
426 | cases (rtlabs_call_inv s CL) |
---|
427 | #fd * #args * #dst * #stk * #m #E >E in EV WCL; |
---|
428 | whd in ⊢ (??%? → % → ?); |
---|
429 | cases fd |
---|
430 | [ #fn whd in ⊢ (??%? → % → ?); |
---|
431 | @bindIO_value #lcl #Elcl cases (alloc m O (f_stacksize fn) Any) |
---|
432 | #m' #b whd in ⊢ (??%? → ?); #E' destruct |
---|
433 | * whd in ⊢ (% → ?); * #WCL1 #WCL2 #WCL3 |
---|
434 | @WCL2 |
---|
435 | | #fn whd in ⊢ (??%? → % → ?); |
---|
436 | @bindIO_value #evargs #Eargs |
---|
437 | @bindIO_value #evres #Eres |
---|
438 | normalize in Eres; destruct |
---|
439 | ] qed. |
---|
440 | |
---|
441 | (* Don't need to know that labels break loops because we have termination. *) |
---|
442 | |
---|
443 | (* A bit of mucking around with the depth to avoid proving termination after |
---|
444 | termination. Note that we keep a proof that our upper bound on the length |
---|
445 | of the termination proof is respected. *) |
---|
446 | record trace_result (ge:genv) (depth:nat) (T:state → Type[0]) (limit:nat) : Type[0] ≝ { |
---|
447 | new_state : state; |
---|
448 | remainder : flat_trace io_out io_in ge new_state; |
---|
449 | cost_labelled : well_cost_labelled_state new_state; |
---|
450 | new_trace : T new_state; |
---|
451 | terminates : match depth with |
---|
452 | [ O ⇒ True |
---|
453 | | S d ⇒ ΣTM:will_return ge d new_state remainder. limit > will_return_length … TM |
---|
454 | ] |
---|
455 | }. |
---|
456 | |
---|
457 | (* The same with a flag indicating whether the function returned, as opposed to |
---|
458 | encountering a label. *) |
---|
459 | record sub_trace_result (ge:genv) (depth:nat) (T:trace_ends_with_ret → state → Type[0]) (limit:nat) : Type[0] ≝ { |
---|
460 | ends : trace_ends_with_ret; |
---|
461 | trace_res :> trace_result ge (match ends with [ doesnt_end_with_ret ⇒ S depth | _ ⇒ depth]) (T ends) limit |
---|
462 | }. |
---|
463 | |
---|
464 | (* We often return the result from a recursive call with an addition to the |
---|
465 | structured trace, so we define a couple of functions to help. The bound on |
---|
466 | the size of the termination proof might need to be relaxed, too. *) |
---|
467 | |
---|
468 | definition replace_trace : ∀ge,d,T1,T2,l1,l2. l2 ≥ l1 → |
---|
469 | ∀r:trace_result ge d T1 l1. T2 (new_state … r) → trace_result ge d T2 l2 ≝ |
---|
470 | λge,d,T1,T2,l1,l2,lGE,r,trace. |
---|
471 | mk_trace_result ge d T2 l2 |
---|
472 | (new_state … r) |
---|
473 | (remainder … r) |
---|
474 | (cost_labelled … r) |
---|
475 | trace |
---|
476 | (match d return λd'.match d' with [ O ⇒ True | S d'' ⇒ ΣTM.l1 > will_return_length ge d'' (new_state … r) (remainder … r) TM] → |
---|
477 | match d' with [ O ⇒ True | S d'' ⇒ ΣTM.l2 > will_return_length ge d'' (new_state … r) (remainder … r) TM] with |
---|
478 | [O ⇒ λ_. I | _ ⇒ λTM. «pi1 … TM, ?» ] (terminates ???? r)) |
---|
479 | . @(transitive_le … lGE) @(pi2 … TM) qed. |
---|
480 | |
---|
481 | definition replace_sub_trace : ∀ge,d,T1,T2,l1,l2. l2 ≥ l1 → |
---|
482 | ∀r:sub_trace_result ge d T1 l1. T2 (ends … r) (new_state … r) → sub_trace_result ge d T2 l2 ≝ |
---|
483 | λge,d,T1,T2,l1,l2,lGE,r,trace. |
---|
484 | mk_sub_trace_result ge d T2 l2 |
---|
485 | (ends … r) |
---|
486 | (replace_trace … lGE … r trace). |
---|
487 | |
---|
488 | (* Small syntax hack to avoid ambiguous input problems. *) |
---|
489 | definition myge : nat → nat → Prop ≝ ge. |
---|
490 | |
---|
491 | let rec make_label_return ge depth s |
---|
492 | (trace: flat_trace io_out io_in ge s) |
---|
493 | (ENV_COSTLABELLED: well_cost_labelled_ge ge) |
---|
494 | (STATE_COSTLABELLED: well_cost_labelled_state s) (* functions in the state *) |
---|
495 | (STATEMENT_COSTLABEL: RTLabs_cost s = true) (* current statement is a cost label *) |
---|
496 | (TERMINATES: will_return ge depth s trace) |
---|
497 | (TIME: nat) |
---|
498 | (TERMINATES_IN_TIME: myge TIME (plus 2 (times 3 (will_return_length … TERMINATES)))) |
---|
499 | on TIME : trace_result ge depth |
---|
500 | (trace_label_return (RTLabs_status ge) s) |
---|
501 | (will_return_length … TERMINATES) ≝ |
---|
502 | |
---|
503 | match TIME return λTIME. TIME ≥ ? → ? with |
---|
504 | [ O ⇒ λTERMINATES_IN_TIME. ⊥ |
---|
505 | | S TIME ⇒ λTERMINATES_IN_TIME. |
---|
506 | |
---|
507 | let r ≝ make_label_label ge depth s |
---|
508 | trace |
---|
509 | ENV_COSTLABELLED |
---|
510 | STATE_COSTLABELLED |
---|
511 | STATEMENT_COSTLABEL |
---|
512 | TERMINATES |
---|
513 | TIME ? in |
---|
514 | match ends … r return λx. trace_result ge (match x with [ doesnt_end_with_ret ⇒ S depth | _ ⇒ depth]) (trace_label_label (RTLabs_status ge) x s) ? → trace_result ge depth (trace_label_return (RTLabs_status ge) s) (will_return_length … TERMINATES) with |
---|
515 | [ ends_with_ret ⇒ λr. |
---|
516 | replace_trace … r (tlr_base (RTLabs_status ge) s (new_state … r) (new_trace … r)) |
---|
517 | | doesnt_end_with_ret ⇒ λr. |
---|
518 | let r' ≝ make_label_return ge depth (new_state … r) |
---|
519 | (remainder … r) |
---|
520 | ENV_COSTLABELLED |
---|
521 | (cost_labelled … r) ? |
---|
522 | (pi1 … (terminates … r)) TIME ? in |
---|
523 | replace_trace … r' |
---|
524 | (tlr_step (RTLabs_status ge) s (new_state … r) |
---|
525 | (new_state … r') (new_trace … r) (new_trace … r')) |
---|
526 | ] (trace_res … r) |
---|
527 | |
---|
528 | ] TERMINATES_IN_TIME |
---|
529 | |
---|
530 | |
---|
531 | and make_label_label ge depth s |
---|
532 | (trace: flat_trace io_out io_in ge s) |
---|
533 | (ENV_COSTLABELLED: well_cost_labelled_ge ge) |
---|
534 | (STATE_COSTLABELLED: well_cost_labelled_state s) (* functions in the state *) |
---|
535 | (STATEMENT_COSTLABEL: RTLabs_cost s = true) (* current statement is a cost label *) |
---|
536 | (TERMINATES: will_return ge depth s trace) |
---|
537 | (TIME: nat) |
---|
538 | (TERMINATES_IN_TIME: myge TIME (plus 1 (times 3 (will_return_length … TERMINATES)))) |
---|
539 | on TIME : sub_trace_result ge depth |
---|
540 | (λends. trace_label_label (RTLabs_status ge) ends s) |
---|
541 | (will_return_length … TERMINATES) ≝ |
---|
542 | |
---|
543 | match TIME return λTIME. TIME ≥ ? → ? with |
---|
544 | [ O ⇒ λTERMINATES_IN_TIME. ⊥ |
---|
545 | | S TIME ⇒ λTERMINATES_IN_TIME. |
---|
546 | |
---|
547 | let r ≝ make_any_label ge depth s trace ENV_COSTLABELLED STATE_COSTLABELLED TERMINATES TIME ? in |
---|
548 | replace_sub_trace … r |
---|
549 | (tll_base (RTLabs_status ge) (ends … r) s (new_state … r) (new_trace … r) STATEMENT_COSTLABEL) |
---|
550 | |
---|
551 | ] TERMINATES_IN_TIME |
---|
552 | |
---|
553 | |
---|
554 | and make_any_label ge depth s |
---|
555 | (trace: flat_trace io_out io_in ge s) |
---|
556 | (ENV_COSTLABELLED: well_cost_labelled_ge ge) |
---|
557 | (STATE_COSTLABELLED: well_cost_labelled_state s) (* functions in the state *) |
---|
558 | (TERMINATES: will_return ge depth s trace) |
---|
559 | (TIME: nat) |
---|
560 | (TERMINATES_IN_TIME: myge TIME (times 3 (will_return_length … TERMINATES))) |
---|
561 | on TIME : sub_trace_result ge depth |
---|
562 | (λends. trace_any_label (RTLabs_status ge) ends s) |
---|
563 | (will_return_length … TERMINATES) ≝ |
---|
564 | |
---|
565 | match TIME return λTIME. TIME ≥ ? → ? with |
---|
566 | [ O ⇒ λTERMINATES_IN_TIME. ⊥ |
---|
567 | | S TIME ⇒ λTERMINATES_IN_TIME. |
---|
568 | |
---|
569 | match trace return λs,trace. well_cost_labelled_state s → ∀TM:will_return ??? trace. myge ? (times 3 (will_return_length ??? trace TM)) → sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends s) (will_return_length … TM) with |
---|
570 | [ ft_stop st FINAL ⇒ |
---|
571 | λSTATE_COSTLABELLED,TERMINATES,TERMINATES_IN_TIME. ? |
---|
572 | |
---|
573 | | ft_step start tr next EV trace' ⇒ λSTATE_COSTLABELLED,TERMINATES,TERMINATES_IN_TIME. |
---|
574 | match RTLabs_classify start return λx. RTLabs_classify start = x → sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends ?) (will_return_length … TERMINATES) with |
---|
575 | [ cl_other ⇒ λCL. |
---|
576 | match RTLabs_cost next return λx. RTLabs_cost next = x → sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends ?) (will_return_length … TERMINATES) with |
---|
577 | (* We're about to run into a label. *) |
---|
578 | [ true ⇒ λCS. |
---|
579 | mk_sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends start) ? |
---|
580 | doesnt_end_with_ret |
---|
581 | (mk_trace_result ge ??? next trace' ? |
---|
582 | (tal_base_not_return (RTLabs_status ge) start next ???) ?) |
---|
583 | (* An ordinary step, keep going. *) |
---|
584 | | false ⇒ λCS. |
---|
585 | let r ≝ make_any_label ge depth next trace' ENV_COSTLABELLED ? (will_return_notfn … TERMINATES) TIME ? in |
---|
586 | replace_sub_trace … r |
---|
587 | (tal_step_default (RTLabs_status ge) (ends … r) |
---|
588 | start next (new_state … r) ? (new_trace … r) ??) |
---|
589 | ] (refl ??) |
---|
590 | |
---|
591 | | cl_jump ⇒ λCL. |
---|
592 | mk_sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends start) ? |
---|
593 | doesnt_end_with_ret |
---|
594 | (mk_trace_result ge ??? next trace' ? |
---|
595 | (tal_base_not_return (RTLabs_status ge) start next ???) ?) |
---|
596 | |
---|
597 | | cl_call ⇒ λCL. |
---|
598 | let r ≝ make_label_return ge (S depth) next trace' ENV_COSTLABELLED ?? (will_return_call … TERMINATES) TIME ? in |
---|
599 | match RTLabs_cost (new_state … r) return λx. RTLabs_cost (new_state … r) = x → sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends ?) (will_return_length … TERMINATES) with |
---|
600 | (* We're about to run into a label, use base case for call *) |
---|
601 | [ true ⇒ λCS. |
---|
602 | mk_sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends start) ? |
---|
603 | doesnt_end_with_ret |
---|
604 | (replace_trace … r |
---|
605 | (tal_base_call (RTLabs_status ge) start next (new_state … r) |
---|
606 | ? CL ? (new_trace … r) CS)) |
---|
607 | (* otherwise use step case *) |
---|
608 | | false ⇒ λCS. |
---|
609 | let r' ≝ make_any_label ge depth |
---|
610 | (new_state … r) (remainder … r) ENV_COSTLABELLED ? |
---|
611 | (pi1 … (terminates … r)) TIME ? in |
---|
612 | replace_sub_trace … r' |
---|
613 | (tal_step_call (RTLabs_status ge) (ends … r') |
---|
614 | start next (new_state … r) (new_state … r') ? CL ? |
---|
615 | (new_trace … r) ? (new_trace … r')) |
---|
616 | ] (refl ??) |
---|
617 | |
---|
618 | | cl_return ⇒ λCL. |
---|
619 | mk_sub_trace_result ge depth (λends. trace_any_label (RTLabs_status ge) ends start) ? |
---|
620 | ends_with_ret |
---|
621 | (mk_trace_result ge ??? |
---|
622 | next |
---|
623 | trace' |
---|
624 | ? |
---|
625 | (tal_base_return (RTLabs_status ge) start next ? CL) |
---|
626 | ?) |
---|
627 | ] (refl ? (RTLabs_classify start)) |
---|
628 | |
---|
629 | | ft_wrong start m EV ⇒ λSTATE_COSTLABELLED,TERMINATES. ⊥ |
---|
630 | |
---|
631 | ] STATE_COSTLABELLED TERMINATES TERMINATES_IN_TIME |
---|
632 | ] TERMINATES_IN_TIME. |
---|
633 | |
---|
634 | [ cases (not_le_Sn_O ?) [ #H @H @TERMINATES_IN_TIME ] |
---|
635 | | // |
---|
636 | | cases r #H1 #H2 #H3 #H4 * #x @le_S_to_le |
---|
637 | | @(trace_label_label_label … (new_trace … r)) |
---|
638 | | cases r #H1 #H2 #H3 #H4 * #H5 #H6 |
---|
639 | @(le_plus_to_le … 1) @(transitive_le … TERMINATES_IN_TIME) |
---|
640 | @(transitive_le … (3*(will_return_length … TERMINATES))) |
---|
641 | [ >commutative_times change with ((S ?) * 3 ≤ ?) >commutative_times |
---|
642 | @(monotonic_le_times_r 3 … H6) |
---|
643 | | @le_S @le_S @le_n |
---|
644 | ] |
---|
645 | | @le_S_S_to_le @TERMINATES_IN_TIME |
---|
646 | | cases (not_le_Sn_O ?) [ #H @H @TERMINATES_IN_TIME ] |
---|
647 | | @le_n |
---|
648 | | @le_S_S_to_le @TERMINATES_IN_TIME |
---|
649 | | @(wrl_nonzero … TERMINATES_IN_TIME) |
---|
650 | | (* Bad - we've reached the end of the trace; need to fix semantics so that |
---|
651 | this can't happen *) |
---|
652 | | @(will_return_return … CL TERMINATES) |
---|
653 | | %{tr} @EV |
---|
654 | | @(well_cost_labelled_state_step … EV) // |
---|
655 | | whd @(will_return_notfn … TERMINATES) %2 @CL |
---|
656 | | %{tr} @EV |
---|
657 | | %1 whd @CL |
---|
658 | | @(well_cost_labelled_jump … EV) // |
---|
659 | | @(well_cost_labelled_state_step … EV) // |
---|
660 | | %{tr} @EV |
---|
661 | | (* TODO oh dear *) |
---|
662 | | cases (will_return_call … TERMINATES) #H @le_S_to_le |
---|
663 | | cases r #H1 #H2 #H3 #H4 * #H5 |
---|
664 | cases (will_return_call … CL TERMINATES) |
---|
665 | #TM #X #Y @le_S_to_le @(transitive_lt … Y X) |
---|
666 | | whd in ⊢ (?%); >CS % #E destruct |
---|
667 | | (* TODO oh dear *) |
---|
668 | | %{tr} @EV |
---|
669 | | @(cost_labelled … r) |
---|
670 | | cases r #H72 #H73 #H74 #H75 * #H76 #H78 |
---|
671 | @(le_plus_to_le … 1) @(transitive_le … TERMINATES_IN_TIME) |
---|
672 | cases (will_return_call … TERMINATES) in H78; |
---|
673 | #X #Y #Z |
---|
674 | @(transitive_le … (monotonic_lt_times_r 3 … Y)) |
---|
675 | [ @(transitive_le … (monotonic_lt_times_r 3 … Z)) // |
---|
676 | | // |
---|
677 | ] |
---|
678 | | @(well_cost_labelled_state_step … EV) // |
---|
679 | | @(well_cost_labelled_call … EV) // |
---|
680 | | skip |
---|
681 | | cases (will_return_call … TERMINATES) |
---|
682 | #TM #GT @le_S_S_to_le |
---|
683 | >commutative_times change with ((S ?) * 3 ≤ ?) >commutative_times |
---|
684 | @(transitive_le … TERMINATES_IN_TIME) |
---|
685 | @(monotonic_le_times_r 3 … GT) |
---|
686 | | whd @(will_return_notfn … TERMINATES) %1 @CL |
---|
687 | | %{tr} @EV |
---|
688 | | %2 whd @CL |
---|
689 | | @CS |
---|
690 | | @(well_cost_labelled_state_step … EV) // |
---|
691 | | cases (will_return_notfn … TERMINATES) #TM @le_S_to_le |
---|
692 | | % whd in ⊢ (% → ?); >CS #E destruct |
---|
693 | | @CL |
---|
694 | | %{tr} @EV |
---|
695 | | @(well_cost_labelled_state_step … EV) // |
---|
696 | | %1 @CL |
---|
697 | | cases (will_return_notfn … TERMINATES) #TM #GT |
---|
698 | @le_S_S_to_le |
---|
699 | @(transitive_le … (monotonic_lt_times_r … GT) TERMINATES_IN_TIME) |
---|
700 | // |
---|
701 | | inversion TERMINATES |
---|
702 | [ #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 #H9 #H10 #H11 #H12 #H13 -TERMINATES -TERMINATES destruct |
---|
703 | | #H17 #H18 #H19 #H20 #H21 #H22 #H23 #H24 #H25 #H26 #H27 #H28 #H29 -TERMINATES -TERMINATES destruct |
---|
704 | | #H33 #H34 #H35 #H36 #H37 #H38 #H39 #H40 #H41 #H42 #H43 #H44 #H45 -TERMINATES -TERMINATES destruct |
---|
705 | | #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 #H9 #H10 -TERMINATES -TERMINATES destruct |
---|
706 | ] |
---|
707 | ] cases daemon qed. |
---|
708 | |
---|
709 | (* We can initialise TIME with a suitably large value based on the length of the |
---|
710 | termination proof. *) |
---|
711 | let rec make_label_return' ge depth s |
---|
712 | (trace: flat_trace io_out io_in ge s) |
---|
713 | (ENV_COSTLABELLED: well_cost_labelled_ge ge) |
---|
714 | (STATE_COSTLABELLED: well_cost_labelled_state s) (* functions in the state *) |
---|
715 | (STATEMENT_COSTLABEL: RTLabs_cost s = true) (* current statement is a cost label *) |
---|
716 | (TERMINATES: will_return ge depth s trace) |
---|
717 | : trace_result ge depth (trace_label_return (RTLabs_status ge) s) (will_return_length … TERMINATES) ≝ |
---|
718 | make_label_return ge depth s trace ENV_COSTLABELLED STATE_COSTLABELLED STATEMENT_COSTLABEL TERMINATES |
---|
719 | (2 + 3 * will_return_length … TERMINATES) ?. |
---|
720 | @le_n |
---|
721 | qed. |
---|
722 | |
---|
723 | (* FIXME: there's trouble at the end of the program because we can't make a step |
---|
724 | away from the final return. |
---|
725 | |
---|
726 | We need to show that the "next pc" is preserved through a function call. |
---|
727 | |
---|
728 | Tail-calls are not handled properly (which means that if we try to show the |
---|
729 | full version with non-termination we'll fail because calls and returns aren't |
---|
730 | balanced. |
---|
731 | *) |
---|
732 | |
---|
733 | inductive inhabited (T:Type[0]) : Prop ≝ |
---|
734 | | witness : T → inhabited T. |
---|
735 | |
---|
736 | (* We also require that program's traces are soundly labelled: for any state |
---|
737 | in the execution, we can give a distance to a labelled state or termination. |
---|
738 | |
---|
739 | Note that this differs from the syntactic notions in earlier languages |
---|
740 | because it is a global property. In principle, we would have a loop broken |
---|
741 | only by a call to a function (which necessarily has a label) and no local |
---|
742 | cost label. |
---|
743 | *) |
---|
744 | |
---|
745 | let rec nth_state ge s |
---|
746 | (trace: flat_trace io_out io_in ge s) |
---|
747 | n |
---|
748 | on n : option state ≝ |
---|
749 | match n with |
---|
750 | [ O ⇒ Some ? s |
---|
751 | | S n' ⇒ |
---|
752 | match trace with |
---|
753 | [ ft_step _ _ s' _ trace' ⇒ nth_state ge s' trace' n' |
---|
754 | | _ ⇒ None ? |
---|
755 | ] |
---|
756 | ]. |
---|
757 | |
---|
758 | definition soundly_labelled_trace : ∀ge,s. flat_trace io_out io_in ge s → Prop ≝ |
---|
759 | λge,s,trace. ∀n.∃m. ∀s'. nth_state ge s trace (n+m) = Some ? s' → RTLabs_cost s' = true. |
---|
760 | |
---|
761 | lemma soundly_labelled_step : ∀ge,s,tr,s',EV,trace'. |
---|
762 | soundly_labelled_trace ge s (ft_step … ge s tr s' EV trace') → |
---|
763 | soundly_labelled_trace ge s' trace'. |
---|
764 | #ge #s #tr #s' #EV #trace' #H |
---|
765 | #n cases (H (S n)) #m #H' %{m} @H' |
---|
766 | qed. |
---|
767 | |
---|
768 | (* When constructing an infinite trace, we need to be able to grab the finite |
---|
769 | portion of the trace for the next [trace_label_diverges] constructor. We |
---|
770 | use the fact that the trace is soundly labelled to achieve this. *) |
---|
771 | |
---|
772 | inductive finite_prefix (ge:genv) : state → Type[0] ≝ |
---|
773 | | fp_tal : ∀s,s'. |
---|
774 | trace_any_label (RTLabs_status ge) doesnt_end_with_ret s s' → |
---|
775 | flat_trace io_out io_in ge s' → |
---|
776 | finite_prefix ge s |
---|
777 | | fp_tac : ∀s,s'. |
---|
778 | trace_any_call (RTLabs_status ge) s s' → |
---|
779 | flat_trace io_out io_in ge s' → |
---|
780 | finite_prefix ge s |
---|
781 | . |
---|
782 | |
---|
783 | definition fp_add_default : ∀ge,s,s'. |
---|
784 | RTLabs_classify s = cl_other → |
---|
785 | finite_prefix ge s' → |
---|
786 | (∃t. eval_statement ge s = Value ??? 〈t,s'〉) → |
---|
787 | RTLabs_cost s' = false → |
---|
788 | finite_prefix ge s ≝ |
---|
789 | λge,s,s',OTHER,fp. |
---|
790 | match fp return λs'.λ_. (∃t. eval_statement ge ? = Value ??? 〈t,s'〉) → RTLabs_cost s' = false → finite_prefix ge s with |
---|
791 | [ fp_tal s' sf TAL rem ⇒ λEVAL, NOT_COST. fp_tal ge s sf |
---|
792 | (tal_step_default (RTLabs_status ge) doesnt_end_with_ret s s' sf EVAL TAL OTHER ?) |
---|
793 | rem |
---|
794 | | fp_tac s' sf TAC rem ⇒ λEVAL, NOT_COST. fp_tac ge s sf |
---|
795 | (tac_step_default (RTLabs_status ge) s sf s' EVAL TAC OTHER ?) rem |
---|
796 | ]. |
---|
797 | % whd in ⊢ (% → ?); >NOT_COST #E destruct |
---|
798 | qed. |
---|
799 | (* I'll come back to this. |
---|
800 | definition fp_add_terminating_call : ∀ge,s,s1,s'. |
---|
801 | (∃t. eval_statement ge s = Value ??? 〈t,s1〉) → |
---|
802 | ∀CALL:RTLabs_classify s = cl_call. |
---|
803 | finite_prefix ge s' → |
---|
804 | trace_label_return (RTLabs_status ge) s1 s' → |
---|
805 | as_after_return (RTLabs_status ge) (mk_Sig ?? s CALL) s' → |
---|
806 | finite_prefix ge s ≝ |
---|
807 | λge,s,s1,s',EVAL,CALL,fp. |
---|
808 | match fp return λs'.λ_. trace_label_return (RTLabs_status ge) ? s' → as_after_return (RTLabs_status ge) ? s' → finite_prefix ge s with |
---|
809 | [ fp_tal s' sf TAL rem ⇒ λTLR,RET. fp_tal ge s sf |
---|
810 | (tal_step_call (RTLabs_status ge) doesnt_end_with_ret s s1 s' sf EVAL CALL RET TLR TAL) |
---|
811 | rem |
---|
812 | | fp_tac s' sf TAC rem ⇒ λTLR,RET. fp_tac ge s sf |
---|
813 | (tac_step_call (RTLabs_status ge) s s' sf s1 EVAL CALL RET TLR TAC) |
---|
814 | rem |
---|
815 | ]. |
---|
816 | *) |
---|
817 | (* |
---|
818 | let corec make_label_diverges ge s |
---|
819 | (trace: flat_trace io_out io_in ge s) |
---|
820 | (ENV_COSTLABELLED: well_cost_labelled_ge ge) |
---|
821 | (STATE_COSTLABELLED: well_cost_labelled_state s) (* functions in the state *) |
---|
822 | (STATEMENT_COSTLABEL: RTLabs_cost s = true) (* current statement is a cost label *) |
---|
823 | (SOUNDLY_COSTLABELLED: soundly_labelled_trace … trace) |
---|
824 | (NO_TERMINATION: Not (∃depth. inhabited (will_return ge depth s trace))) |
---|
825 | : trace_label_diverges (RTLabs_status ge) s ≝ ? |
---|
826 | . |
---|
827 | *) |
---|