1 | include "ASM/Util.ma". |
---|
2 | include "utilities/BitVectorTrieSet.ma". |
---|
3 | include "LIN/LIN.ma". |
---|
4 | |
---|
5 | let rec association (i: ident) (l: list (ident × nat)) |
---|
6 | on l: member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat ≝ |
---|
7 | match l return λl. member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat with |
---|
8 | [ nil ⇒ λabsd. ? |
---|
9 | | cons hd tl ⇒ |
---|
10 | λprf: member i (eq_identifier ?) (map ? ? (fst ? ?) (cons ? hd tl)). |
---|
11 | (match eq_identifier ? (\fst hd) i return λb. eq_identifier ? (\fst hd) i = b → nat with |
---|
12 | [ true ⇒ λeq_prf. \snd hd |
---|
13 | | false ⇒ λeq_prf. association i tl ? |
---|
14 | ]) (refl ? (eq_identifier ? (\fst hd) i)) |
---|
15 | ]. |
---|
16 | [ cases absd |
---|
17 | | cases prf |
---|
18 | [ > eq_prf |
---|
19 | # H |
---|
20 | cases H |
---|
21 | | # H |
---|
22 | assumption |
---|
23 | ] |
---|
24 | ] |
---|
25 | qed. |
---|
26 | |
---|
27 | definition statement_labels ≝ |
---|
28 | λg: list ident. |
---|
29 | λs: lin_statement g. |
---|
30 | let 〈label, instr〉 ≝ s in |
---|
31 | let generated ≝ |
---|
32 | match instr with |
---|
33 | [ sequential instr' _ ⇒ |
---|
34 | match instr' with |
---|
35 | [ COST_LABEL lbl ⇒ { (toASM_ident ? lbl) } |
---|
36 | | COND acc_a_reg lbl ⇒ { (toASM_ident ? lbl) } |
---|
37 | | _ ⇒ ∅ |
---|
38 | ] |
---|
39 | | RETURN ⇒ ∅ |
---|
40 | | GOTO lbl ⇒ {(toASM_ident ? lbl)} ] |
---|
41 | in |
---|
42 | match label with |
---|
43 | [ None ⇒ generated |
---|
44 | | Some lbl ⇒ add_set ? generated (toASM_ident ? lbl) |
---|
45 | ]. |
---|
46 | |
---|
47 | definition function_labels_internal ≝ |
---|
48 | λglobals: list ident. |
---|
49 | λlabels: identifier_set ?. |
---|
50 | λstatement: lin_statement globals. |
---|
51 | labels ∪ (statement_labels globals statement). |
---|
52 | |
---|
53 | (* dpm: A = Identifier *) |
---|
54 | definition function_labels: ∀A. ∀globals. ∀f. identifier_set ? ≝ |
---|
55 | λA: Type[0]. |
---|
56 | λglobals: list ident. |
---|
57 | λf: A × (lin_function globals). |
---|
58 | let 〈ignore, fun_def〉 ≝ f in |
---|
59 | match fun_def return λ_. identifier_set ? with |
---|
60 | [ Internal stmts ⇒ |
---|
61 | foldl ? ? (function_labels_internal globals) ∅ (joint_if_code ?? stmts) |
---|
62 | | External _ ⇒ ∅ |
---|
63 | ]. |
---|
64 | |
---|
65 | definition program_labels_internal: ∀A. ∀globals. ∀labels. ∀funct. identifier_set ? ≝ |
---|
66 | λA: Type[0]. |
---|
67 | λglobals: list ident. |
---|
68 | λlabels: identifier_set ?. |
---|
69 | λfunct: A × (lin_function globals). |
---|
70 | labels ∪ (function_labels ? globals funct). |
---|
71 | |
---|
72 | (* CSC: here we are silently throwing away the region information *) |
---|
73 | definition program_labels ≝ |
---|
74 | λprogram: lin_program. |
---|
75 | foldl … (program_labels_internal … (map … (λx. fst … (fst … x)) (prog_vars … program))) |
---|
76 | ∅ (prog_funct … program). |
---|
77 | |
---|
78 | definition data_of_int ≝ λbv. DATA bv. |
---|
79 | definition data16_of_int ≝ λbv. DATA16 (bitvector_of_nat 16 bv). |
---|
80 | definition accumulator_address ≝ DIRECT (bitvector_of_nat 8 224). |
---|
81 | |
---|
82 | definition translate_statements ≝ |
---|
83 | λglobals: list (ident × nat). |
---|
84 | λglobals_old: list ident. |
---|
85 | λprf: ∀i: ident. member i (eq_identifier ?) globals_old → member i (eq_identifier ?) (map ? ? (fst ? ?) globals). |
---|
86 | λstatement: pre_lin_statement globals_old. |
---|
87 | match statement with |
---|
88 | [ GOTO lbl ⇒ Jmp (toASM_ident ? lbl) |
---|
89 | | RETURN ⇒ Instruction (RET ?) |
---|
90 | | sequential instr _ ⇒ |
---|
91 | match instr with |
---|
92 | [ extension ext ⇒ ⊥ |
---|
93 | | COMMENT comment ⇒ Comment comment |
---|
94 | | COST_LABEL lbl ⇒ Cost lbl |
---|
95 | | POP _ ⇒ Instruction (POP ? accumulator_address) |
---|
96 | | PUSH _ ⇒ Instruction (PUSH ? accumulator_address) |
---|
97 | | CLEAR_CARRY ⇒ Instruction (CLR ? CARRY) |
---|
98 | | CALL_ID f _ _ ⇒ Call (toASM_ident ? f) |
---|
99 | | OPACCS accs _ _ _ _ ⇒ |
---|
100 | match accs with |
---|
101 | [ Mul ⇒ Instruction (MUL ? ACC_A ACC_B) |
---|
102 | | DivuModu ⇒ Instruction (DIV ? ACC_A ACC_B) |
---|
103 | ] |
---|
104 | | OP1 op1 _ _ ⇒ |
---|
105 | match op1 with |
---|
106 | [ Cmpl ⇒ Instruction (CPL ? ACC_A) |
---|
107 | | Inc ⇒ Instruction (INC ? ACC_A) |
---|
108 | | Rl ⇒ Instruction (RL ? ACC_A) |
---|
109 | ] |
---|
110 | | OP2 op2 _ _ reg ⇒ |
---|
111 | match op2 with |
---|
112 | [ Add ⇒ |
---|
113 | let reg' ≝ register_address reg in |
---|
114 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
115 | direct; |
---|
116 | registr ]] x) → ? with |
---|
117 | [ ACC_A ⇒ λacc_a: True. |
---|
118 | Instruction (ADD ? ACC_A accumulator_address) |
---|
119 | | DIRECT d ⇒ λdirect1: True. |
---|
120 | Instruction (ADD ? ACC_A (DIRECT d)) |
---|
121 | | REGISTER r ⇒ λregister1: True. |
---|
122 | Instruction (ADD ? ACC_A (REGISTER r)) |
---|
123 | | _ ⇒ λother: False. ⊥ |
---|
124 | ] (subaddressing_modein … reg') |
---|
125 | | Addc ⇒ |
---|
126 | let reg' ≝ register_address reg in |
---|
127 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
128 | direct; |
---|
129 | registr ]] x) → ? with |
---|
130 | [ ACC_A ⇒ λacc_a: True. |
---|
131 | Instruction (ADDC ? ACC_A accumulator_address) |
---|
132 | | DIRECT d ⇒ λdirect2: True. |
---|
133 | Instruction (ADDC ? ACC_A (DIRECT d)) |
---|
134 | | REGISTER r ⇒ λregister2: True. |
---|
135 | Instruction (ADDC ? ACC_A (REGISTER r)) |
---|
136 | | _ ⇒ λother: False. ⊥ |
---|
137 | ] (subaddressing_modein … reg') |
---|
138 | | Sub ⇒ |
---|
139 | let reg' ≝ register_address reg in |
---|
140 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
141 | direct; |
---|
142 | registr ]] x) → ? with |
---|
143 | [ ACC_A ⇒ λacc_a: True. |
---|
144 | Instruction (SUBB ? ACC_A accumulator_address) |
---|
145 | | DIRECT d ⇒ λdirect3: True. |
---|
146 | Instruction (SUBB ? ACC_A (DIRECT d)) |
---|
147 | | REGISTER r ⇒ λregister3: True. |
---|
148 | Instruction (SUBB ? ACC_A (REGISTER r)) |
---|
149 | | _ ⇒ λother: False. ⊥ |
---|
150 | ] (subaddressing_modein … reg') |
---|
151 | | And ⇒ |
---|
152 | let reg' ≝ register_address reg in |
---|
153 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
154 | direct; |
---|
155 | registr ]] x) → ? with |
---|
156 | [ ACC_A ⇒ λacc_a: True. |
---|
157 | Instruction (NOP ?) |
---|
158 | | DIRECT d ⇒ λdirect4: True. |
---|
159 | Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉))) |
---|
160 | | REGISTER r ⇒ λregister4: True. |
---|
161 | Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉))) |
---|
162 | | _ ⇒ λother: False. ⊥ |
---|
163 | ] (subaddressing_modein … reg') |
---|
164 | | Or ⇒ |
---|
165 | let reg' ≝ register_address reg in |
---|
166 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
167 | direct; |
---|
168 | registr ]] x) → ? with |
---|
169 | [ ACC_A ⇒ λacc_a: True. |
---|
170 | Instruction (NOP ?) |
---|
171 | | DIRECT d ⇒ λdirect5: True. |
---|
172 | Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉))) |
---|
173 | | REGISTER r ⇒ λregister5: True. |
---|
174 | Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉))) |
---|
175 | | _ ⇒ λother: False. ⊥ |
---|
176 | ] (subaddressing_modein … reg') |
---|
177 | | Xor ⇒ |
---|
178 | let reg' ≝ register_address reg in |
---|
179 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
180 | direct; |
---|
181 | registr ]] x) → ? with |
---|
182 | [ ACC_A ⇒ λacc_a: True. |
---|
183 | Instruction (XRL ? (inr ? ? 〈accumulator_address, ACC_A〉)) |
---|
184 | | DIRECT d ⇒ λdirect6: True. |
---|
185 | Instruction (XRL ? (inl ? ? 〈ACC_A, DIRECT d〉)) |
---|
186 | | REGISTER r ⇒ λregister6: True. |
---|
187 | Instruction (XRL ? (inl ? ? 〈ACC_A, REGISTER r〉)) |
---|
188 | | _ ⇒ λother: False. ⊥ |
---|
189 | ] (subaddressing_modein … reg') |
---|
190 | ] |
---|
191 | | INT reg byte ⇒ |
---|
192 | let reg' ≝ register_address reg in |
---|
193 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
194 | direct; |
---|
195 | registr ]] x) → ? with |
---|
196 | [ REGISTER r ⇒ λregister7: True. |
---|
197 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, (data_of_int byte)〉)))))) |
---|
198 | | ACC_A ⇒ λacc: True. |
---|
199 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, (data_of_int byte)〉)))))) |
---|
200 | | DIRECT d ⇒ λdirect7: True. |
---|
201 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, (data_of_int byte)〉))))) |
---|
202 | | _ ⇒ λother: False. ⊥ |
---|
203 | ] (subaddressing_modein … reg') |
---|
204 | | MOVE regs ⇒ |
---|
205 | match regs with |
---|
206 | [ from_acc reg ⇒ |
---|
207 | let reg' ≝ register_address reg in |
---|
208 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
209 | direct; |
---|
210 | registr ]] x) → ? with |
---|
211 | [ REGISTER r ⇒ λregister8: True. |
---|
212 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, ACC_A〉)))))) |
---|
213 | | ACC_A ⇒ λacc: True. |
---|
214 | Instruction (NOP ?) |
---|
215 | | DIRECT d ⇒ λdirect8: True. |
---|
216 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, ACC_A〉))))) |
---|
217 | | _ ⇒ λother: False. ⊥ |
---|
218 | ] (subaddressing_modein … reg') |
---|
219 | | to_acc reg ⇒ |
---|
220 | let reg' ≝ register_address reg in |
---|
221 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
222 | direct; |
---|
223 | registr ]] x) → ? with |
---|
224 | [ REGISTER r ⇒ λregister9: True. |
---|
225 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉)))))) |
---|
226 | | DIRECT d ⇒ λdirect9: True. |
---|
227 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉)))))) |
---|
228 | | ACC_A ⇒ λacc_a: True. |
---|
229 | Instruction (NOP ?) |
---|
230 | | _ ⇒ λother: False. ⊥ |
---|
231 | ] (subaddressing_modein … reg')] |
---|
232 | | LOAD _ _ _ ⇒ Instruction (MOVX ? (inl ? ? 〈ACC_A, EXT_INDIRECT_DPTR〉)) |
---|
233 | | STORE _ _ _ ⇒ Instruction (MOVX ? (inr ? ? 〈EXT_INDIRECT_DPTR, ACC_A〉)) |
---|
234 | | ADDRESS addr proof _ _ ⇒ |
---|
235 | let look ≝ association addr globals (prf ? proof) in |
---|
236 | Instruction (MOV ? (inl ? ? (inl ? ? (inr ? ? (〈DPTR, (data16_of_int look)〉))))) |
---|
237 | | COND _ lbl ⇒ |
---|
238 | (* dpm: this should be handled in translate_code! *) |
---|
239 | Instruction (JNZ ? (toASM_ident ? lbl)) |
---|
240 | | SET_CARRY ⇒ |
---|
241 | Instruction (SETB ? CARRY) |
---|
242 | ] |
---|
243 | ]. |
---|
244 | try assumption |
---|
245 | try @ I |
---|
246 | qed. |
---|
247 | |
---|
248 | (*CSC: XXXXXXXXXXX looks bad: what invariant is needed here? *) |
---|
249 | definition ident_of_label: label → Identifier ≝ |
---|
250 | toASM_ident LabelTag. |
---|
251 | |
---|
252 | definition build_translated_statement ≝ |
---|
253 | λglobals. |
---|
254 | λglobals_old. |
---|
255 | λprf. |
---|
256 | λstatement: lin_statement globals_old. |
---|
257 | 〈option_map … ident_of_label (\fst statement), translate_statements globals globals_old prf (\snd statement)〉. |
---|
258 | |
---|
259 | definition translate_code ≝ |
---|
260 | λglobals: list (ident × nat). |
---|
261 | λglobals_old: list ident. |
---|
262 | λprf. |
---|
263 | λcode: list (lin_statement globals_old). |
---|
264 | map ? ? (build_translated_statement globals globals_old prf) code. |
---|
265 | |
---|
266 | definition translate_fun_def ≝ |
---|
267 | λglobals: list (ident × nat). |
---|
268 | λglobals_old. |
---|
269 | λprf. |
---|
270 | λid_def. |
---|
271 | let 〈id, def〉 ≝ id_def in |
---|
272 | match def with |
---|
273 | [ Internal int ⇒ |
---|
274 | let code ≝ joint_if_code … (lin_params globals_old) int in |
---|
275 | match translate_code globals globals_old prf code with |
---|
276 | [ nil ⇒ ⊥ |
---|
277 | | cons hd tl ⇒ |
---|
278 | let rest ≝ 〈Some ? (toASM_ident SymbolTag id), \snd hd〉 :: tl in |
---|
279 | map ? ? ( |
---|
280 | λr. |
---|
281 | match fst ? ? r with |
---|
282 | [ Some id' ⇒ 〈Some ? (toASM_ident ? id'), snd ? ? r〉 |
---|
283 | | None ⇒ 〈None ?, \snd r〉 |
---|
284 | ]) rest |
---|
285 | ] |
---|
286 | | External _ ⇒ [ ] |
---|
287 | ]. |
---|
288 | cases daemon (*CSC: XXX will be fixed by an invariant later *) |
---|
289 | qed. |
---|
290 | |
---|
291 | include "common/Identifiers.ma". |
---|
292 | |
---|
293 | let rec flatten_fun_defs |
---|
294 | (globals: list (ident × nat)) (globals_old: list ident) (prf: ?) (initial_pc: nat) |
---|
295 | (the_list: list ((identifier SymbolTag) × (fundef (joint_internal_function globals_old (lin_params globals_old))))) |
---|
296 | on the_list: ((list (option Identifier × pseudo_instruction)) × (identifier_map ? nat)) ≝ |
---|
297 | match the_list return λx. ((list (option Identifier × pseudo_instruction)) × (identifier_map ? nat)) with |
---|
298 | [ cons hd tl ⇒ |
---|
299 | let fun_def ≝ \snd hd in |
---|
300 | let fun_id ≝ \fst hd in |
---|
301 | let translated ≝ translate_fun_def globals globals_old prf hd in |
---|
302 | let size_translated ≝ | translated | in |
---|
303 | let 〈tail_trans, tail_map〉 ≝ flatten_fun_defs globals globals_old prf (initial_pc + size_translated) tl in |
---|
304 | let new_hd ≝ translated @ tail_trans in |
---|
305 | let new_map ≝ add ? ? tail_map fun_id initial_pc in |
---|
306 | 〈new_hd, new_map〉 |
---|
307 | | nil ⇒ 〈[ ], empty_map …〉 |
---|
308 | ]. |
---|
309 | |
---|
310 | definition translate_functs ≝ |
---|
311 | λglobals. |
---|
312 | λglobals_old. |
---|
313 | λprf. |
---|
314 | λexit_label. |
---|
315 | λmain. |
---|
316 | λfuncts. |
---|
317 | let preamble ≝ [ 〈None ?, Call main〉 ; 〈Some ? exit_label, Jmp exit_label〉 ] in |
---|
318 | let 〈flattened, map〉 ≝ flatten_fun_defs globals globals_old prf 6 (* Size of preamble above *) functs in |
---|
319 | 〈preamble @ flattened, map〉. |
---|
320 | |
---|
321 | (*CSC: region silently thrown away here *) |
---|
322 | definition globals_addr ≝ |
---|
323 | λl. |
---|
324 | let globals_addr_internal ≝ |
---|
325 | λres_offset. |
---|
326 | λx_size: ident × region × nat. |
---|
327 | let 〈res, offset〉 ≝ res_offset in |
---|
328 | let 〈x, region, size〉 ≝ x_size in |
---|
329 | 〈〈x, offset〉 :: res, offset + size〉 |
---|
330 | in |
---|
331 | \fst (foldl ? ? globals_addr_internal 〈[ ], 0〉 l). |
---|
332 | |
---|
333 | (* dpm: plays the role of the string "_exit" in the O'caml source *) |
---|
334 | axiom identifier_prefix: Identifier. |
---|
335 | (*CSC: XXXXXXX wrong anyway since labels from different functions can now |
---|
336 | clash with each other and with names of functions *) |
---|
337 | axiom fresh_prefix: identifier_set ASMTag → Identifier → Identifier. |
---|
338 | |
---|
339 | (* dpm: fresh prefix stuff needs unifying with brian *) |
---|
340 | definition lin_to_asm : lin_program → pseudo_assembly_program ≝ |
---|
341 | λp. |
---|
342 | let prog_lbls ≝ program_labels … p in |
---|
343 | let exit_label ≝ fresh_prefix prog_lbls identifier_prefix in |
---|
344 | let global_addr ≝ globals_addr (prog_vars … p) in |
---|
345 | let global_addr' ≝ map … (λx_off. let 〈x,off〉 ≝ x_off in 〈toASM_ident ? x, bitvector_of_nat 16 off〉) global_addr in |
---|
346 | let 〈translated, funct_map〉 ≝ translate_functs global_addr (prog_var_names … p) ? exit_label (toASM_ident … (prog_main … p)) (prog_funct … p) in |
---|
347 | 〈〈funct_map, global_addr'〉, translated〉. |
---|
348 | #i normalize nodelta -global_addr' -global_addr -exit_label -prog_lbls; |
---|
349 | normalize in match prog_var_names; normalize nodelta |
---|
350 | elim (prog_vars … p) // |
---|
351 | #hd #tl #IH whd in ⊢ (% → %); |
---|
352 | whd in match globals_addr; normalize nodelta |
---|
353 | whd in match (foldl ???? (hd::tl)); normalize nodelta |
---|
354 | cases hd * #id #reg #size normalize nodelta |
---|
355 | cases daemon (*CSC: provable using a pair of lemmas over foldl *) |
---|
356 | qed. |
---|