1 | include "ASM/Util.ma". |
---|
2 | include "utilities/BitVectorTrieSet.ma". |
---|
3 | include "utilities/IdentifierTools.ma". |
---|
4 | include "LIN/LIN.ma". |
---|
5 | |
---|
6 | let rec association (i: ident) (l: list (ident × nat)) |
---|
7 | on l: member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat ≝ |
---|
8 | match l return λl. member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat with |
---|
9 | [ nil ⇒ λabsd. ? |
---|
10 | | cons hd tl ⇒ |
---|
11 | λprf: member i (eq_identifier ?) (map ? ? (fst ? ?) (cons ? hd tl)). |
---|
12 | (match eq_identifier ? (\fst hd) i return λb. eq_identifier ? (\fst hd) i = b → nat with |
---|
13 | [ true ⇒ λeq_prf. \snd hd |
---|
14 | | false ⇒ λeq_prf. association i tl ? |
---|
15 | ]) (refl ? (eq_identifier ? (\fst hd) i)) |
---|
16 | ]. |
---|
17 | [ cases absd |
---|
18 | | cases prf |
---|
19 | [ > eq_prf |
---|
20 | # H |
---|
21 | cases H |
---|
22 | | # H |
---|
23 | assumption |
---|
24 | ] |
---|
25 | ] |
---|
26 | qed. |
---|
27 | |
---|
28 | definition statement_labels ≝ |
---|
29 | λg: list ident. |
---|
30 | λs: lin_statement g. |
---|
31 | let 〈label, instr〉 ≝ s in |
---|
32 | let generated ≝ |
---|
33 | match instr with |
---|
34 | [ joint_st_sequential instr' _ ⇒ |
---|
35 | match instr' with |
---|
36 | [ joint_instr_cost_label lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?) |
---|
37 | | joint_instr_cond_acc lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?) |
---|
38 | | _ ⇒ set_empty ? |
---|
39 | ] |
---|
40 | | joint_st_return ⇒ set_empty ? |
---|
41 | | joint_st_goto lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?) |
---|
42 | ] |
---|
43 | in |
---|
44 | match label with |
---|
45 | [ None ⇒ generated |
---|
46 | | Some lbl ⇒ set_insert ? (word_of_identifier ? lbl) generated |
---|
47 | ]. |
---|
48 | |
---|
49 | definition function_labels_internal ≝ |
---|
50 | λglobals: list ident. |
---|
51 | λlabels: BitVectorTrieSet ?. |
---|
52 | λstatement: lin_statement globals. |
---|
53 | set_union ? labels (statement_labels globals statement). |
---|
54 | |
---|
55 | (* dpm: A = Identifier *) |
---|
56 | definition function_labels: ∀A. ∀globals. ∀f. BitVectorTrieSet ? ≝ |
---|
57 | λA: Type[0]. |
---|
58 | λglobals: list ident. |
---|
59 | λf: A × (lin_function_definition globals). |
---|
60 | let 〈ignore, fun_def〉 ≝ f in |
---|
61 | match fun_def return λ_. BitVectorTrieSet ? with |
---|
62 | [ lin_fu_internal stmts proof ⇒ |
---|
63 | foldl ? ? (function_labels_internal globals) (set_empty ?) stmts |
---|
64 | | lin_fu_external _ ⇒ set_empty ? |
---|
65 | ]. |
---|
66 | |
---|
67 | definition program_labels_internal: ∀A. ∀globals. ∀labels. ∀funct. BitVectorTrieSet ? ≝ |
---|
68 | λA: Type[0]. |
---|
69 | λglobals: list ident. |
---|
70 | λlabels: BitVectorTrieSet ?. |
---|
71 | λfunct: A × (lin_function_definition globals). |
---|
72 | set_union ? labels (function_labels ? globals funct). |
---|
73 | |
---|
74 | definition program_labels ≝ |
---|
75 | λprogram. |
---|
76 | foldl ? ? (program_labels_internal ? (map ? ? (fst ? ?) (lin_pr_vars program))) |
---|
77 | (set_empty ?) (lin_pr_funcs program). |
---|
78 | |
---|
79 | definition data_of_int ≝ λbv. DATA bv. |
---|
80 | definition data16_of_int ≝ λbv. DATA16 (bitvector_of_nat 16 bv). |
---|
81 | definition accumulator_address ≝ DIRECT (bitvector_of_nat 8 224). |
---|
82 | |
---|
83 | axiom ImplementedInRuntime: False. |
---|
84 | |
---|
85 | definition translate_statements ≝ |
---|
86 | λglobals: list (ident × nat). |
---|
87 | λglobals_old: list ident. |
---|
88 | λprf: ∀i: ident. member i (eq_identifier ?) globals_old → member i (eq_identifier ?) (map ? ? (fst ? ?) globals). |
---|
89 | λstatement: pre_lin_statement globals_old. |
---|
90 | match statement with |
---|
91 | [ joint_st_goto lbl ⇒ Jmp (word_of_identifier ? lbl) |
---|
92 | | joint_st_return ⇒ Instruction (RET ?) |
---|
93 | | joint_st_sequential instr _ ⇒ |
---|
94 | match instr with |
---|
95 | [ joint_instr_comment comment ⇒ Comment comment |
---|
96 | | joint_instr_cost_label lbl ⇒ Cost (Identifier_of_costlabel lbl) |
---|
97 | | joint_instr_pop ⇒ Instruction (POP ? accumulator_address) |
---|
98 | | joint_instr_push ⇒ Instruction (PUSH ? accumulator_address) |
---|
99 | | joint_instr_clear_carry ⇒ Instruction (CLR ? CARRY) |
---|
100 | | joint_instr_call_id f ⇒ Call (word_of_identifier ? f) |
---|
101 | | joint_instr_opaccs accs ⇒ |
---|
102 | match accs with |
---|
103 | [ Mul ⇒ Instruction (MUL ? ACC_A ACC_B) |
---|
104 | | DivuModu ⇒ Instruction (DIV ? ACC_A ACC_B) |
---|
105 | ] |
---|
106 | | joint_instr_op1 op1 ⇒ |
---|
107 | match op1 with |
---|
108 | [ Cmpl ⇒ Instruction (CPL ? ACC_A) |
---|
109 | | Inc ⇒ Instruction (INC ? ACC_A) |
---|
110 | ] |
---|
111 | | joint_instr_op2 op2 reg ⇒ |
---|
112 | match op2 with |
---|
113 | [ Add ⇒ |
---|
114 | let reg' ≝ register_address reg in |
---|
115 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
116 | direct; |
---|
117 | registr ]] x) → ? with |
---|
118 | [ ACC_A ⇒ λacc_a: True. |
---|
119 | Instruction (ADD ? ACC_A accumulator_address) |
---|
120 | | DIRECT d ⇒ λdirect1: True. |
---|
121 | Instruction (ADD ? ACC_A (DIRECT d)) |
---|
122 | | REGISTER r ⇒ λregister1: True. |
---|
123 | Instruction (ADD ? ACC_A (REGISTER r)) |
---|
124 | | _ ⇒ λother: False. ⊥ |
---|
125 | ] (subaddressing_modein … reg') |
---|
126 | | Addc ⇒ |
---|
127 | let reg' ≝ register_address reg in |
---|
128 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
129 | direct; |
---|
130 | registr ]] x) → ? with |
---|
131 | [ ACC_A ⇒ λacc_a: True. |
---|
132 | Instruction (ADDC ? ACC_A accumulator_address) |
---|
133 | | DIRECT d ⇒ λdirect2: True. |
---|
134 | Instruction (ADDC ? ACC_A (DIRECT d)) |
---|
135 | | REGISTER r ⇒ λregister2: True. |
---|
136 | Instruction (ADDC ? ACC_A (REGISTER r)) |
---|
137 | | _ ⇒ λother: False. ⊥ |
---|
138 | ] (subaddressing_modein … reg') |
---|
139 | | Sub ⇒ |
---|
140 | let reg' ≝ register_address reg in |
---|
141 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
142 | direct; |
---|
143 | registr ]] x) → ? with |
---|
144 | [ ACC_A ⇒ λacc_a: True. |
---|
145 | Instruction (SUBB ? ACC_A accumulator_address) |
---|
146 | | DIRECT d ⇒ λdirect3: True. |
---|
147 | Instruction (SUBB ? ACC_A (DIRECT d)) |
---|
148 | | REGISTER r ⇒ λregister3: True. |
---|
149 | Instruction (SUBB ? ACC_A (REGISTER r)) |
---|
150 | | _ ⇒ λother: False. ⊥ |
---|
151 | ] (subaddressing_modein … reg') |
---|
152 | | And ⇒ |
---|
153 | let reg' ≝ register_address reg in |
---|
154 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
155 | direct; |
---|
156 | registr ]] x) → ? with |
---|
157 | [ ACC_A ⇒ λacc_a: True. |
---|
158 | Instruction (NOP ?) |
---|
159 | | DIRECT d ⇒ λdirect4: True. |
---|
160 | Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉))) |
---|
161 | | REGISTER r ⇒ λregister4: True. |
---|
162 | Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉))) |
---|
163 | | _ ⇒ λother: False. ⊥ |
---|
164 | ] (subaddressing_modein … reg') |
---|
165 | | Or ⇒ |
---|
166 | let reg' ≝ register_address reg in |
---|
167 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
168 | direct; |
---|
169 | registr ]] x) → ? with |
---|
170 | [ ACC_A ⇒ λacc_a: True. |
---|
171 | Instruction (NOP ?) |
---|
172 | | DIRECT d ⇒ λdirect5: True. |
---|
173 | Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉))) |
---|
174 | | REGISTER r ⇒ λregister5: True. |
---|
175 | Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉))) |
---|
176 | | _ ⇒ λother: False. ⊥ |
---|
177 | ] (subaddressing_modein … reg') |
---|
178 | | Xor ⇒ |
---|
179 | let reg' ≝ register_address reg in |
---|
180 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
181 | direct; |
---|
182 | registr ]] x) → ? with |
---|
183 | [ ACC_A ⇒ λacc_a: True. |
---|
184 | Instruction (XRL ? (inr ? ? 〈accumulator_address, ACC_A〉)) |
---|
185 | | DIRECT d ⇒ λdirect6: True. |
---|
186 | Instruction (XRL ? (inl ? ? 〈ACC_A, DIRECT d〉)) |
---|
187 | | REGISTER r ⇒ λregister6: True. |
---|
188 | Instruction (XRL ? (inl ? ? 〈ACC_A, REGISTER r〉)) |
---|
189 | | _ ⇒ λother: False. ⊥ |
---|
190 | ] (subaddressing_modein … reg') |
---|
191 | ] |
---|
192 | | joint_instr_int reg byte ⇒ |
---|
193 | let reg' ≝ register_address reg in |
---|
194 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
195 | direct; |
---|
196 | registr ]] x) → ? with |
---|
197 | [ REGISTER r ⇒ λregister7: True. |
---|
198 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, (data_of_int byte)〉)))))) |
---|
199 | | ACC_A ⇒ λacc: True. |
---|
200 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, (data_of_int byte)〉)))))) |
---|
201 | | DIRECT d ⇒ λdirect7: True. |
---|
202 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, (data_of_int byte)〉))))) |
---|
203 | | _ ⇒ λother: False. ⊥ |
---|
204 | ] (subaddressing_modein … reg') |
---|
205 | | joint_instr_from_acc reg ⇒ |
---|
206 | let reg' ≝ register_address reg in |
---|
207 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
208 | direct; |
---|
209 | registr ]] x) → ? with |
---|
210 | [ REGISTER r ⇒ λregister8: True. |
---|
211 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, ACC_A〉)))))) |
---|
212 | | ACC_A ⇒ λacc: True. |
---|
213 | Instruction (NOP ?) |
---|
214 | | DIRECT d ⇒ λdirect8: True. |
---|
215 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, ACC_A〉))))) |
---|
216 | | _ ⇒ λother: False. ⊥ |
---|
217 | ] (subaddressing_modein … reg') |
---|
218 | | joint_instr_to_acc reg ⇒ |
---|
219 | let reg' ≝ register_address reg in |
---|
220 | match reg' return λx. bool_to_Prop (is_in … [[ acc_a; |
---|
221 | direct; |
---|
222 | registr ]] x) → ? with |
---|
223 | [ REGISTER r ⇒ λregister9: True. |
---|
224 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉)))))) |
---|
225 | | DIRECT d ⇒ λdirect9: True. |
---|
226 | Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉)))))) |
---|
227 | | ACC_A ⇒ λacc_a: True. |
---|
228 | Instruction (NOP ?) |
---|
229 | | _ ⇒ λother: False. ⊥ |
---|
230 | ] (subaddressing_modein … reg') |
---|
231 | | joint_instr_load ⇒ Instruction (MOVX ? (inl ? ? 〈ACC_A, EXT_INDIRECT_DPTR〉)) |
---|
232 | | joint_instr_store ⇒ Instruction (MOVX ? (inr ? ? 〈EXT_INDIRECT_DPTR, ACC_A〉)) |
---|
233 | | joint_instr_address addr proof ⇒ |
---|
234 | let look ≝ association addr globals (prf ? proof) in |
---|
235 | Instruction (MOV ? (inl ? ? (inl ? ? (inr ? ? (〈DPTR, (data16_of_int look)〉))))) |
---|
236 | | joint_instr_cond_acc lbl ⇒ |
---|
237 | (* dpm: this should be handled in translate_code! *) |
---|
238 | Instruction (JNZ ? (word_of_identifier ? lbl)) |
---|
239 | | joint_instr_set_carry ⇒ |
---|
240 | Instruction (SETB ? CARRY) |
---|
241 | ] |
---|
242 | ]. |
---|
243 | try assumption |
---|
244 | try @ I |
---|
245 | cases ImplementedInRuntime |
---|
246 | qed. |
---|
247 | |
---|
248 | definition build_translated_statement ≝ |
---|
249 | λglobals. |
---|
250 | λglobals_old. |
---|
251 | λprf. |
---|
252 | λstatement: lin_statement globals_old. |
---|
253 | 〈\fst statement, translate_statements globals globals_old prf (\snd statement)〉. |
---|
254 | |
---|
255 | definition translate_code ≝ |
---|
256 | λglobals: list (ident × nat). |
---|
257 | λglobals_old: list ident. |
---|
258 | λprf. |
---|
259 | λcode: list (lin_statement globals_old). |
---|
260 | map ? ? (build_translated_statement globals globals_old prf) code. |
---|
261 | |
---|
262 | lemma translate_code_preserves_WellFormedP: |
---|
263 | ∀globals, globals_old, prf, code. |
---|
264 | well_formed_P ? ? code → well_formed_P ? ? (translate_code globals globals_old prf code). |
---|
265 | #G #GO #P #C |
---|
266 | elim C |
---|
267 | [ normalize |
---|
268 | // |
---|
269 | | #G2 #G02 #IH (* CSC: understand here *) |
---|
270 | whd in ⊢ (% → %) |
---|
271 | normalize in ⊢ (% → %) |
---|
272 | // |
---|
273 | ] |
---|
274 | qed. |
---|
275 | |
---|
276 | definition translate_fun_def ≝ |
---|
277 | λglobals. |
---|
278 | λglobals_old. |
---|
279 | λprf. |
---|
280 | λid_def. |
---|
281 | let 〈id, def〉 ≝ id_def in |
---|
282 | match def with |
---|
283 | [ lin_fu_internal code proof ⇒ |
---|
284 | match translate_code globals globals_old prf code return λtranscode. well_formed_P ? ? transcode → list labelled_instruction with |
---|
285 | [ nil ⇒ λprf2. ⊥ |
---|
286 | | cons hd tl ⇒ λ_. |
---|
287 | let rest ≝ 〈Some ? id, \snd hd〉 :: tl in |
---|
288 | map ? ? ( |
---|
289 | λr. |
---|
290 | match fst ? ? r with |
---|
291 | [ Some id' ⇒ 〈Some ? (word_of_identifier ? id'), snd ? ? r〉 |
---|
292 | | None ⇒ 〈None ?, \snd r〉 |
---|
293 | ]) rest |
---|
294 | ] (translate_code_preserves_WellFormedP globals globals_old prf code proof) |
---|
295 | | _ ⇒ [ ] |
---|
296 | ]. |
---|
297 | @ prf2 |
---|
298 | qed. |
---|
299 | |
---|
300 | definition translate_functs ≝ |
---|
301 | λglobals. |
---|
302 | λglobals_old. |
---|
303 | λprf. |
---|
304 | λexit_label. |
---|
305 | λmain. |
---|
306 | λfuncts. |
---|
307 | let preamble ≝ |
---|
308 | match main with |
---|
309 | [ None ⇒ [ ] |
---|
310 | | Some main' ⇒ [ 〈None ?, Call main'〉 ; 〈Some ? exit_label, Jmp exit_label〉 ] |
---|
311 | ] in |
---|
312 | preamble @ (flatten ? (map ? ? (translate_fun_def globals globals_old prf) functs)). |
---|
313 | |
---|
314 | definition globals_addr_internal ≝ |
---|
315 | λres_offset. |
---|
316 | λx_size: ident × nat. |
---|
317 | let 〈res, offset〉 ≝ res_offset in |
---|
318 | let 〈x, size〉 ≝ x_size in |
---|
319 | 〈〈x, offset〉 :: res, offset + size〉. |
---|
320 | |
---|
321 | definition globals_addr ≝ |
---|
322 | λl. |
---|
323 | \fst (foldl ? ? globals_addr_internal 〈[ ], 0〉 l). |
---|
324 | |
---|
325 | (* dpm: plays the role of the string "_exit" in the O'caml source *) |
---|
326 | axiom identifier_prefix: Identifier. |
---|
327 | |
---|
328 | (* dpm: fresh prefix stuff needs unifying with brian *) |
---|
329 | |
---|
330 | (* |
---|
331 | definition translate ≝ |
---|
332 | λp. |
---|
333 | let prog_lbls ≝ program_labels p in |
---|
334 | let exit_label ≝ fresh_prefix prog_lbls identifier_prefix in |
---|
335 | let global_addr ≝ globals_addr (LIN_Pr_vars p) in |
---|
336 | 〈global_addr, translate_functs global_addr (map ? ? (fst ? ?) (LIN_Pr_vars p)) ? exit_label (LIN_Pr_main p) (LIN_Pr_funs p)〉. |
---|
337 | *) |
---|