source: src/LIN/LINToASM.ma @ 1001

Last change on this file since 1001 was 757, checked in by mulligan, 9 years ago

Lots more fixing to get both front and backends using same conventions and types.

File size: 13.3 KB
Line 
1include "ASM/Util.ma".
2include "utilities/BitVectorTrieSet.ma".
3include "utilities/IdentifierTools.ma".
4include "LIN/LIN.ma".
5 
6let rec association (i: ident) (l: list (ident × nat))
7                    on l: member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat ≝
8  match l return λl. member i (eq_identifier ?) (map ? ? (fst ? ?) l) → nat with
9  [ nil ⇒ λabsd. ?
10  | cons hd tl ⇒
11    λprf: member i (eq_identifier ?) (map ? ? (fst ? ?) (cons ? hd tl)).
12      (match eq_identifier ? (\fst hd) i return λb. eq_identifier ? (\fst hd) i = b → nat with
13      [ true ⇒ λeq_prf. \snd hd
14      | false ⇒ λeq_prf. association i tl ?
15      ]) (refl ? (eq_identifier ? (\fst hd) i))
16  ].
17  [ cases absd
18  | cases prf
19    [ > eq_prf
20      # H
21      cases H
22    | # H
23      assumption
24    ]
25  ]
26qed.
27
28definition statement_labels ≝
29  λg: list ident.
30  λs: lin_statement g.
31  let 〈label, instr〉 ≝ s in
32  let generated ≝
33    match instr with
34    [ joint_st_sequential instr' _ ⇒
35        match instr' with
36        [ joint_instr_cost_label lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?)
37        | joint_instr_cond_acc lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?)
38        | _ ⇒ set_empty ?
39        ]
40    | joint_st_goto lbl ⇒ set_insert ? (word_of_identifier ? lbl) (set_empty ?)
41    | joint_st_return ⇒ set_empty ?
42    ] in
43  match label with
44  [ None ⇒ generated
45  | Some lbl ⇒ set_insert ? (word_of_identifier ? lbl) generated
46  ].
47
48definition function_labels_internal ≝
49  λglobals: list ident.
50  λlabels: BitVectorTrieSet ?.
51  λstatement: lin_statement globals.
52    set_union ? labels (statement_labels globals statement).
53
54(* dpm: A = Identifier *)
55definition function_labels: ∀A. ∀globals. ∀f. BitVectorTrieSet ? ≝
56  λA: Type[0].
57  λglobals: list ident.
58  λf: A × (lin_function_definition globals).
59  let 〈ignore, fun_def〉 ≝ f in
60  match fun_def return λ_. BitVectorTrieSet ? with
61  [ lin_fu_internal stmts proof ⇒
62      foldl ? ? (function_labels_internal globals) (set_empty ?) stmts
63  | lin_fu_external _ ⇒ set_empty ?
64  ].
65 
66definition program_labels_internal: ∀A. ∀globals. ∀labels. ∀funct. BitVectorTrieSet ? ≝
67  λA: Type[0].
68  λglobals: list ident.
69  λlabels: BitVectorTrieSet ?.
70  λfunct: A × (lin_function_definition globals).
71    set_union ? labels (function_labels ? globals funct).
72   
73definition program_labels ≝
74  λprogram.
75    foldl ? ? (program_labels_internal ? (map ? ? (fst ? ?) (lin_pr_vars program)))
76              (set_empty ?) (lin_pr_funcs program).
77   
78definition data_of_int ≝ λbv. DATA bv.
79definition data16_of_int ≝ λbv. DATA16 (bitvector_of_nat 16 bv).
80definition accumulator_address ≝ DIRECT (bitvector_of_nat 8 224).
81
82axiom ImplementedInRuntime: False.
83
84definition translate_statements ≝
85  λglobals: list (ident × nat).
86  λglobals_old: list ident.
87  λprf: ∀i: ident. member i (eq_identifier ?) globals_old → member i (eq_identifier ?) (map ? ? (fst ? ?) globals).
88  λstatement: pre_lin_statement globals_old.
89  match statement with
90  [ joint_st_return ⇒ Instruction (RET ?)
91  | joint_st_goto lbl ⇒ Jmp (word_of_identifier ? lbl)
92  | joint_st_sequential instr _ ⇒
93    match instr with
94    [ joint_instr_comment comment ⇒ Comment comment
95    | joint_instr_cost_label lbl ⇒ Cost (Identifier_of_costlabel lbl)
96    | joint_instr_pop ⇒ Instruction (POP ? accumulator_address)
97    | joint_instr_push ⇒ Instruction (PUSH ? accumulator_address)
98    | joint_instr_clear_carry ⇒ Instruction (CLR ? CARRY)
99    | joint_instr_call_id f ⇒ Call (word_of_identifier ? f)
100    | joint_instr_opaccs accs ⇒
101      match accs with
102      [ Mul ⇒ Instruction (MUL ? ACC_A ACC_B)
103      | Divu ⇒ Instruction (DIV ? ACC_A ACC_B)
104      | Modu ⇒ ?
105      ]
106    | joint_instr_op1 op1 ⇒
107      match op1 with
108      [ Cmpl ⇒ Instruction (CPL ? ACC_A)
109      | Inc ⇒ Instruction (INC ? ACC_A)
110      ]
111    | joint_instr_op2 op2 reg ⇒
112      match op2 with
113      [ Add ⇒
114        let reg' ≝ register_address (Register_of_register reg) in
115        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
116                                                       direct;
117                                                       registr ]] x) → ? with
118        [ ACC_A ⇒ λacc_a: True.
119          Instruction (ADD ? ACC_A accumulator_address)
120        | DIRECT d ⇒ λdirect1: True.
121          Instruction (ADD ? ACC_A (DIRECT d))
122        | REGISTER r ⇒ λregister1: True.
123          Instruction (ADD ? ACC_A (REGISTER r))
124        | _ ⇒ λother: False. ⊥
125        ] (subaddressing_modein … reg')
126      | Addc ⇒
127        let reg' ≝ register_address (Register_of_register reg) in
128        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
129                                                       direct;
130                                                       registr ]] x) → ? with
131        [ ACC_A ⇒ λacc_a: True.
132          Instruction (ADDC ? ACC_A accumulator_address)
133        | DIRECT d ⇒ λdirect2: True.
134          Instruction (ADDC ? ACC_A (DIRECT d))
135        | REGISTER r ⇒ λregister2: True.
136          Instruction (ADDC ? ACC_A (REGISTER r))
137        | _ ⇒ λother: False. ⊥
138        ] (subaddressing_modein … reg')
139      | Sub ⇒
140        let reg' ≝ register_address (Register_of_register reg) in
141        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
142                                                       direct;
143                                                       registr ]] x) → ? with
144        [ ACC_A ⇒ λacc_a: True.
145          Instruction (SUBB ? ACC_A accumulator_address)
146        | DIRECT d ⇒ λdirect3: True.
147          Instruction (SUBB ? ACC_A (DIRECT d))
148        | REGISTER r ⇒ λregister3: True.
149          Instruction (SUBB ? ACC_A (REGISTER r))
150        | _ ⇒ λother: False. ⊥
151        ] (subaddressing_modein … reg')
152      | And ⇒
153        let reg' ≝ register_address (Register_of_register reg) in
154        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
155                                                       direct;
156                                                       registr ]] x) → ? with
157        [ ACC_A ⇒ λacc_a: True.
158          Instruction (NOP ?)
159        | DIRECT d ⇒ λdirect4: True.
160          Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉)))
161        | REGISTER r ⇒ λregister4: True.
162          Instruction (ANL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉)))
163        | _ ⇒ λother: False. ⊥
164        ] (subaddressing_modein … reg')
165      | Or ⇒
166        let reg' ≝ register_address (Register_of_register reg) in
167        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
168                                                       direct;
169                                                       registr ]] x) → ? with
170        [ ACC_A ⇒ λacc_a: True.
171          Instruction (NOP ?)
172        | DIRECT d ⇒ λdirect5: True.
173          Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉)))
174        | REGISTER r ⇒ λregister5: True.
175          Instruction (ORL ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉)))
176        | _ ⇒ λother: False. ⊥
177        ] (subaddressing_modein … reg')
178      | Xor ⇒
179        let reg' ≝ register_address (Register_of_register reg) in
180        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
181                                                       direct;
182                                                       registr ]] x) → ? with
183        [ ACC_A ⇒ λacc_a: True.
184          Instruction (XRL ? (inr ? ? 〈accumulator_address, ACC_A〉))
185        | DIRECT d ⇒ λdirect6: True.
186          Instruction (XRL ? (inl ? ? 〈ACC_A, DIRECT d〉))
187        | REGISTER r ⇒ λregister6: True.
188          Instruction (XRL ? (inl ? ? 〈ACC_A, REGISTER r〉))
189        | _ ⇒ λother: False. ⊥
190        ] (subaddressing_modein … reg')
191      ]
192    | joint_instr_int reg byte ⇒
193      let reg' ≝ register_address (Register_of_register reg) in
194        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
195                                                       direct;
196                                                       registr ]] x) → ? with
197        [ REGISTER r ⇒ λregister7: True.
198          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, (data_of_int byte)〉))))))
199        | ACC_A ⇒ λacc: True.
200          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, (data_of_int byte)〉))))))
201        | DIRECT d ⇒ λdirect7: True.
202          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, (data_of_int byte)〉)))))
203        | _ ⇒ λother: False. ⊥
204        ] (subaddressing_modein … reg')
205    | joint_instr_from_acc reg ⇒
206      let reg' ≝ register_address (Register_of_register reg) in
207        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
208                                                       direct;
209                                                       registr ]] x) → ? with
210        [ REGISTER r ⇒ λregister8: True.
211          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈REGISTER r, ACC_A〉))))))
212        | ACC_A ⇒ λacc: True.
213          Instruction (NOP ?)
214        | DIRECT d ⇒ λdirect8: True.
215          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inr ? ? 〈DIRECT d, ACC_A〉)))))
216        | _ ⇒ λother: False. ⊥
217        ] (subaddressing_modein … reg')
218    | joint_instr_to_acc reg ⇒
219      let reg' ≝ register_address (Register_of_register reg) in
220        match reg' return λx. bool_to_Prop (is_in … [[ acc_a;
221                                                       direct;
222                                                       registr ]] x) → ? with
223        [ REGISTER r ⇒ λregister9: True.
224          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, REGISTER r〉))))))
225        | DIRECT d ⇒ λdirect9: True.
226          Instruction (MOV ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? (inl ? ? 〈ACC_A, DIRECT d〉))))))
227        | ACC_A ⇒ λacc_a: True.
228          Instruction (NOP ?)
229        | _ ⇒ λother: False. ⊥
230        ] (subaddressing_modein … reg')
231    | joint_instr_load ⇒ Instruction (MOVX ? (inl ? ? 〈ACC_A, EXT_INDIRECT_DPTR〉))
232    | joint_instr_store ⇒ Instruction (MOVX ? (inr ? ? 〈EXT_INDIRECT_DPTR, ACC_A〉))
233    | joint_instr_address addr proof ⇒
234      let look ≝ association addr globals (prf ? proof) in
235        Instruction (MOV ? (inl ? ? (inl ? ? (inr ? ? (〈DPTR, (data16_of_int look)〉)))))
236    | joint_instr_cond_acc lbl ⇒
237      (* dpm: this should be handled in translate_code! *)
238      WithLabel (JNZ ? (word_of_identifier ? lbl))
239    ]
240  ].
241  try assumption
242  try @ I
243  cases ImplementedInRuntime
244qed.
245
246definition build_translated_statement ≝
247  λglobals.
248  λglobals_old.
249  λprf.
250  λstatement: lin_statement globals_old.
251    〈\fst statement, translate_statements globals globals_old prf (\snd statement)〉.
252
253definition translate_code ≝
254  λglobals: list (ident × nat).
255  λglobals_old: list ident.
256  λprf.
257  λcode: list (lin_statement globals_old).
258    map ? ? (build_translated_statement globals globals_old prf) code.
259   
260lemma translate_code_preserves_WellFormedP:
261  ∀globals, globals_old, prf, code.
262    well_formed_P ? ? code → well_formed_P ? ? (translate_code globals globals_old prf code).
263  #G #GO #P #C
264  elim C
265  [ normalize
266    //
267  | #G2 #G02 #IH (* CSC: understand here *)
268    whd in ⊢ (% → %)
269    normalize in ⊢ (% → %)
270    //
271  ]
272qed.
273
274definition translate_fun_def ≝
275  λglobals.
276  λglobals_old.
277  λprf.
278  λid_def.
279    let 〈id, def〉 ≝ id_def in
280    match def with
281    [ lin_fu_internal code proof ⇒
282      match translate_code globals globals_old prf code return λtranscode. well_formed_P ? ? transcode → list labelled_instruction with
283      [ nil ⇒ λprf2. ⊥
284      | cons hd tl ⇒ λ_.
285        let rest ≝ 〈Some ? id, \snd hd〉 :: tl in
286          map ? ? (
287            λr.
288            match fst ? ? r with
289            [ Some id' ⇒ 〈Some ? (word_of_identifier ? id'), snd ? ? r〉
290            | None ⇒ 〈None ?, \snd r〉
291            ]) rest
292      ] (translate_code_preserves_WellFormedP globals globals_old prf code proof)
293    | _ ⇒ [ ]
294    ].
295    @ prf2
296qed.
297   
298definition translate_functs ≝
299  λglobals.
300  λglobals_old.
301  λprf.
302  λexit_label.
303  λmain.
304  λfuncts.
305  let preamble ≝
306    match main with
307    [ None ⇒ [ ]
308    | Some main' ⇒ [ 〈None ?, Call main'〉 ; 〈Some ? exit_label, Jmp exit_label〉 ]
309    ] in
310      preamble @ (flatten ? (map ? ? (translate_fun_def globals globals_old prf) functs)).
311
312definition globals_addr_internal ≝
313  λres_offset.
314  λx_size: Identifier × nat.
315    let 〈res, offset〉 ≝ res_offset in
316    let 〈x, size〉 ≝ x_size in
317      〈〈x, offset〉 :: res, offset + size〉.
318
319definition globals_addr ≝
320  λl.
321    \fst (foldl ? ? globals_addr_internal 〈[ ], 0〉 l).
322     
323(* dpm: plays the role of the string "_exit" in the O'caml source *)
324axiom identifier_prefix: Identifier.
325
326(* dpm: fresh prefix stuff needs unifying with brian *)
327
328(*
329definition translate ≝
330  λp.
331  let prog_lbls ≝ program_labels p in
332  let exit_label ≝ fresh_prefix prog_lbls identifier_prefix in
333  let global_addr ≝ globals_addr (LIN_Pr_vars p) in
334    〈global_addr, translate_functs global_addr (map ? ? (fst ? ?) (LIN_Pr_vars p)) ? exit_label (LIN_Pr_main p) (LIN_Pr_funs p)〉.
335*)
Note: See TracBrowser for help on using the repository browser.