1 | include "Clight/Csyntax.ma". |
---|
2 | include "Clight/fresh.ma". |
---|
3 | include "basics/lists/list.ma". |
---|
4 | include "common/Identifiers.ma". |
---|
5 | include "Clight/Cexec.ma". |
---|
6 | include "Clight/CexecInd.ma". |
---|
7 | include "Clight/frontend_misc.ma". |
---|
8 | include "Clight/casts.ma". (* lemmas related to bitvectors ... *) |
---|
9 | |
---|
10 | (* |
---|
11 | include "Clight/maps_obsequiv.ma". |
---|
12 | *) |
---|
13 | |
---|
14 | |
---|
15 | (* ----------------------------------------------------------------------------- |
---|
16 | ----------------------------------------------------------------------------*) |
---|
17 | |
---|
18 | (* ----------------------------------------------------------------------------- |
---|
19 | Documentation |
---|
20 | ----------------------------------------------------------------------------*) |
---|
21 | |
---|
22 | (* This file implements transformation of switches to linear sequences of |
---|
23 | * if/then/else. The implementation roughly follows the lines of the prototype. |
---|
24 | * /!\ We assume that the program is well-typed (the type of the evaluated |
---|
25 | * expression must match the constants on each branch of the switch). /!\ *) |
---|
26 | |
---|
27 | (* Documentation. Let the follwing be our input switch construct: |
---|
28 | // --------------------------------- |
---|
29 | switch(e) { |
---|
30 | case v1: |
---|
31 | stmt1 |
---|
32 | case v2: |
---|
33 | stmt2 |
---|
34 | . |
---|
35 | . |
---|
36 | . |
---|
37 | default: |
---|
38 | stmt_default |
---|
39 | } |
---|
40 | // --------------------------------- |
---|
41 | |
---|
42 | Note that stmt1,stmt2, ... stmt_default may contain "break" statements, wich have the effect of exiting |
---|
43 | the switch statement. In the absence of break, the execution falls through each case sequentially. |
---|
44 | |
---|
45 | Given such a statement, we produce an equivalent sequence of if-then-elses chained by gotos: |
---|
46 | |
---|
47 | // --------------------------------- |
---|
48 | fresh = e; |
---|
49 | if(fresh == v1) { |
---|
50 | stmt1'; |
---|
51 | goto lbl_case2; |
---|
52 | } |
---|
53 | if(fresh == v2) { |
---|
54 | lbl_case2: |
---|
55 | stmt2'; |
---|
56 | goto lbl_case2; |
---|
57 | } |
---|
58 | ... |
---|
59 | stmt_default'; |
---|
60 | exit_label: |
---|
61 | // --------------------------------- |
---|
62 | |
---|
63 | where stmt1', stmt2', ... stmt_default' are the statements where all top-level [break] statements |
---|
64 | were replaced by [goto exit_label]. Note that fresh, lbl_casei are fresh identifiers and labels. |
---|
65 | *) |
---|
66 | |
---|
67 | |
---|
68 | (* ----------------------------------------------------------------------------- |
---|
69 | Definitions allowing to state that the program resulting of the transformation |
---|
70 | is switch-free. |
---|
71 | ---------------------------------------------------------------------------- *) |
---|
72 | |
---|
73 | (* Property of a Clight statement of containing no switch. Could be generalized into a kind of |
---|
74 | * statement_P, if useful elsewhere. *) |
---|
75 | let rec switch_free (st : statement) : Prop ≝ |
---|
76 | match st with |
---|
77 | [ Sskip ⇒ True |
---|
78 | | Sassign _ _ ⇒ True |
---|
79 | | Scall _ _ _ ⇒ True |
---|
80 | | Ssequence s1 s2 ⇒ switch_free s1 ∧ switch_free s2 |
---|
81 | | Sifthenelse e s1 s2 ⇒ switch_free s1 ∧ switch_free s2 |
---|
82 | | Swhile e body ⇒ switch_free body |
---|
83 | | Sdowhile e body ⇒ switch_free body |
---|
84 | | Sfor s1 _ s2 s3 ⇒ switch_free s1 ∧ switch_free s2 ∧ switch_free s3 |
---|
85 | | Sbreak ⇒ True |
---|
86 | | Scontinue ⇒ True |
---|
87 | | Sreturn _ ⇒ True |
---|
88 | | Sswitch _ _ ⇒ False |
---|
89 | | Slabel _ body ⇒ switch_free body |
---|
90 | | Sgoto _ ⇒ True |
---|
91 | | Scost _ body ⇒ switch_free body |
---|
92 | ]. |
---|
93 | |
---|
94 | (* Property of a list of labeled statements of being switch-free *) |
---|
95 | let rec branches_switch_free (sts : labeled_statements) : Prop ≝ |
---|
96 | match sts with |
---|
97 | [ LSdefault st => |
---|
98 | switch_free st |
---|
99 | | LScase _ _ st tl => |
---|
100 | switch_free st ∧ branches_switch_free tl |
---|
101 | ]. |
---|
102 | |
---|
103 | let rec branches_ind |
---|
104 | (sts : labeled_statements) |
---|
105 | (H : labeled_statements → Prop) |
---|
106 | (defcase : ∀st. H (LSdefault st)) |
---|
107 | (indcase : ∀sz.∀int.∀st.∀sub_cases. H sub_cases → H (LScase sz int st sub_cases)) ≝ |
---|
108 | match sts with |
---|
109 | [ LSdefault st ⇒ |
---|
110 | defcase st |
---|
111 | | LScase sz int st tl ⇒ |
---|
112 | indcase sz int st tl (branches_ind tl H defcase indcase) |
---|
113 | ]. |
---|
114 | |
---|
115 | (* ----------------------------------------------------------------------------- |
---|
116 | Switch-removal code for statements, functions and fundefs. |
---|
117 | ----------------------------------------------------------------------------*) |
---|
118 | |
---|
119 | (* Converts the directly accessible ("free") breaks to gotos toward the [lab] label. *) |
---|
120 | let rec convert_break_to_goto (st : statement) (lab : label) : statement ≝ |
---|
121 | match st with |
---|
122 | [ Sbreak ⇒ |
---|
123 | Sgoto lab |
---|
124 | | Ssequence s1 s2 ⇒ |
---|
125 | Ssequence (convert_break_to_goto s1 lab) (convert_break_to_goto s2 lab) |
---|
126 | | Sifthenelse e iftrue iffalse ⇒ |
---|
127 | Sifthenelse e (convert_break_to_goto iftrue lab) (convert_break_to_goto iffalse lab) |
---|
128 | | Sfor init e update body ⇒ |
---|
129 | Sfor (convert_break_to_goto init lab) e update body |
---|
130 | | Slabel l body ⇒ |
---|
131 | Slabel l (convert_break_to_goto body lab) |
---|
132 | | Scost cost body ⇒ |
---|
133 | Scost cost (convert_break_to_goto body lab) |
---|
134 | | _ ⇒ st |
---|
135 | ]. |
---|
136 | |
---|
137 | (* Converting breaks preserves switch-freeness. *) |
---|
138 | lemma convert_break_lift : ∀s,label . switch_free s → switch_free (convert_break_to_goto s label). |
---|
139 | #s elim s // |
---|
140 | [ 1: #s1 #s2 #Hind1 #Hind2 #label * #Hsf1 #Hsf2 /3/ |
---|
141 | | 2: #e #s1 #s2 #Hind1 #Hind2 #label * #Hsf1 #Hsf2 /3/ |
---|
142 | | 3: #s1 #e #s2 #s3 #Hind1 #Hind2 #Hind3 #label * * #Hsf1 #Hsf2 #Hsf3 normalize |
---|
143 | try @conj try @conj /3/ |
---|
144 | | 4: #l #s0 #Hind #lab #Hsf whd in Hsf; normalize /2/ |
---|
145 | | 5: #l #s0 #Hind #lab #Hsf whd in Hsf; normalize /3/ |
---|
146 | ] qed. |
---|
147 | |
---|
148 | (* Obsolete. This version generates a nested pseudo-sequence of if-then-elses. *) |
---|
149 | (* |
---|
150 | let rec produce_cond |
---|
151 | (e : expr) |
---|
152 | (switch_cases : stlist) |
---|
153 | (def_case : ident × sf_statement) |
---|
154 | (exit : label) on switch_cases : sf_statement × label ≝ |
---|
155 | match switch_cases with |
---|
156 | [ nil ⇒ |
---|
157 | match def_case with |
---|
158 | [ mk_Prod default_label default_statement ⇒ |
---|
159 | 〈«Slabel default_label (convert_break_to_goto (pi1 … default_statement) exit), ?», default_label〉 |
---|
160 | ] |
---|
161 | | cons switch_case tail ⇒ |
---|
162 | let 〈case_label, case_value, case_statement〉 ≝ switch_case in |
---|
163 | match case_value with |
---|
164 | [ mk_DPair sz val ⇒ |
---|
165 | let test ≝ Expr (Ebinop Oeq e (Expr (Econst_int sz val) (typeof e))) (Tint I32 Signed) in |
---|
166 | (* let test ≝ Expr (Ebinop Oeq e e) (Tint I32 Unsigned) in *) |
---|
167 | (* let test ≝ Expr (Econst_int I32 (bvzero 32)) (Tint I32 Signed) in *) |
---|
168 | let 〈sub_statement, sub_label〉 ≝ produce_cond e tail def_case exit in |
---|
169 | let result ≝ |
---|
170 | Sifthenelse test |
---|
171 | (Slabel case_label |
---|
172 | (Ssequence (convert_break_to_goto (pi1 … case_statement) exit) |
---|
173 | (Sgoto sub_label))) |
---|
174 | (pi1 … sub_statement) |
---|
175 | in |
---|
176 | 〈«result, ?», case_label〉 |
---|
177 | ] |
---|
178 | ]. |
---|
179 | [ 1: normalize @convert_break_lift elim default_statement // |
---|
180 | | 2: whd @conj normalize try @conj try // |
---|
181 | [ 1: @convert_break_lift elim case_statement // |
---|
182 | | 2: elim sub_statement // ] |
---|
183 | ] qed. *) |
---|
184 | |
---|
185 | (* We assume that the expression e is consistely typed w.r.t. the switch branches *) |
---|
186 | (* |
---|
187 | let rec produce_cond2 |
---|
188 | (e : expr) |
---|
189 | (switch_cases : stlist) |
---|
190 | (def_case : ident × sf_statement) |
---|
191 | (exit : label) on switch_cases : sf_statement × label ≝ |
---|
192 | match switch_cases with |
---|
193 | [ nil ⇒ |
---|
194 | let 〈default_label, default_statement〉 ≝ def_case in |
---|
195 | 〈«Slabel default_label (convert_break_to_goto (pi1 … default_statement) exit), ?», default_label〉 |
---|
196 | | cons switch_case tail ⇒ |
---|
197 | let 〈case_label, case_value, case_statement〉 ≝ switch_case in |
---|
198 | match case_value with |
---|
199 | [ mk_DPair sz val ⇒ |
---|
200 | let test ≝ Expr (Ebinop Oeq e (Expr (Econst_int sz val) (typeof e))) (Tint I32 Signed) in |
---|
201 | let 〈sub_statement, sub_label〉 ≝ produce_cond2 e tail def_case exit in |
---|
202 | let case_statement_res ≝ |
---|
203 | Sifthenelse test |
---|
204 | (Slabel case_label |
---|
205 | (Ssequence (convert_break_to_goto (pi1 … case_statement) exit) |
---|
206 | (Sgoto sub_label))) |
---|
207 | Sskip |
---|
208 | in |
---|
209 | 〈«Ssequence case_statement_res (pi1 … sub_statement), ?», case_label〉 |
---|
210 | ] |
---|
211 | ]. |
---|
212 | [ 1: normalize @convert_break_lift elim default_statement // |
---|
213 | | 2: whd @conj |
---|
214 | [ 1: whd @conj try // whd in match (switch_free ?); @conj |
---|
215 | [ 1: @convert_break_lift elim case_statement // |
---|
216 | | 2: // ] |
---|
217 | | 2: elim sub_statement // ] |
---|
218 | ] qed. *) |
---|
219 | |
---|
220 | (* (def_case : ident × sf_statement) *) |
---|
221 | |
---|
222 | let rec produce_cond |
---|
223 | (e : expr) |
---|
224 | (switch_cases : labeled_statements) |
---|
225 | (u : universe SymbolTag) |
---|
226 | (exit : label) on switch_cases : statement × label × (universe SymbolTag) ≝ |
---|
227 | match switch_cases with |
---|
228 | [ LSdefault st ⇒ |
---|
229 | let 〈lab,u1〉 ≝ fresh ? u in |
---|
230 | let st' ≝ convert_break_to_goto st exit in |
---|
231 | 〈Slabel lab st', lab, u1〉 |
---|
232 | | LScase sz tag st other_cases ⇒ |
---|
233 | let 〈sub_statements, sub_label, u1〉 ≝ produce_cond e other_cases u exit in |
---|
234 | let st' ≝ convert_break_to_goto st exit in |
---|
235 | let 〈lab, u2〉 ≝ fresh ? u1 in |
---|
236 | let test ≝ Expr (Ebinop Oeq e (Expr (Econst_int sz tag) (typeof e))) (Tint I32 Signed) in |
---|
237 | let case_statement ≝ |
---|
238 | Sifthenelse test |
---|
239 | (Slabel lab (Ssequence st' (Sgoto sub_label))) |
---|
240 | Sskip |
---|
241 | in |
---|
242 | 〈Ssequence case_statement sub_statements, lab, u2〉 |
---|
243 | ]. |
---|
244 | |
---|
245 | definition simplify_switch ≝ |
---|
246 | λ(e : expr). |
---|
247 | λ(switch_cases : labeled_statements). |
---|
248 | λ(uv : universe SymbolTag). |
---|
249 | let 〈exit_label, uv1〉 ≝ fresh ? uv in |
---|
250 | let 〈result, useless_label, uv2〉 ≝ produce_cond e switch_cases uv1 exit_label in |
---|
251 | 〈Ssequence result (Slabel exit_label Sskip), uv2〉. |
---|
252 | |
---|
253 | lemma produce_cond_switch_free : ∀l.∀H:branches_switch_free l.∀e,lab,u.switch_free (\fst (\fst (produce_cond e l u lab))). |
---|
254 | #l @(labeled_statements_ind … l) |
---|
255 | [ 1: #s #Hsf #e #lab #u normalize cases (fresh ??) #lab0 #u1 |
---|
256 | normalize in Hsf ⊢ %; @(convert_break_lift … Hsf) |
---|
257 | | 2: #sz #i #hd #tl #Hind whd in ⊢ (% → ?); * #Hsf_hd #Hsf_tl |
---|
258 | #e #lab #u normalize |
---|
259 | lapply (Hind Hsf_tl e lab u) |
---|
260 | cases (produce_cond e tl u lab) * #cond #lab' #u' #Hsf normalize nodelta |
---|
261 | cases (fresh ??) #lab0 #u2 normalize nodelta |
---|
262 | normalize try @conj try @conj try @conj try // |
---|
263 | @(convert_break_lift … Hsf_hd) |
---|
264 | ] qed. |
---|
265 | |
---|
266 | lemma simplify_switch_switch_free : ∀e,l. ∀H:branches_switch_free l. ∀u. switch_free (\fst (simplify_switch e l u)). |
---|
267 | #e #l cases l |
---|
268 | [ 1: #def normalize #H #u cases (fresh ? u) #exit_label #uv normalize cases (fresh ? uv) #lab #uv' normalize nodelta |
---|
269 | whd @conj whd |
---|
270 | [ 1: @convert_break_lift assumption |
---|
271 | | 2: @I ] |
---|
272 | | 2: #sz #i #case #tl normalize * #Hsf #Hsftl #u |
---|
273 | cases (fresh ? u) #exit_label #uv1 normalize nodelta |
---|
274 | lapply (produce_cond_switch_free tl Hsftl e exit_label uv1) |
---|
275 | cases (produce_cond e tl uv1 exit_label) |
---|
276 | * #cond #lab #u1 #Hsf_cond normalize nodelta |
---|
277 | cases (fresh ??) #lab0 #u2 normalize nodelta |
---|
278 | normalize @conj try @conj try @conj try @conj try // |
---|
279 | @(convert_break_lift ?? Hsf) |
---|
280 | ] qed. |
---|
281 | |
---|
282 | (* Instead of using tuples, we use a special type to pack the results of [switch_removal]. We do that in |
---|
283 | order to circumvent the associativity problems in notations. *) |
---|
284 | record swret (A : Type[0]) : Type[0] ≝ { |
---|
285 | ret_st : A; |
---|
286 | ret_acc : list (ident × type); |
---|
287 | ret_fvs : list ident; |
---|
288 | ret_u : universe SymbolTag |
---|
289 | }. |
---|
290 | |
---|
291 | notation > "vbox('do' 〈ident v1, ident v2, ident v3, ident v4〉 ← e; break e')" with precedence 48 |
---|
292 | for @{ match ${e} with |
---|
293 | [ None ⇒ None ? |
---|
294 | | Some ${fresh ret} ⇒ |
---|
295 | (λ${ident v1}.λ${ident v2}.λ${ident v3}.λ${ident v4}. ${e'}) |
---|
296 | (ret_st ? ${fresh ret}) |
---|
297 | (ret_acc ? ${fresh ret}) |
---|
298 | (ret_fvs ? ${fresh ret}) |
---|
299 | (ret_u ? ${fresh ret}) ] }. |
---|
300 | |
---|
301 | notation > "vbox('ret' 〈e1, e2, e3, e4〉)" with precedence 49 |
---|
302 | for @{ Some ? (mk_swret ? ${e1} ${e2} ${e3} ${e4}) }. |
---|
303 | |
---|
304 | (* Recursively convert a statement into a switch-free one. We /provide/ directly to the function a list |
---|
305 | of identifiers (supposedly fresh). The actual task of producing this identifier is decoupled in another |
---|
306 | 'twin' function. It is then proved that feeding [switch_removal] with the correct amount of free variables |
---|
307 | allows it to proceed without failing. This is all in order to ease the proof of simulation. *) |
---|
308 | let rec switch_removal |
---|
309 | (st : statement) (* the statement in which we will remove switches *) |
---|
310 | (fvs : list ident) (* a finite list of names usable to create variables. *) |
---|
311 | (u : universe SymbolTag) (* a fresh /label/ generator *) |
---|
312 | : option (swret statement) ≝ |
---|
313 | match st with |
---|
314 | [ Sskip ⇒ ret 〈st, [ ], fvs, u〉 |
---|
315 | | Sassign _ _ ⇒ ret 〈st, [ ], fvs, u〉 |
---|
316 | | Scall _ _ _ ⇒ ret 〈st, [ ], fvs, u〉 |
---|
317 | | Ssequence s1 s2 ⇒ |
---|
318 | do 〈s1', acc1, fvs', u'〉 ← switch_removal s1 fvs u; |
---|
319 | do 〈s2', acc2, fvs'', u''〉 ← switch_removal s2 fvs' u'; |
---|
320 | ret 〈Ssequence s1' s2', acc1 @ acc2, fvs'', u''〉 |
---|
321 | | Sifthenelse e s1 s2 ⇒ |
---|
322 | do 〈s1', acc1, fvs', u'〉 ← switch_removal s1 fvs u; |
---|
323 | do 〈s2', acc2, fvs'', u''〉 ← switch_removal s2 fvs' u'; |
---|
324 | ret 〈Sifthenelse e s1' s2', acc1 @ acc2, fvs'', u''〉 |
---|
325 | | Swhile e body ⇒ |
---|
326 | do 〈body', acc, fvs', u'〉 ← switch_removal body fvs u; |
---|
327 | ret 〈Swhile e body', acc, fvs', u'〉 |
---|
328 | | Sdowhile e body ⇒ |
---|
329 | do 〈body', acc, fvs', u'〉 ← switch_removal body fvs u; |
---|
330 | ret 〈Sdowhile e body', acc, fvs', u'〉 |
---|
331 | | Sfor s1 e s2 s3 ⇒ |
---|
332 | do 〈s1', acc1, fvs', u'〉 ← switch_removal s1 fvs u; |
---|
333 | do 〈s2', acc2, fvs'', u''〉 ← switch_removal s2 fvs' u'; |
---|
334 | do 〈s3', acc3, fvs''', u'''〉 ← switch_removal s3 fvs'' u''; |
---|
335 | ret 〈Sfor s1' e s2' s3', acc1 @ acc2 @ acc3, fvs''', u'''〉 |
---|
336 | | Sbreak ⇒ |
---|
337 | ret 〈st, [ ], fvs, u〉 |
---|
338 | | Scontinue ⇒ |
---|
339 | ret 〈st, [ ], fvs, u〉 |
---|
340 | | Sreturn _ ⇒ |
---|
341 | ret 〈st, [ ], fvs, u〉 |
---|
342 | | Sswitch e branches ⇒ |
---|
343 | do 〈sf_branches, acc, fvs', u'〉 ← switch_removal_branches branches fvs u; |
---|
344 | match fvs' with |
---|
345 | [ nil ⇒ None ? |
---|
346 | | cons fresh tl ⇒ |
---|
347 | (* let 〈switch_tmp, uv2〉 ≝ fresh ? uv1 in *) |
---|
348 | let ident ≝ Expr (Evar fresh) (typeof e) in |
---|
349 | let assign ≝ Sassign ident e in |
---|
350 | let 〈result, u''〉 ≝ simplify_switch ident sf_branches u' in |
---|
351 | ret 〈Ssequence assign result, (〈fresh, typeof e〉 :: acc), tl, u'〉 |
---|
352 | ] |
---|
353 | | Slabel label body ⇒ |
---|
354 | do 〈body', acc, fvs', u'〉 ← switch_removal body fvs u; |
---|
355 | ret 〈Slabel label body', acc, fvs', u'〉 |
---|
356 | | Sgoto _ ⇒ |
---|
357 | ret 〈st, [ ], fvs, u〉 |
---|
358 | | Scost cost body ⇒ |
---|
359 | do 〈body', acc, fvs', u'〉 ← switch_removal body fvs u; |
---|
360 | ret 〈Scost cost body', acc, fvs', u'〉 |
---|
361 | ] |
---|
362 | |
---|
363 | and switch_removal_branches |
---|
364 | (l : labeled_statements) |
---|
365 | (fvs : list ident) |
---|
366 | (u : universe SymbolTag) |
---|
367 | (* : option (labeled_statements × (list (ident × type)) × (list ident) × (universe SymbolTag)) *) ≝ |
---|
368 | match l with |
---|
369 | [ LSdefault st ⇒ |
---|
370 | do 〈st', acc1, fvs', u'〉 ← switch_removal st fvs u; |
---|
371 | ret 〈LSdefault st', acc1, fvs', u'〉 |
---|
372 | | LScase sz int st tl => |
---|
373 | do 〈tl_result, acc1, fvs', u'〉 ← switch_removal_branches tl fvs u; |
---|
374 | do 〈st', acc2, fvs'', u''〉 ← switch_removal st fvs' u'; |
---|
375 | ret 〈LScase sz int st' tl_result, acc1 @ acc2, fvs'', u''〉 |
---|
376 | ]. |
---|
377 | |
---|
378 | let rec mk_fresh_variables |
---|
379 | (st : statement) (* the statement in which we will remove switches *) |
---|
380 | (u : universe SymbolTag) (* a fresh /label/ generator *) |
---|
381 | : (list ident) × (universe SymbolTag) ≝ |
---|
382 | match st with |
---|
383 | [ Sskip ⇒ 〈[ ], u〉 |
---|
384 | | Sassign _ _ ⇒ 〈[ ], u〉 |
---|
385 | | Scall _ _ _ ⇒ 〈[ ], u〉 |
---|
386 | | Ssequence s1 s2 ⇒ |
---|
387 | let 〈fvs, u'〉 ≝ mk_fresh_variables s1 u in |
---|
388 | let 〈fvs', u''〉 ≝ mk_fresh_variables s2 u' in |
---|
389 | 〈fvs @ fvs', u''〉 |
---|
390 | | Sifthenelse e s1 s2 ⇒ |
---|
391 | let 〈fvs, u'〉 ≝ mk_fresh_variables s1 u in |
---|
392 | let 〈fvs', u''〉 ≝ mk_fresh_variables s2 u' in |
---|
393 | 〈fvs @ fvs', u''〉 |
---|
394 | | Swhile e body ⇒ |
---|
395 | mk_fresh_variables body u |
---|
396 | | Sdowhile e body ⇒ |
---|
397 | mk_fresh_variables body u |
---|
398 | | Sfor s1 e s2 s3 ⇒ |
---|
399 | let 〈fvs, u'〉 ≝ mk_fresh_variables s1 u in |
---|
400 | let 〈fvs', u''〉 ≝ mk_fresh_variables s2 u' in |
---|
401 | let 〈fvs'', u'''〉 ≝ mk_fresh_variables s3 u'' in |
---|
402 | 〈fvs @ fvs' @fvs'', u'''〉 |
---|
403 | | Sbreak ⇒ |
---|
404 | 〈[ ], u〉 |
---|
405 | | Scontinue ⇒ |
---|
406 | 〈[ ], u〉 |
---|
407 | | Sreturn _ ⇒ |
---|
408 | 〈[ ], u〉 |
---|
409 | | Sswitch e branches ⇒ |
---|
410 | let 〈ident, u'〉 ≝ fresh ? u in (* This is actually the only point where we need to create a fresh var. *) |
---|
411 | let 〈fvs, u''〉 ≝ mk_fresh_variables_branches branches u' in |
---|
412 | 〈fvs @ [ident], u''〉 (* reversing the order to match a proof invariant *) |
---|
413 | | Slabel label body ⇒ |
---|
414 | mk_fresh_variables body u |
---|
415 | | Sgoto _ ⇒ |
---|
416 | 〈[ ], u〉 |
---|
417 | | Scost cost body ⇒ |
---|
418 | mk_fresh_variables body u |
---|
419 | ] |
---|
420 | |
---|
421 | and mk_fresh_variables_branches |
---|
422 | (l : labeled_statements) |
---|
423 | (u : universe SymbolTag) |
---|
424 | (* : option (labeled_statements × (list (ident × type)) × (list ident) × (universe SymbolTag)) *) ≝ |
---|
425 | match l with |
---|
426 | [ LSdefault st ⇒ |
---|
427 | mk_fresh_variables st u |
---|
428 | | LScase sz int st tl => |
---|
429 | let 〈fvs, u'〉 ≝ mk_fresh_variables_branches tl u in |
---|
430 | let 〈fvs',u''〉 ≝ mk_fresh_variables st u' in |
---|
431 | 〈fvs @ fvs', u''〉 |
---|
432 | ]. |
---|
433 | |
---|
434 | (* Copied this from Csyntax.ma, lifted from Prop to Type |
---|
435 | (I needed to eliminate something proved with this towards Type) *) |
---|
436 | let rec statement_indT |
---|
437 | (P:statement → Type[1]) (Q:labeled_statements → Type[1]) |
---|
438 | (Ssk:P Sskip) |
---|
439 | (Sas:∀e1,e2. P (Sassign e1 e2)) |
---|
440 | (Sca:∀eo,e,args. P (Scall eo e args)) |
---|
441 | (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) |
---|
442 | (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) |
---|
443 | (Swh:∀e,s. P s → P (Swhile e s)) |
---|
444 | (Sdo:∀e,s. P s → P (Sdowhile e s)) |
---|
445 | (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) |
---|
446 | (Sbr:P Sbreak) |
---|
447 | (Sco:P Scontinue) |
---|
448 | (Sre:∀eo. P (Sreturn eo)) |
---|
449 | (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) |
---|
450 | (Sla:∀l,s. P s → P (Slabel l s)) |
---|
451 | (Sgo:∀l. P (Sgoto l)) |
---|
452 | (Scs:∀l,s. P s → P (Scost l s)) |
---|
453 | (LSd:∀s. P s → Q (LSdefault s)) |
---|
454 | (LSc:∀sz,i,s,t. P s → Q t → Q (LScase sz i s t)) |
---|
455 | (s:statement) on s : P s ≝ |
---|
456 | match s with |
---|
457 | [ Sskip ⇒ Ssk |
---|
458 | | Sassign e1 e2 ⇒ Sas e1 e2 |
---|
459 | | Scall eo e args ⇒ Sca eo e args |
---|
460 | | Ssequence s1 s2 ⇒ Ssq s1 s2 |
---|
461 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
462 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
463 | | Sifthenelse e s1 s2 ⇒ Sif e s1 s2 |
---|
464 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
465 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
466 | | Swhile e s ⇒ Swh e s |
---|
467 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
468 | | Sdowhile e s ⇒ Sdo e s |
---|
469 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
470 | | Sfor s1 e s2 s3 ⇒ Sfo s1 e s2 s3 |
---|
471 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
472 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
473 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s3) |
---|
474 | | Sbreak ⇒ Sbr |
---|
475 | | Scontinue ⇒ Sco |
---|
476 | | Sreturn eo ⇒ Sre eo |
---|
477 | | Sswitch e ls ⇒ Ssw e ls |
---|
478 | (labeled_statements_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc ls) |
---|
479 | | Slabel l s ⇒ Sla l s |
---|
480 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
481 | | Sgoto l ⇒ Sgo l |
---|
482 | | Scost l s ⇒ Scs l s |
---|
483 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
484 | ] |
---|
485 | and labeled_statements_indT |
---|
486 | (P:statement → Type[1]) (Q:labeled_statements → Type[1]) |
---|
487 | (Ssk:P Sskip) |
---|
488 | (Sas:∀e1,e2. P (Sassign e1 e2)) |
---|
489 | (Sca:∀eo,e,args. P (Scall eo e args)) |
---|
490 | (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) |
---|
491 | (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) |
---|
492 | (Swh:∀e,s. P s → P (Swhile e s)) |
---|
493 | (Sdo:∀e,s. P s → P (Sdowhile e s)) |
---|
494 | (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) |
---|
495 | (Sbr:P Sbreak) |
---|
496 | (Sco:P Scontinue) |
---|
497 | (Sre:∀eo. P (Sreturn eo)) |
---|
498 | (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) |
---|
499 | (Sla:∀l,s. P s → P (Slabel l s)) |
---|
500 | (Sgo:∀l. P (Sgoto l)) |
---|
501 | (Scs:∀l,s. P s → P (Scost l s)) |
---|
502 | (LSd:∀s. P s → Q (LSdefault s)) |
---|
503 | (LSc:∀sz,i,s,t. P s → Q t → Q (LScase sz i s t)) |
---|
504 | (ls:labeled_statements) on ls : Q ls ≝ |
---|
505 | match ls with |
---|
506 | [ LSdefault s ⇒ LSd s |
---|
507 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
508 | | LScase sz i s t ⇒ LSc sz i s t |
---|
509 | (statement_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
510 | (labeled_statements_indT P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc t) |
---|
511 | ]. |
---|
512 | |
---|
513 | lemma switch_removal_ok : |
---|
514 | ∀st, u0, u1, post. |
---|
515 | Σresult. |
---|
516 | (switch_removal st ((\fst (mk_fresh_variables st u0)) @ post) u1 = Some ? result) ∧ (ret_fvs ? result = post). |
---|
517 | #st |
---|
518 | @(statement_indT ? (λls. ∀u0, u1, post. |
---|
519 | Σresult. |
---|
520 | (switch_removal_branches ls ((\fst (mk_fresh_variables_branches ls u0)) @ post) u1 = Some ? result) |
---|
521 | ∧ (ret_fvs ? result = post) |
---|
522 | ) … st) |
---|
523 | [ 1: #u0 #u1 #post normalize |
---|
524 | %{(mk_swret statement Sskip [] post u1)} % // |
---|
525 | | 2: #e1 #e2 #u0 #u1 #post normalize |
---|
526 | %{((mk_swret statement (Sassign e1 e2) [] post u1))} % try // |
---|
527 | | 3: #e0 #e #args #u0 #u1 #post normalize |
---|
528 | %{(mk_swret statement (Scall e0 e args) [] post u1)} % try // |
---|
529 | | 4: #s1 #s2 #H1 #H2 #u0 #u1 #post normalize |
---|
530 | elim (H1 u0 u1 ((\fst (mk_fresh_variables s2 (\snd (mk_fresh_variables s1 u0)))) @ post)) #s1' * |
---|
531 | cases (mk_fresh_variables s1 u0) #fvs #u' normalize nodelta |
---|
532 | elim (H2 u' (ret_u ? s1') post) #s2' * |
---|
533 | cases (mk_fresh_variables s2 u') #fvs' #u'' normalize nodelta |
---|
534 | #Heq2 #Heq2_fvs #Heq1 #Heq1_fvs >associative_append >Heq1 normalize nodelta >Heq1_fvs >Heq2 normalize |
---|
535 | %{(mk_swret statement (Ssequence (ret_st statement s1') (ret_st statement s2')) |
---|
536 | (ret_acc statement s1'@ret_acc statement s2') (ret_fvs statement s2') |
---|
537 | (ret_u statement s2'))} % try // |
---|
538 | | 5: #e #s1 #s2 #H1 #H2 #u0 #u1 #post normalize |
---|
539 | elim (H1 u0 u1 ((\fst (mk_fresh_variables s2 (\snd (mk_fresh_variables s1 u0)))) @ post)) #s1' * |
---|
540 | cases (mk_fresh_variables s1 u0) #fvs #u' normalize nodelta |
---|
541 | elim (H2 u' (ret_u ? s1') post) #s2' * |
---|
542 | cases (mk_fresh_variables s2 u') #fvs' #u'' normalize nodelta |
---|
543 | #Heq2 #Heq2_fvs #Heq1 #Heq1_fvs >associative_append >Heq1 normalize nodelta >Heq1_fvs >Heq2 normalize |
---|
544 | %{((mk_swret statement |
---|
545 | (Sifthenelse e (ret_st statement s1') (ret_st statement s2')) |
---|
546 | (ret_acc statement s1'@ret_acc statement s2') (ret_fvs statement s2') |
---|
547 | (ret_u statement s2')))} % try // |
---|
548 | | 6: #e #s #H #u0 #u1 #post normalize |
---|
549 | elim (H u0 u1 post) #s1' * normalize |
---|
550 | cases (mk_fresh_variables s u0) #fvs #u' |
---|
551 | #Heq1 #Heq1_fvs >Heq1 normalize nodelta |
---|
552 | %{(mk_swret statement (Swhile e (ret_st statement s1')) (ret_acc statement s1') |
---|
553 | (ret_fvs statement s1') (ret_u statement s1'))} % try // |
---|
554 | | 7: #e #s #H #u0 #u1 #post normalize |
---|
555 | elim (H u0 u1 post) #s1' * normalize |
---|
556 | cases (mk_fresh_variables s u0) #fvs #u' |
---|
557 | #Heq1 #Heq1_fvs >Heq1 normalize nodelta |
---|
558 | %{(mk_swret statement (Sdowhile e (ret_st statement s1')) (ret_acc statement s1') |
---|
559 | (ret_fvs statement s1') (ret_u statement s1'))} % try // |
---|
560 | | 8: #s1 #e #s2 #s3 #H1 #H2 #H3 #u0 #u1 #post normalize |
---|
561 | elim (H1 u0 u1 |
---|
562 | (\fst (mk_fresh_variables s2 (\snd (mk_fresh_variables s1 u0))) @ |
---|
563 | (\fst (mk_fresh_variables s3 (\snd (mk_fresh_variables s2 (\snd (mk_fresh_variables s1 u0)))))) @ |
---|
564 | post)) #s1' * |
---|
565 | cases (mk_fresh_variables s1 u0) #fvs #u' normalize nodelta |
---|
566 | elim (H2 u' (ret_u ? s1') ((\fst (mk_fresh_variables s3 (\snd (mk_fresh_variables s2 u')))) @ |
---|
567 | post)) #s2' * |
---|
568 | cases (mk_fresh_variables s2 u') #fvs' #u'' normalize nodelta |
---|
569 | elim (H3 u'' (ret_u ? s2') post) #s3' * |
---|
570 | cases (mk_fresh_variables s3 u'') #fvs'' #u''' normalize nodelta |
---|
571 | #Heq3 #Heq3_fvs #Heq2 #Heq2_fvs #Heq1 #Heq1_fvs |
---|
572 | >associative_append >associative_append >Heq1 normalize >Heq1_fvs |
---|
573 | >Heq2 normalize >Heq2_fvs >Heq3 normalize |
---|
574 | %{(mk_swret statement |
---|
575 | (Sfor (ret_st statement s1') e (ret_st statement s2') (ret_st statement s3')) |
---|
576 | (ret_acc statement s1'@ret_acc statement s2'@ret_acc statement s3') |
---|
577 | (ret_fvs statement s3') (ret_u statement s3'))} % try // |
---|
578 | | 9: #u0 #u1 #post normalize %{(mk_swret statement Sbreak [] post u1)} % // |
---|
579 | | 10: #u0 #u1 #post normalize %{(mk_swret statement Scontinue [] post u1)} % // |
---|
580 | | 11: #e #u0 #u1 #post normalize %{(mk_swret statement (Sreturn e) [] post u1)} % // |
---|
581 | | 12: #e #ls #H #u0 #u1 #post |
---|
582 | whd in match (mk_fresh_variables ??); |
---|
583 | whd in match (switch_removal ???); |
---|
584 | elim (fresh ? u0) #fresh #u' |
---|
585 | elim (H u' u1 ([fresh] @ post)) #ls' * normalize nodelta |
---|
586 | cases (mk_fresh_variables_branches ls u') #fvs #u'' normalize nodelta |
---|
587 | >associative_append #Heq #Heq_fvs >Heq normalize nodelta |
---|
588 | >Heq_fvs normalize nodelta |
---|
589 | cases (simplify_switch ???) #st' #u''' normalize nodelta |
---|
590 | %{((mk_swret statement |
---|
591 | (Ssequence (Sassign (Expr (Evar fresh) (typeof e)) e) st') |
---|
592 | (〈fresh,typeof e〉::ret_acc labeled_statements ls') ([]@post) |
---|
593 | (ret_u labeled_statements ls')))} % // |
---|
594 | | 13: #l #s #H #u0 #u1 #post normalize |
---|
595 | elim (H u0 u1 post) #s' * #Heq >Heq normalize nodelta #Heq_fvs >Heq_fvs |
---|
596 | %{(mk_swret statement (Slabel l (ret_st statement s')) (ret_acc statement s') |
---|
597 | post (ret_u statement s'))} % // |
---|
598 | | 14: #l #u0 #u1 #post normalize %{((mk_swret statement (Sgoto l) [] post u1))} % // |
---|
599 | | 15: #l #s #H #u0 #u1 #post normalize |
---|
600 | elim (H u0 u1 post) #s' * #Heq >Heq normalize nodelta #Heq_fvs >Heq_fvs |
---|
601 | %{(mk_swret statement (Scost l (ret_st statement s')) (ret_acc statement s') |
---|
602 | post (ret_u statement s'))} % // |
---|
603 | | 16: #s #H #u0 #u1 #post normalize |
---|
604 | elim (H u0 u1 post) #s' * #Heq >Heq normalize nodelta #Heq_fvs >Heq_fvs |
---|
605 | %{(mk_swret labeled_statements (LSdefault (ret_st statement s')) |
---|
606 | (ret_acc statement s') post (ret_u statement s'))} % // |
---|
607 | | 17: #sz #i #hd #tl #H1 #H2 #u0 #u1 #post normalize |
---|
608 | elim (H2 u0 u1 (\fst (mk_fresh_variables hd (\snd (mk_fresh_variables_branches tl u0))) @ post)) #ls' * |
---|
609 | cases (mk_fresh_variables_branches tl u0) #fvs #u' normalize |
---|
610 | elim (H1 u' (ret_u labeled_statements ls') post) #s1' * |
---|
611 | cases (mk_fresh_variables hd u') #fvs' #u' normalize #Heq #Heq_fvs #Heql #Heql_fvs |
---|
612 | >associative_append >Heql normalize >Heql_fvs >Heq normalize |
---|
613 | %{(mk_swret labeled_statements |
---|
614 | (LScase sz i (ret_st statement s1') (ret_st labeled_statements ls')) |
---|
615 | (ret_acc labeled_statements ls'@ret_acc statement s1') |
---|
616 | (ret_fvs statement s1') (ret_u statement s1'))} % // |
---|
617 | ] qed. |
---|
618 | |
---|
619 | axiom cthulhu : ∀A:Prop. A. (* Because of the nightmares. *) |
---|
620 | |
---|
621 | (* Proof that switch_removal_switch_free does its job. *) |
---|
622 | lemma switch_removal_switch_free : ∀st,fvs,u,result. switch_removal st fvs u = Some ? result → switch_free (ret_st ? result). |
---|
623 | #st @(statement_ind2 ? (λls. ∀fvs,u,ls_result. switch_removal_branches ls fvs u = Some ? ls_result → |
---|
624 | branches_switch_free (ret_st ? ls_result)) … st) |
---|
625 | [ 1: #fvs #u #result normalize #Heq destruct (Heq) // |
---|
626 | | 2: #e1 #e2 #fvs #u #result normalize #Heq destruct (Heq) // |
---|
627 | | 3: #e0 #e #args #fvs #u #result normalize #Heq destruct (Heq) // |
---|
628 | | 4: #s1 #s2 #H1 #H2 #fvs #u #result normalize lapply (H1 fvs u) |
---|
629 | elim (switch_removal s1 fvs u) normalize |
---|
630 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
631 | | 2: #res1 #Heq1 lapply (H2 (ret_fvs statement res1) (ret_u statement res1)) |
---|
632 | elim (switch_removal s2 (ret_fvs statement res1) (ret_u statement res1)) |
---|
633 | [ 1: normalize #_ #Habsurd destruct (Habsurd) |
---|
634 | | 2: normalize #res2 #Heq2 #Heq destruct (Heq) |
---|
635 | normalize @conj |
---|
636 | [ 1: @Heq1 // | 2: @Heq2 // ] |
---|
637 | ] ] |
---|
638 | | *: |
---|
639 | (* TODO the first few cases show that the lemma is routinely proved. TBF later. *) |
---|
640 | @cthulhu ] |
---|
641 | qed. |
---|
642 | |
---|
643 | (* ----------------------------------------------------------------------------- |
---|
644 | Switch-removal code for programs. |
---|
645 | ----------------------------------------------------------------------------*) |
---|
646 | |
---|
647 | (* The functions in fresh.ma do not consider labels. Using [universe_for_program p] may lead to |
---|
648 | * name clashes for labels. We have no choice but to actually run through the function and to |
---|
649 | * compute the maximum of labels+identifiers. This way we can generate both fresh variables and |
---|
650 | * fresh labels using the same univ. While we're at it we also consider record fields. |
---|
651 | * Cost labels are not considered, though. They already live in a separate universe. |
---|
652 | * |
---|
653 | * Important note: this is partially redundant with fresh.ma. We take care of avoiding name clashes, |
---|
654 | * but in the end it might be good to move the following functions into fresh.ma. |
---|
655 | *) |
---|
656 | |
---|
657 | (* Least element in the total order of identifiers. *) |
---|
658 | definition least_identifier ≝ an_identifier SymbolTag one. |
---|
659 | |
---|
660 | (* This is certainly overkill: variables adressed in an expression should be declared in the |
---|
661 | * enclosing function's prototype. *) |
---|
662 | let rec max_of_expr (e : expr) : ident ≝ |
---|
663 | match e with |
---|
664 | [ Expr ed _ ⇒ |
---|
665 | match ed with |
---|
666 | [ Econst_int _ _ ⇒ least_identifier |
---|
667 | | Econst_float _ ⇒ least_identifier |
---|
668 | | Evar id ⇒ id |
---|
669 | | Ederef e1 ⇒ max_of_expr e1 |
---|
670 | | Eaddrof e1 ⇒ max_of_expr e1 |
---|
671 | | Eunop _ e1 ⇒ max_of_expr e1 |
---|
672 | | Ebinop _ e1 e2 ⇒ max_id (max_of_expr e1) (max_of_expr e2) |
---|
673 | | Ecast _ e1 ⇒ max_of_expr e1 |
---|
674 | | Econdition e1 e2 e3 ⇒ |
---|
675 | max_id (max_of_expr e1) (max_id (max_of_expr e2) (max_of_expr e3)) |
---|
676 | | Eandbool e1 e2 ⇒ |
---|
677 | max_id (max_of_expr e1) (max_of_expr e2) |
---|
678 | | Eorbool e1 e2 ⇒ |
---|
679 | max_id (max_of_expr e1) (max_of_expr e2) |
---|
680 | | Esizeof _ ⇒ least_identifier |
---|
681 | | Efield r f ⇒ max_id f (max_of_expr r) |
---|
682 | | Ecost _ e1 ⇒ max_of_expr e1 |
---|
683 | ] |
---|
684 | ]. |
---|
685 | |
---|
686 | (* Reasoning about this promises to be a serious pain. Especially the Scall case. *) |
---|
687 | let rec max_of_statement (s : statement) : ident ≝ |
---|
688 | match s with |
---|
689 | [ Sskip ⇒ least_identifier |
---|
690 | | Sassign e1 e2 ⇒ max_id (max_of_expr e1) (max_of_expr e2) |
---|
691 | | Scall r f args ⇒ |
---|
692 | let retmax ≝ |
---|
693 | match r with |
---|
694 | [ None ⇒ least_identifier |
---|
695 | | Some e ⇒ max_of_expr e ] |
---|
696 | in |
---|
697 | max_id (max_of_expr f) |
---|
698 | (max_id retmax |
---|
699 | (foldl ?? (λacc,elt. max_id (max_of_expr elt) acc) least_identifier args) ) |
---|
700 | | Ssequence s1 s2 ⇒ |
---|
701 | max_id (max_of_statement s1) (max_of_statement s2) |
---|
702 | | Sifthenelse e s1 s2 ⇒ |
---|
703 | max_id (max_of_expr e) (max_id (max_of_statement s1) (max_of_statement s2)) |
---|
704 | | Swhile e body ⇒ |
---|
705 | max_id (max_of_expr e) (max_of_statement body) |
---|
706 | | Sdowhile e body ⇒ |
---|
707 | max_id (max_of_expr e) (max_of_statement body) |
---|
708 | | Sfor init test incr body ⇒ |
---|
709 | max_id (max_id (max_of_statement init) (max_of_expr test)) (max_id (max_of_statement incr) (max_of_statement body)) |
---|
710 | | Sbreak ⇒ least_identifier |
---|
711 | | Scontinue ⇒ least_identifier |
---|
712 | | Sreturn opt ⇒ |
---|
713 | match opt with |
---|
714 | [ None ⇒ least_identifier |
---|
715 | | Some e ⇒ max_of_expr e |
---|
716 | ] |
---|
717 | | Sswitch e ls ⇒ |
---|
718 | max_id (max_of_expr e) (max_of_ls ls) |
---|
719 | | Slabel lab body ⇒ |
---|
720 | max_id lab (max_of_statement body) |
---|
721 | | Sgoto lab ⇒ |
---|
722 | lab |
---|
723 | | Scost _ body ⇒ |
---|
724 | max_of_statement body |
---|
725 | ] |
---|
726 | and max_of_ls (ls : labeled_statements) : ident ≝ |
---|
727 | match ls with |
---|
728 | [ LSdefault s ⇒ max_of_statement s |
---|
729 | | LScase _ _ s ls' ⇒ max_id (max_of_ls ls') (max_of_statement s) |
---|
730 | ]. |
---|
731 | |
---|
732 | definition max_id_of_function : function → ident ≝ |
---|
733 | λf. max_id (max_of_statement (fn_body f)) (max_id_of_fn f). |
---|
734 | |
---|
735 | (* We compute fresh universes on a function-by function basis, since there can't |
---|
736 | * be cross-functions gotos or stuff like that. *) |
---|
737 | definition function_switch_removal : function → function × (list (ident × type)) ≝ |
---|
738 | λf. |
---|
739 | (λres_record. |
---|
740 | let new_vars ≝ ret_acc ? res_record in |
---|
741 | let result ≝ mk_function (fn_return f) (fn_params f) (new_vars @ (fn_vars f)) (ret_st ? res_record) in |
---|
742 | 〈result, new_vars〉) |
---|
743 | (let u ≝ universe_of_max (max_id_of_function f) in |
---|
744 | let 〈fvs,u'〉 as Hfv ≝ mk_fresh_variables (fn_body f) u in |
---|
745 | match switch_removal (fn_body f) fvs u' return λx. (switch_removal (fn_body f) fvs u' = x) → ? with |
---|
746 | [ None ⇒ λHsr. ? |
---|
747 | | Some res_record ⇒ λ_. res_record |
---|
748 | ] (refl ? (switch_removal (fn_body f) fvs u'))). |
---|
749 | lapply (switch_removal_ok (fn_body f) u u' [ ]) * #result' * #Heq #Hret_eq |
---|
750 | <Hfv in Heq; >append_nil >Hsr #Habsurd destruct (Habsurd) |
---|
751 | qed. |
---|
752 | |
---|
753 | let rec fundef_switch_removal (f : clight_fundef) : clight_fundef ≝ |
---|
754 | match f with |
---|
755 | [ CL_Internal f ⇒ |
---|
756 | CL_Internal (\fst (function_switch_removal f)) |
---|
757 | | CL_External _ _ _ ⇒ |
---|
758 | f |
---|
759 | ]. |
---|
760 | |
---|
761 | let rec program_switch_removal (p : clight_program) : clight_program ≝ |
---|
762 | let prog_funcs ≝ prog_funct ?? p in |
---|
763 | let sf_funcs ≝ map ?? (λcl_fundef. |
---|
764 | let 〈fun_id, fun_def〉 ≝ cl_fundef in |
---|
765 | 〈fun_id, fundef_switch_removal fun_def〉 |
---|
766 | ) prog_funcs in |
---|
767 | mk_program ?? |
---|
768 | (prog_vars … p) |
---|
769 | sf_funcs |
---|
770 | (prog_main … p). |
---|
771 | |
---|
772 | |
---|
773 | (* ----------------------------------------------------------------------------- |
---|
774 | Applying two relations on all substatements and all subexprs (directly under). |
---|
775 | ---------------------------------------------------------------------------- *) |
---|
776 | |
---|
777 | let rec substatement_P (s1 : statement) (P : statement → Prop) (Q : expr → Prop) : Prop ≝ |
---|
778 | match s1 with |
---|
779 | [ Sskip ⇒ True |
---|
780 | | Sassign e1 e2 ⇒ Q e1 ∧ Q e2 |
---|
781 | | Scall r f args ⇒ |
---|
782 | match r with |
---|
783 | [ None ⇒ Q f ∧ (All … Q args) |
---|
784 | | Some r ⇒ Q r ∧ Q f ∧ (All … Q args) |
---|
785 | ] |
---|
786 | | Ssequence sub1 sub2 ⇒ P sub1 ∧ P sub2 |
---|
787 | | Sifthenelse e sub1 sub2 ⇒ P sub1 ∧ P sub2 |
---|
788 | | Swhile e sub ⇒ Q e ∧ P sub |
---|
789 | | Sdowhile e sub ⇒ Q e ∧ P sub |
---|
790 | | Sfor sub1 cond sub2 sub3 ⇒ P sub1 ∧ Q cond ∧ P sub2 ∧ P sub3 |
---|
791 | | Sbreak ⇒ True |
---|
792 | | Scontinue ⇒ True |
---|
793 | | Sreturn r ⇒ |
---|
794 | match r with |
---|
795 | [ None ⇒ True |
---|
796 | | Some r ⇒ Q r ] |
---|
797 | | Sswitch e ls ⇒ Q e ∧ (substatement_ls ls P) |
---|
798 | | Slabel _ sub ⇒ P sub |
---|
799 | | Sgoto _ ⇒ True |
---|
800 | | Scost _ sub ⇒ P sub |
---|
801 | ] |
---|
802 | and substatement_ls ls (P : statement → Prop) : Prop ≝ |
---|
803 | match ls with |
---|
804 | [ LSdefault sub ⇒ P sub |
---|
805 | | LScase _ _ sub tl ⇒ P sub ∧ (substatement_ls tl P) |
---|
806 | ]. |
---|
807 | |
---|
808 | (* ----------------------------------------------------------------------------- |
---|
809 | Freshness conservation results on switch removal. |
---|
810 | ---------------------------------------------------------------------------- *) |
---|
811 | |
---|
812 | (* Similar stuff in toCminor.ma. *) |
---|
813 | lemma fresh_for_univ_still_fresh : |
---|
814 | ∀u,i. fresh_for_univ SymbolTag i u → ∀v,u'. 〈v, u'〉 = fresh ? u → fresh_for_univ ? i u'. |
---|
815 | * #p * #i #H1 #v * #p' lapply H1 normalize |
---|
816 | #H1 #H2 destruct (H2) /2/ qed. |
---|
817 | |
---|
818 | lemma fresh_eq : ∀u,i. fresh_for_univ SymbolTag i u → ∃fv,u'. fresh ? u = 〈fv, u'〉 ∧ fresh_for_univ ? i u'. |
---|
819 | #u #i #Hfresh lapply (fresh_for_univ_still_fresh … Hfresh) |
---|
820 | cases (fresh SymbolTag u) |
---|
821 | #fv #u' #H %{fv} %{u'} @conj try // @H // |
---|
822 | qed. |
---|
823 | |
---|
824 | lemma produce_cond_fresh : ∀e,exit,ls,u,i. fresh_for_univ ? i u → fresh_for_univ ? i (\snd (produce_cond e ls u exit)). |
---|
825 | #e #exit #ls @(branches_ind … ls) |
---|
826 | [ 1: #st #u #i #Hfresh normalize |
---|
827 | lapply (fresh_for_univ_still_fresh … Hfresh) |
---|
828 | cases (fresh ? u) #lab #u1 #H lapply (H lab u1 (refl ??)) normalize // |
---|
829 | | 2: #sz #i #hd #tl #Hind #u #i' #Hfresh normalize |
---|
830 | lapply (Hind u i' Hfresh) elim (produce_cond e tl u exit) * |
---|
831 | #subcond #sublabel #u1 #Hfresh1 normalize |
---|
832 | lapply (fresh_for_univ_still_fresh … Hfresh1) |
---|
833 | cases (fresh ? u1) #lab #u2 #H2 lapply (H2 lab u2 (refl ??)) normalize // |
---|
834 | ] qed. |
---|
835 | |
---|
836 | lemma simplify_switch_fresh : ∀u,i,e,ls. |
---|
837 | fresh_for_univ ? i u → |
---|
838 | fresh_for_univ ? i (\snd (simplify_switch e ls u)). |
---|
839 | #u #i #e #ls #Hfresh |
---|
840 | normalize |
---|
841 | lapply (fresh_for_univ_still_fresh … Hfresh) |
---|
842 | cases (fresh ? u) |
---|
843 | #exit_label #uv1 #Haux lapply (Haux exit_label uv1 (refl ??)) -Haux #Haux |
---|
844 | normalize lapply (produce_cond_fresh e exit_label ls … Haux) |
---|
845 | elim (produce_cond ????) * #stm #label #uv2 normalize nodelta // |
---|
846 | qed. |
---|
847 | |
---|
848 | (* |
---|
849 | lemma switch_removal_fresh : ∀i,s,u. |
---|
850 | fresh_for_univ ? i u → |
---|
851 | fresh_for_univ ? i (\snd (switch_removal s u)). |
---|
852 | #i #s @(statement_ind2 ? (λls. ∀u. fresh_for_univ ? i u → |
---|
853 | fresh_for_univ ? i (\snd (switch_removal_branches ls u))) … s) |
---|
854 | try // |
---|
855 | [ 1: #s1' #s2' #Hind1 #Hind2 #u #Hyp |
---|
856 | whd in match (switch_removal (Ssequence s1' s2') u); |
---|
857 | lapply (Hind1 u Hyp) elim (switch_removal s1' u) |
---|
858 | * #irr1 #irr2 #uA #HuA normalize nodelta |
---|
859 | lapply (Hind2 uA HuA) elim (switch_removal s2' uA) |
---|
860 | * #irr3 #irr4 #uB #HuB normalize nodelta // |
---|
861 | | 2: #e #s1' #s2' #Hind1 #Hind2 #u #Hyp |
---|
862 | whd in match (switch_removal (Sifthenelse e s1' s2') u); |
---|
863 | lapply (Hind1 u Hyp) elim (switch_removal s1' u) |
---|
864 | * #irr1 #irr2 #uA #HuA normalize nodelta |
---|
865 | lapply (Hind2 uA HuA) elim (switch_removal s2' uA) |
---|
866 | * #irr3 #irr4 #uB #HuB normalize nodelta // |
---|
867 | | 3,4: #e #s' #Hind #u #Hyp |
---|
868 | whd in match (switch_removal ? u); |
---|
869 | lapply (Hind u Hyp) elim (switch_removal s' u) |
---|
870 | * #irr1 #irr2 #uA #HuA normalize nodelta // |
---|
871 | | 5: #s1' #e #s2' #s3' #Hind1 #Hind2 #Hind3 #u #Hyp |
---|
872 | whd in match (switch_removal (Sfor s1' e s2' s3') u); |
---|
873 | lapply (Hind1 u Hyp) elim (switch_removal s1' u) |
---|
874 | * #irr1 #irr2 #uA #HuA normalize nodelta |
---|
875 | lapply (Hind2 uA HuA) elim (switch_removal s2' uA) |
---|
876 | * #irr3 #irr4 #uB #HuB normalize nodelta |
---|
877 | lapply (Hind3 uB HuB) elim (switch_removal s3' uB) |
---|
878 | * #irr5 #irr6 #uC #HuC normalize nodelta // |
---|
879 | | 6: #e #ls #Hind #u #Hyp |
---|
880 | whd in match (switch_removal (Sswitch e ls) u); |
---|
881 | lapply (Hind u Hyp) |
---|
882 | cases (switch_removal_branches ls u) |
---|
883 | * #irr1 #irr2 #uA #HuA normalize nodelta |
---|
884 | lapply (fresh_for_univ_still_fresh … HuA) |
---|
885 | cases (fresh SymbolTag uA) #v #uA' #Haux lapply (Haux v uA' (refl ? 〈v,uA'〉)) |
---|
886 | -Haux #HuA' normalize nodelta |
---|
887 | lapply (simplify_switch_fresh uA' i (Expr (Evar v) (typeof e)) irr1 HuA') |
---|
888 | cases (simplify_switch ???) #stm #uB |
---|
889 | #Haux normalize nodelta // |
---|
890 | | 7,8: #label #body #Hind #u #Hyp |
---|
891 | whd in match (switch_removal ? u); |
---|
892 | lapply (Hind u Hyp) elim (switch_removal body u) |
---|
893 | * #irr1 #irr2 #uA #HuA normalize nodelta // |
---|
894 | | 9: #defcase #Hind #u #Hyp whd in match (switch_removal_branches ??); |
---|
895 | lapply (Hind u Hyp) elim (switch_removal defcase u) |
---|
896 | * #irr1 #irr2 #uA #HuA normalize nodelta // |
---|
897 | | 10: #sz #i0 #s0 #tl #Hind1 #Hind2 #u #Hyp normalize |
---|
898 | lapply (Hind2 u Hyp) elim (switch_removal_branches tl u) |
---|
899 | * #irr1 #irr2 #uA #HuA normalize nodelta |
---|
900 | lapply (Hind1 uA HuA) elim (switch_removal s0 uA) |
---|
901 | * #irr3 #irr4 #uB #HuB // |
---|
902 | ] qed. |
---|
903 | |
---|
904 | lemma switch_removal_branches_fresh : ∀i,ls,u. |
---|
905 | fresh_for_univ ? i u → |
---|
906 | fresh_for_univ ? i (\snd (switch_removal_branches ls u)). |
---|
907 | #i #ls @(labeled_statements_ind2 (λs. ∀u. fresh_for_univ ? i u → |
---|
908 | fresh_for_univ ? i (\snd (switch_removal s u))) ? … ls) |
---|
909 | try /2 by switch_removal_fresh/ |
---|
910 | [ 1: #s #Hind #u #Hfresh normalize lapply (switch_removal_fresh ? s ? Hfresh) |
---|
911 | cases (switch_removal s u) * // |
---|
912 | | 2: #sz #i #s #tl #Hs #Htl #u #Hfresh normalize |
---|
913 | lapply (Htl u Hfresh) |
---|
914 | cases (switch_removal_branches tl u) * normalize nodelta |
---|
915 | #ls' #fvs #u' #Hfresh' |
---|
916 | lapply (Hs u' Hfresh') |
---|
917 | cases (switch_removal s u') * // |
---|
918 | ] qed. |
---|
919 | *) |
---|
920 | (* ----------------------------------------------------------------------------- |
---|
921 | Simulation proof and related voodoo. |
---|
922 | ----------------------------------------------------------------------------*) |
---|
923 | |
---|
924 | definition expr_lvalue_ind_combined ≝ |
---|
925 | λP,Q,ci,cf,lv,vr,dr,ao,uo,bo,ca,cd,ab,ob,sz,fl,co,xx. |
---|
926 | conj ?? |
---|
927 | (expr_lvalue_ind P Q ci cf lv vr dr ao uo bo ca cd ab ob sz fl co xx) |
---|
928 | (lvalue_expr_ind P Q ci cf lv vr dr ao uo bo ca cd ab ob sz fl co xx). |
---|
929 | |
---|
930 | let rec expr_ind2 |
---|
931 | (P : expr → Prop) (Q : expr_descr → type → Prop) |
---|
932 | (IE : ∀ed. ∀t. Q ed t → P (Expr ed t)) |
---|
933 | (Iconst_int : ∀sz, i, t. Q (Econst_int sz i) t) |
---|
934 | (Iconst_float : ∀f, t. Q (Econst_float f) t) |
---|
935 | (Ivar : ∀id, t. Q (Evar id) t) |
---|
936 | (Ideref : ∀e, t. P e → Q (Ederef e) t) |
---|
937 | (Iaddrof : ∀e, t. P e → Q (Eaddrof e) t) |
---|
938 | (Iunop : ∀op,arg,t. P arg → Q (Eunop op arg) t) |
---|
939 | (Ibinop : ∀op,arg1,arg2,t. P arg1 → P arg2 → Q (Ebinop op arg1 arg2) t) |
---|
940 | (Icast : ∀castt, e, t. P e → Q (Ecast castt e) t) |
---|
941 | (Icond : ∀e1,e2,e3,t. P e1 → P e2 → P e3 → Q (Econdition e1 e2 e3) t) |
---|
942 | (Iandbool : ∀e1,e2,t. P e1 → P e2 → Q (Eandbool e1 e2) t) |
---|
943 | (Iorbool : ∀e1,e2,t. P e1 → P e2 → Q (Eorbool e1 e2) t) |
---|
944 | (Isizeof : ∀sizeoft,t. Q (Esizeof sizeoft) t) |
---|
945 | (Ifield : ∀e,f,t. P e → Q (Efield e f) t) |
---|
946 | (Icost : ∀c,e,t. P e → Q (Ecost c e) t) |
---|
947 | (e : expr) on e : P e ≝ |
---|
948 | match e with |
---|
949 | [ Expr ed t ⇒ IE ed t (expr_desc_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost ed t) ] |
---|
950 | |
---|
951 | and expr_desc_ind2 |
---|
952 | (P : expr → Prop) (Q : expr_descr → type → Prop) |
---|
953 | (IE : ∀ed. ∀t. Q ed t → P (Expr ed t)) |
---|
954 | (Iconst_int : ∀sz, i, t. Q (Econst_int sz i) t) |
---|
955 | (Iconst_float : ∀f, t. Q (Econst_float f) t) |
---|
956 | (Ivar : ∀id, t. Q (Evar id) t) |
---|
957 | (Ideref : ∀e, t. P e → Q (Ederef e) t) |
---|
958 | (Iaddrof : ∀e, t. P e → Q (Eaddrof e) t) |
---|
959 | (Iunop : ∀op,arg,t. P arg → Q (Eunop op arg) t) |
---|
960 | (Ibinop : ∀op,arg1,arg2,t. P arg1 → P arg2 → Q (Ebinop op arg1 arg2) t) |
---|
961 | (Icast : ∀castt, e, t. P e → Q (Ecast castt e) t) |
---|
962 | (Icond : ∀e1,e2,e3,t. P e1 → P e2 → P e3 → Q (Econdition e1 e2 e3) t) |
---|
963 | (Iandbool : ∀e1,e2,t. P e1 → P e2 → Q (Eandbool e1 e2) t) |
---|
964 | (Iorbool : ∀e1,e2,t. P e1 → P e2 → Q (Eorbool e1 e2) t) |
---|
965 | (Isizeof : ∀sizeoft,t. Q (Esizeof sizeoft) t) |
---|
966 | (Ifield : ∀e,f,t. P e → Q (Efield e f) t) |
---|
967 | (Icost : ∀c,e,t. P e → Q (Ecost c e) t) |
---|
968 | (ed : expr_descr) (t : type) on ed : Q ed t ≝ |
---|
969 | match ed with |
---|
970 | [ Econst_int sz i ⇒ Iconst_int sz i t |
---|
971 | | Econst_float f ⇒ Iconst_float f t |
---|
972 | | Evar id ⇒ Ivar id t |
---|
973 | | Ederef e ⇒ Ideref e t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
974 | | Eaddrof e ⇒ Iaddrof e t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
975 | | Eunop op e ⇒ Iunop op e t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
976 | | Ebinop op e1 e2 ⇒ Ibinop op e1 e2 t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e1) (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e2) |
---|
977 | | Ecast castt e ⇒ Icast castt e t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
978 | | Econdition e1 e2 e3 ⇒ Icond e1 e2 e3 t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e1) (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e2) (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e3) |
---|
979 | | Eandbool e1 e2 ⇒ Iandbool e1 e2 t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e1) (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e2) |
---|
980 | | Eorbool e1 e2 ⇒ Iorbool e1 e2 t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e1) (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e2) |
---|
981 | | Esizeof sizeoft ⇒ Isizeof sizeoft t |
---|
982 | | Efield e field ⇒ Ifield e field t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
983 | | Ecost c e ⇒ Icost c e t (expr_ind2 P Q IE Iconst_int Iconst_float Ivar Ideref Iaddrof Iunop Ibinop Icast Icond Iandbool Iorbool Isizeof Ifield Icost e) |
---|
984 | ]. |
---|
985 | |
---|
986 | |
---|
987 | (* Correctness: we can't use a lock-step simulation result. The exec_step for Sswitch will be matched |
---|
988 | by a non-constant number of evaluations in the converted program. More precisely, |
---|
989 | [seq_of_labeled_statement (select_switch sz n sl)] will be matched by all the steps |
---|
990 | necessary to execute all the "if-then-elses" corresponding to cases /before/ [n]. *) |
---|
991 | |
---|
992 | (* A version of simplify_switch hiding the ugly projs *) |
---|
993 | definition fresh_for_expression ≝ |
---|
994 | λe,u. fresh_for_univ SymbolTag (max_of_expr e) u. |
---|
995 | |
---|
996 | definition fresh_for_statement ≝ |
---|
997 | λs,u. fresh_for_univ SymbolTag (max_of_statement s) u. |
---|
998 | |
---|
999 | (* needed during mutual induction ... *) |
---|
1000 | definition fresh_for_labeled_statements ≝ |
---|
1001 | λls,u. fresh_for_univ ? (max_of_ls ls) u. |
---|
1002 | |
---|
1003 | definition fresh_for_function ≝ |
---|
1004 | λf,u. fresh_for_univ SymbolTag (max_id_of_function f) u. |
---|
1005 | |
---|
1006 | (* misc properties of the max function on positives. *) |
---|
1007 | |
---|
1008 | lemma max_one_neutral : ∀v. max v one = v. |
---|
1009 | * // qed. |
---|
1010 | |
---|
1011 | lemma max_id_one_neutral : ∀v. max_id v (an_identifier ? one) = v. |
---|
1012 | * #p whd in ⊢ (??%?); >max_one_neutral // qed. |
---|
1013 | |
---|
1014 | lemma max_id_commutative : ∀v1, v2. max_id v1 v2 = max_id v2 v1. |
---|
1015 | * #p1 * #p2 whd in match (max_id ??) in ⊢ (??%%); |
---|
1016 | >commutative_max // qed. |
---|
1017 | |
---|
1018 | lemma transitive_le : transitive ? le. // qed. |
---|
1019 | |
---|
1020 | lemma le_S_weaken : ∀a,b. le (succ a) b → le a b. |
---|
1021 | #a #b /2/ qed. |
---|
1022 | |
---|
1023 | (* cycle of length 1 *) |
---|
1024 | lemma le_S_contradiction_1 : ∀a. le (succ a) a → False. |
---|
1025 | * /2 by absurd/ qed. |
---|
1026 | |
---|
1027 | (* cycle of length 2 *) |
---|
1028 | lemma le_S_contradiction_2 : ∀a,b. le (succ a) b → le (succ b) a → False. |
---|
1029 | #a #b #H1 #H2 lapply (le_to_le_to_eq … (le_S_weaken ?? H1) (le_S_weaken ?? H2)) |
---|
1030 | #Heq @(le_S_contradiction_1 a) destruct // qed. |
---|
1031 | |
---|
1032 | (* cycle of length 3 *) |
---|
1033 | lemma le_S_contradiction_3 : ∀a,b,c. le (succ a) b → le (succ b) c → le (succ c) a → False. |
---|
1034 | #a #b #c #H1 #H2 #H3 lapply (transitive_le … H1 (le_S_weaken ?? H2)) #H4 |
---|
1035 | @(le_S_contradiction_2 … H3 H4) |
---|
1036 | qed. |
---|
1037 | |
---|
1038 | lemma reflexive_leb : ∀a. leb a a = true. |
---|
1039 | #a @(le_to_leb_true a a) // qed. |
---|
1040 | |
---|
1041 | (* This should be somewhere else. *) |
---|
1042 | lemma associative_max : associative ? max. |
---|
1043 | #a #b #c |
---|
1044 | whd in ⊢ (??%%); whd in match (max a b); whd in match (max b c); |
---|
1045 | lapply (pos_compare_to_Prop a b) |
---|
1046 | cases (pos_compare a b) whd in ⊢ (% → ?); #Hab |
---|
1047 | [ 1: >(le_to_leb_true a b) normalize nodelta /2/ |
---|
1048 | lapply (pos_compare_to_Prop b c) |
---|
1049 | cases (pos_compare b c) whd in ⊢ (% → ?); #Hbc |
---|
1050 | [ 1: >(le_to_leb_true b c) normalize nodelta |
---|
1051 | lapply (pos_compare_to_Prop a c) |
---|
1052 | cases (pos_compare a c) whd in ⊢ (% → ?); #Hac |
---|
1053 | [ 1: >(le_to_leb_true a c) /2/ |
---|
1054 | | 2: destruct cases (leb c c) // |
---|
1055 | | 3: (* There is an obvious contradiction in the hypotheses. omega, I miss you *) |
---|
1056 | @(False_ind … (le_S_contradiction_3 ??? Hab Hbc Hac)) |
---|
1057 | ] |
---|
1058 | @le_S_weaken // |
---|
1059 | | 2: destruct |
---|
1060 | cases (leb c c) normalize nodelta |
---|
1061 | >(le_to_leb_true a c) /2/ |
---|
1062 | | 3: >(not_le_to_leb_false b c) normalize nodelta /2/ |
---|
1063 | >(le_to_leb_true a b) /2/ |
---|
1064 | ] |
---|
1065 | | 2: destruct (Hab) >reflexive_leb normalize nodelta |
---|
1066 | lapply (pos_compare_to_Prop b c) |
---|
1067 | cases (pos_compare b c) whd in ⊢ (% → ?); #Hbc |
---|
1068 | [ 1: >(le_to_leb_true b c) normalize nodelta |
---|
1069 | >(le_to_leb_true b c) normalize nodelta |
---|
1070 | /2/ |
---|
1071 | | 2: destruct >reflexive_leb normalize nodelta |
---|
1072 | >reflexive_leb // |
---|
1073 | | 3: >(not_le_to_leb_false b c) normalize nodelta |
---|
1074 | >reflexive_leb /2/ ] |
---|
1075 | | 3: >(not_le_to_leb_false a b) normalize nodelta /2/ |
---|
1076 | lapply (pos_compare_to_Prop b c) |
---|
1077 | cases (pos_compare b c) whd in ⊢ (% → ?); #Hbc |
---|
1078 | [ 1: >(le_to_leb_true b c) normalize nodelta /2/ |
---|
1079 | | 2: destruct >reflexive_leb normalize nodelta @refl |
---|
1080 | | 3: >(not_le_to_leb_false b c) normalize nodelta |
---|
1081 | >(not_le_to_leb_false a b) normalize nodelta |
---|
1082 | >(not_le_to_leb_false a c) normalize nodelta |
---|
1083 | lapply (transitive_le … Hbc (le_S_weaken … Hab)) |
---|
1084 | #Hca /2/ |
---|
1085 | ] |
---|
1086 | ] qed. |
---|
1087 | |
---|
1088 | lemma max_id_associative : ∀v1, v2, v3. max_id (max_id v1 v2) v3 = max_id v1 (max_id v2 v3). |
---|
1089 | * #a * #b * #c whd in match (max_id ??) in ⊢ (??%%); >associative_max // |
---|
1090 | qed. |
---|
1091 | (* |
---|
1092 | lemma max_of_expr_rewrite : |
---|
1093 | ∀e,id. max_of_expr e id = max_id (max_of_expr e (an_identifier SymbolTag one)) id. |
---|
1094 | @(expr_ind2 … (λed,t. ∀id. max_of_expr (Expr ed t) id=max_id (max_of_expr (Expr ed t) (an_identifier SymbolTag one)) id)) |
---|
1095 | [ 1: #ed #t // ] |
---|
1096 | [ 1: #sz #i | 2: #fl | 3: #var_id | 4: #e1 | 5: #e1 | 6: #op #e1 | 7: #op #e1 #e2 | 8: #cast_ty #e1 |
---|
1097 | | 9: #cond #iftrue #iffalse | 10: #e1 #e2 | 11: #e1 #e2 | 12: #sizeofty | 13: #e1 #field | 14: #cost #e1 ] |
---|
1098 | #ty |
---|
1099 | [ 3: * #id_p whd in match (max_of_expr ??); cases var_id #var_p normalize nodelta |
---|
1100 | whd in match (max_id ??) in ⊢ (???%); |
---|
1101 | >max_one_neutral // ] |
---|
1102 | [ 1,2,11: * * // |
---|
1103 | | 3,4,5,7,13: #Hind #id whd in match (max_of_expr (Expr ??) ?) in ⊢ (??%%); @Hind |
---|
1104 | | 6,9,10: #Hind1 #Hind2 #id whd in match (max_of_expr (Expr ??) ?) in ⊢ (??%%); |
---|
1105 | >(Hind1 (max_of_expr e2 (an_identifier SymbolTag one))) |
---|
1106 | >max_id_associative |
---|
1107 | >Hind1 |
---|
1108 | cases (max_of_expr e1 ?) |
---|
1109 | #v1 <Hind2 @refl |
---|
1110 | | 8: #Hind1 #Hind2 #Hind3 #id whd in match (max_of_expr (Expr ??) ?) in ⊢ (??%%); |
---|
1111 | >Hind1 in ⊢ (??%?); >Hind2 in ⊢ (??%?); >Hind3 in ⊢ (??%?); |
---|
1112 | >Hind1 in ⊢ (???%); >Hind2 in ⊢ (???%); |
---|
1113 | >max_id_associative >max_id_associative @refl |
---|
1114 | | 12: #Hind #id whd in match (max_of_expr (Expr ??) ?) in ⊢ (??%%); |
---|
1115 | cases field #p normalize nodelta |
---|
1116 | >Hind cases (max_of_expr e1 ?) #e' |
---|
1117 | cases id #id' |
---|
1118 | whd in match (max_id ??); normalize nodelta |
---|
1119 | whd in match (max_id ??); >associative_max @refl |
---|
1120 | ] qed. |
---|
1121 | *) |
---|
1122 | lemma fresh_max_split : ∀a,b,u. fresh_for_univ SymbolTag (max_id a b) u → fresh_for_univ ? a u ∧ fresh_for_univ ? b u. |
---|
1123 | * #a * #b * #u normalize |
---|
1124 | lapply (pos_compare_to_Prop a b) |
---|
1125 | cases (pos_compare a b) whd in ⊢ (% → ?); #Hab |
---|
1126 | [ 1: >(le_to_leb_true a b) try /2/ #Hbu @conj /2/ |
---|
1127 | | 2: destruct >reflexive_leb /2/ |
---|
1128 | | 3: >(not_le_to_leb_false a b) try /2/ #Hau @conj /2/ |
---|
1129 | ] qed. |
---|
1130 | |
---|
1131 | (* Auxilliary commutation lemma used in [substatement_fresh]. *) |
---|
1132 | |
---|
1133 | lemma foldl_max : ∀l,a,b. |
---|
1134 | foldl ?? (λacc,elt.max_id (max_of_expr elt) acc) (max_id a b) l = |
---|
1135 | max_id a (foldl ?? (λacc,elt.max_id (max_of_expr elt) acc) b l). |
---|
1136 | #l elim l |
---|
1137 | [ 1: * #a * #b whd in match (foldl ?????) in ⊢ (??%%); @refl |
---|
1138 | | 2: #hd #tl #Hind #a #b whd in match (foldl ?????) in ⊢ (??%%); |
---|
1139 | <Hind <max_id_commutative >max_id_associative >(max_id_commutative b ?) @refl |
---|
1140 | ] qed. |
---|
1141 | |
---|
1142 | (* ----------------------------------------------------------------------------- |
---|
1143 | Stuff on memory and environments extensions. |
---|
1144 | Let us recap: the memory model of a function is in two layers. An environment |
---|
1145 | (type [env]) maps identifiers to blocks, and a memory maps blocks |
---|
1146 | switch_removal introduces new, fresh variables. What is to be noted is that |
---|
1147 | switch_removal modifies both the contents of the "disjoint" part of memory, but |
---|
1148 | also where the data is allocated. The first solution considered was to consider |
---|
1149 | an extensional equivalence relation on values, saying that equivalent pointers |
---|
1150 | point to equivalent values. This has to be a coinductive relation, in order to |
---|
1151 | take into account cyclic data structures. Rather than using coinductive types, |
---|
1152 | we use the compcert solution, using so-called memory embeddings. |
---|
1153 | ---------------------------------------------------------------------------- *) |
---|
1154 | |
---|
1155 | (* ---------------- *) |
---|
1156 | (* auxillary lemmas *) |
---|
1157 | lemma zlt_succ : ∀a,b. Zltb a b = true → Zltb a (Zsucc b) = true. |
---|
1158 | #a #b #HA |
---|
1159 | lapply (Zltb_true_to_Zlt … HA) #HA_prop |
---|
1160 | @Zlt_to_Zltb_true /2/ |
---|
1161 | qed. |
---|
1162 | |
---|
1163 | lemma zlt_succ_refl : ∀a. Zltb a (Zsucc a) = true. |
---|
1164 | #a @Zlt_to_Zltb_true /2/ qed. |
---|
1165 | (* |
---|
1166 | definition le_offset : offset → offset → bool. |
---|
1167 | λx,y. Zleb (offv x) (offv y). |
---|
1168 | *) |
---|
1169 | lemma not_refl_absurd : ∀A:Type[0].∀x:A. x ≠ x → False. /2/. qed. |
---|
1170 | |
---|
1171 | lemma eqZb_reflexive : ∀x:Z. eqZb x x = true. #x /2/. qed. |
---|
1172 | |
---|
1173 | (* When equality on A is decidable, [mem A elt l] is too. *) |
---|
1174 | lemma mem_dec : ∀A:Type[0]. ∀eq:(∀a,b:A. a = b ∨ a ≠ b). ∀elt,l. mem A elt l ∨ ¬ (mem A elt l). |
---|
1175 | #A #dec #elt #l elim l |
---|
1176 | [ 1: normalize %2 /2/ |
---|
1177 | | 2: #hd #tl #Hind |
---|
1178 | elim (dec elt hd) |
---|
1179 | [ 1: #Heq >Heq %1 /2/ |
---|
1180 | | 2: #Hneq cases Hind |
---|
1181 | [ 1: #Hmem %1 /2/ |
---|
1182 | | 2: #Hnmem %2 normalize |
---|
1183 | % #H cases H |
---|
1184 | [ 1: lapply Hneq * #Hl #Eq @(Hl Eq) |
---|
1185 | | 2: lapply Hnmem * #Hr #Hmem @(Hr Hmem) ] |
---|
1186 | ] ] ] |
---|
1187 | qed. |
---|
1188 | |
---|
1189 | lemma block_eq_dec : ∀a,b:block. a = b ∨ a ≠ b. |
---|
1190 | #a #b @(eq_block_elim … a b) /2/ qed. |
---|
1191 | |
---|
1192 | lemma mem_not_mem_neq : ∀l,elt1,elt2. (mem block elt1 l) → ¬ (mem block elt2 l) → elt1 ≠ elt2. |
---|
1193 | #l #elt1 #elt2 elim l |
---|
1194 | [ 1: normalize #Habsurd @(False_ind … Habsurd) |
---|
1195 | | 2: #hd #tl #Hind normalize #Hl #Hr |
---|
1196 | cases Hl |
---|
1197 | [ 1: #Heq >Heq |
---|
1198 | @(eq_block_elim … hd elt2) |
---|
1199 | [ 1: #Heq >Heq /2 by not_to_not/ |
---|
1200 | | 2: #x @x ] |
---|
1201 | | 2: #Hmem1 cases (mem_dec … block_eq_dec elt2 tl) |
---|
1202 | [ 1: #Hmem2 % #Helt_eq cases Hr #H @H %2 @Hmem2 |
---|
1203 | | 2: #Hmem2 @Hind // |
---|
1204 | ] |
---|
1205 | ] |
---|
1206 | ] qed. |
---|
1207 | |
---|
1208 | lemma neq_block_eq_block_false : ∀b1,b2:block. b1 ≠ b2 → eq_block b1 b2 = false. |
---|
1209 | #b1 #b2 * #Hb |
---|
1210 | @(eq_block_elim … b1 b2) |
---|
1211 | [ 1: #Habsurd @(False_ind … (Hb Habsurd)) |
---|
1212 | | 2: // ] qed. |
---|
1213 | |
---|
1214 | (* Type of blocks in a particular region. *) |
---|
1215 | definition block_in : region → Type[0] ≝ λrg. Σb. (block_region b) = rg. |
---|
1216 | |
---|
1217 | (* An embedding is a function from blocks to (blocks+offset). *) |
---|
1218 | definition embedding ≝ block → option (block × offset). |
---|
1219 | |
---|
1220 | definition offset_plus : offset → offset → offset ≝ |
---|
1221 | λo1,o2. mk_offset (addition_n ? (offv o1) (offv o2)). |
---|
1222 | |
---|
1223 | |
---|
1224 | (* Prove that (zero n) is a neutral element for (addition_n n) *) |
---|
1225 | |
---|
1226 | lemma add_with_carries_n_O : ∀n,bv. add_with_carries n bv (zero n) false = 〈bv,zero n〉. |
---|
1227 | #n #bv whd in match (add_with_carries ????); elim bv // |
---|
1228 | #n #hd #tl #Hind whd in match (fold_right2_i ????????); |
---|
1229 | >Hind normalize |
---|
1230 | cases n in tl; |
---|
1231 | [ 1: #tl cases hd normalize @refl |
---|
1232 | | 2: #n' #tl cases hd normalize @refl ] |
---|
1233 | qed. |
---|
1234 | |
---|
1235 | lemma addition_n_0 : ∀n,bv. addition_n n bv (zero n) = bv. |
---|
1236 | #n #bv whd in match (addition_n ???); |
---|
1237 | >add_with_carries_n_O // |
---|
1238 | qed. |
---|
1239 | |
---|
1240 | lemma offset_plus_0 : ∀o. offset_plus o (mk_offset (zero ?)) = o. |
---|
1241 | * #o |
---|
1242 | whd in match (offset_plus ??); |
---|
1243 | >addition_n_0 @refl |
---|
1244 | qed. |
---|
1245 | |
---|
1246 | |
---|
1247 | (* Translates a pointer through an embedding. *) |
---|
1248 | definition pointer_translation : ∀p:pointer. ∀E:embedding. option pointer ≝ |
---|
1249 | λp,E. |
---|
1250 | match p with |
---|
1251 | [ mk_pointer pblock poff ⇒ |
---|
1252 | match E pblock with |
---|
1253 | [ None ⇒ None ? |
---|
1254 | | Some loc ⇒ |
---|
1255 | let 〈dest_block,dest_off〉 ≝ loc in |
---|
1256 | let ptr ≝ (mk_pointer dest_block (offset_plus poff dest_off)) in |
---|
1257 | Some ? ptr |
---|
1258 | ] |
---|
1259 | ]. |
---|
1260 | |
---|
1261 | (* We parameterise the "equivalence" relation on values with an embedding. *) |
---|
1262 | (* Front-end values. *) |
---|
1263 | inductive value_eq (E : embedding) : val → val → Prop ≝ |
---|
1264 | | undef_eq : ∀v. |
---|
1265 | value_eq E Vundef v |
---|
1266 | | vint_eq : ∀sz,i. |
---|
1267 | value_eq E (Vint sz i) (Vint sz i) |
---|
1268 | | vfloat_eq : ∀f. |
---|
1269 | value_eq E (Vfloat f) (Vfloat f) |
---|
1270 | | vnull_eq : |
---|
1271 | value_eq E Vnull Vnull |
---|
1272 | | vptr_eq : ∀p1,p2. |
---|
1273 | pointer_translation p1 E = Some ? p2 → |
---|
1274 | value_eq E (Vptr p1) (Vptr p2). |
---|
1275 | |
---|
1276 | (* [load_sim] states the fact that each successful load in [m1] is matched by a load in [m2] s.t. |
---|
1277 | * the values are equivalent. *) |
---|
1278 | definition load_sim ≝ |
---|
1279 | λ(E : embedding).λ(m1 : mem).λ(m2 : mem). |
---|
1280 | ∀b1,off1,b2,off2,ty,v1. |
---|
1281 | valid_block m1 b1 → (* We need this because it is not provable from [load_value_of_type ty m1 b1 off1] when loading by-ref *) |
---|
1282 | E b1 = Some ? 〈b2,off2〉 → |
---|
1283 | load_value_of_type ty m1 b1 off1 = Some ? v1 → |
---|
1284 | (∃v2. load_value_of_type ty m2 b2 (offset_plus off1 off2) = Some ? v2 ∧ value_eq E v1 v2). |
---|
1285 | |
---|
1286 | definition load_sim_ptr ≝ |
---|
1287 | λ(E : embedding).λ(m1 : mem).λ(m2 : mem). |
---|
1288 | ∀b1,off1,b2,off2,ty,v1. |
---|
1289 | valid_pointer m1 (mk_pointer b1 off1) = true → (* We need this because it is not provable from [load_value_of_type ty m1 b1 off1] when loading by-ref *) |
---|
1290 | pointer_translation (mk_pointer b1 off1) E = Some ? (mk_pointer b2 off2) → |
---|
1291 | load_value_of_type ty m1 b1 off1 = Some ? v1 → |
---|
1292 | (∃v2. load_value_of_type ty m2 b2 off2 = Some ? v2 ∧ value_eq E v1 v2). |
---|
1293 | |
---|
1294 | (* Definition of a memory injection *) |
---|
1295 | record memory_inj (E : embedding) (m1 : mem) (m2 : mem) : Type[0] ≝ |
---|
1296 | { (* Load simulation *) |
---|
1297 | mi_inj : load_sim_ptr E m1 m2; |
---|
1298 | (* Invalid blocks are not mapped *) |
---|
1299 | mi_freeblock : ∀b. ¬ (valid_block m1 b) → E b = None ?; |
---|
1300 | (* Valid pointers are mapped to valid pointers*) |
---|
1301 | mi_valid_pointers : ∀p,p'. |
---|
1302 | valid_pointer m1 p = true → |
---|
1303 | pointer_translation p E = Some ? p' → |
---|
1304 | valid_pointer m2 p' = true; |
---|
1305 | (* Blocks in the codomain are valid *) |
---|
1306 | (* mi_incl : ∀b,b',o'. E b = Some ? 〈b',o'〉 → valid_block m2 b'; *) |
---|
1307 | (* Regions are preserved *) |
---|
1308 | mi_region : ∀b,b',o'. E b = Some ? 〈b',o'〉 → block_region b = block_region b'; |
---|
1309 | (* Disjoint blocks are mapped to disjoint blocks. Note that our condition is stronger than compcert's. |
---|
1310 | * This may cause some problems if we reuse this def for the translation from Clight to Cminor, where |
---|
1311 | * all variables are allocated in the same block. *) |
---|
1312 | mi_disjoint : ∀b1,b2,b1',b2',o1',o2'. |
---|
1313 | b1 ≠ b2 → |
---|
1314 | E b1 = Some ? 〈b1',o1'〉 → |
---|
1315 | E b2 = Some ? 〈b2',o2'〉 → |
---|
1316 | b1' ≠ b2' |
---|
1317 | }. |
---|
1318 | |
---|
1319 | (* Definition of a memory extension. /!\ Not equivalent to the compcert concept. /!\ |
---|
1320 | * A memory extension is a [memory_inj] with some particular blocks designated as |
---|
1321 | * being writeable. *) |
---|
1322 | |
---|
1323 | alias id "meml" = "cic:/matita/basics/lists/list/mem.fix(0,2,1)". |
---|
1324 | |
---|
1325 | record memory_ext (E : embedding) (m1 : mem) (m2 : mem) : Type[0] ≝ |
---|
1326 | { me_inj : memory_inj E m1 m2; |
---|
1327 | (* A list of blocks where we can write freely *) |
---|
1328 | me_writeable : list block; |
---|
1329 | (* These blocks are valid *) |
---|
1330 | me_writeable_valid : ∀b. meml ? b me_writeable → valid_block m2 b; |
---|
1331 | (* And pointers to m1 are oblivious to these blocks *) |
---|
1332 | me_writeable_ok : ∀p,p'. |
---|
1333 | valid_pointer m1 p = true → |
---|
1334 | pointer_translation p E = Some ? p' → |
---|
1335 | ¬ (meml ? (pblock p') me_writeable) |
---|
1336 | }. |
---|
1337 | |
---|
1338 | (* ---------------------------------------------------------------------------- *) |
---|
1339 | (* End of the definitions on memory injections. Now, on to proving some lemmas. *) |
---|
1340 | |
---|
1341 | (* A particular inversion. *) |
---|
1342 | lemma value_eq_ptr_inversion : |
---|
1343 | ∀E,p1,v. value_eq E (Vptr p1) v → ∃p2. v = Vptr p2 ∧ pointer_translation p1 E = Some ? p2. |
---|
1344 | #E #p1 #v #Heq inversion Heq |
---|
1345 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
1346 | | 2: #sz #i #Habsurd destruct (Habsurd) |
---|
1347 | | 3: #f #Habsurd destruct (Habsurd) |
---|
1348 | | 4: #Habsurd destruct (Habsurd) |
---|
1349 | | 5: #p1' #p2 #Heq #Heqv #Heqv2 #_ destruct |
---|
1350 | %{p2} @conj try @refl try assumption |
---|
1351 | ] qed. |
---|
1352 | |
---|
1353 | (* A cleaner version of inversion for [value_eq] *) |
---|
1354 | lemma value_eq_inversion : |
---|
1355 | ∀E,v1,v2. ∀P : val → val → Prop. value_eq E v1 v2 → |
---|
1356 | (∀v. P Vundef v) → |
---|
1357 | (∀sz,i. P (Vint sz i) (Vint sz i)) → |
---|
1358 | (∀f. P (Vfloat f) (Vfloat f)) → |
---|
1359 | (P Vnull Vnull) → |
---|
1360 | (∀p1,p2. pointer_translation p1 E = Some ? p2 → P (Vptr p1) (Vptr p2)) → |
---|
1361 | P v1 v2. |
---|
1362 | #E #v1 #v2 #P #Heq #H1 #H2 #H3 #H4 #H5 |
---|
1363 | inversion Heq |
---|
1364 | [ 1: #v #Hv1 #Hv2 #_ destruct @H1 |
---|
1365 | | 2: #sz #i #Hv1 #Hv2 #_ destruct @H2 |
---|
1366 | | 3: #f #Hv1 #Hv2 #_ destruct @H3 |
---|
1367 | | 4: #Hv1 #Hv2 #_ destruct @H4 |
---|
1368 | | 5: #p1 #p2 #Hembed #Hv1 #Hv2 #_ destruct @H5 // ] qed. |
---|
1369 | |
---|
1370 | (* If we succeed to load something by value from a 〈b,off〉 location, |
---|
1371 | [b] is a valid block. *) |
---|
1372 | lemma load_by_value_success_valid_block_aux : |
---|
1373 | ∀ty,m,b,off,v. |
---|
1374 | access_mode ty = By_value (typ_of_type ty) → |
---|
1375 | load_value_of_type ty m b off = Some ? v → |
---|
1376 | Zltb (block_id b) (nextblock m) = true. |
---|
1377 | #ty #m * #brg #bid #off #v |
---|
1378 | cases ty |
---|
1379 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1380 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] |
---|
1381 | whd in match (load_value_of_type ????); |
---|
1382 | [ 1,7,8: #_ #Habsurd destruct (Habsurd) ] |
---|
1383 | #Hmode |
---|
1384 | [ 1,2,3,6: [ 1: elim sz | 2: elim fsz ] |
---|
1385 | normalize in match (typesize ?); |
---|
1386 | whd in match (loadn ???); |
---|
1387 | whd in match (beloadv ??); |
---|
1388 | cases (Zltb bid (nextblock m)) normalize nodelta |
---|
1389 | try // #Habsurd destruct (Habsurd) |
---|
1390 | | *: normalize in Hmode; destruct (Hmode) |
---|
1391 | ] qed. |
---|
1392 | |
---|
1393 | (* If we succeed in loading some data from a location, then this loc is a valid pointer. *) |
---|
1394 | lemma load_by_value_success_valid_ptr_aux : |
---|
1395 | ∀ty,m,b,off,v. |
---|
1396 | access_mode ty = By_value (typ_of_type ty) → |
---|
1397 | load_value_of_type ty m b off = Some ? v → |
---|
1398 | Zltb (block_id b) (nextblock m) = true ∧ |
---|
1399 | Zleb (low_bound m b) (Z_of_unsigned_bitvector ? (offv off)) = true ∧ |
---|
1400 | Zltb (Z_of_unsigned_bitvector ? (offv off)) (high_bound m b) = true. |
---|
1401 | #ty #m * #brg #bid #off #v |
---|
1402 | cases ty |
---|
1403 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1404 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] |
---|
1405 | whd in match (load_value_of_type ????); |
---|
1406 | [ 1,7,8: #_ #Habsurd destruct (Habsurd) ] |
---|
1407 | #Hmode |
---|
1408 | [ 1,2,3,6: [ 1: elim sz | 2: elim fsz ] |
---|
1409 | normalize in match (typesize ?); |
---|
1410 | whd in match (loadn ???); |
---|
1411 | whd in match (beloadv ??); |
---|
1412 | cases (Zltb bid (nextblock m)) normalize nodelta |
---|
1413 | cases (Zleb (low (blocks m (mk_block brg bid))) |
---|
1414 | (Z_of_unsigned_bitvector offset_size (offv off))) |
---|
1415 | cases (Zltb (Z_of_unsigned_bitvector offset_size (offv off)) (high (blocks m (mk_block brg bid)))) |
---|
1416 | normalize nodelta |
---|
1417 | #Heq destruct (Heq) |
---|
1418 | try /3 by conj, refl/ |
---|
1419 | | *: normalize in Hmode; destruct (Hmode) |
---|
1420 | ] qed. |
---|
1421 | |
---|
1422 | |
---|
1423 | lemma valid_block_from_bool : ∀b,m. Zltb (block_id b) (nextblock m) = true → valid_block m b. |
---|
1424 | * #rg #id #m normalize |
---|
1425 | elim id /2/ qed. |
---|
1426 | |
---|
1427 | lemma valid_block_to_bool : ∀b,m. valid_block m b → Zltb (block_id b) (nextblock m) = true. |
---|
1428 | * #rg #id #m normalize |
---|
1429 | elim id /2/ qed. |
---|
1430 | |
---|
1431 | lemma load_by_value_success_valid_block : |
---|
1432 | ∀ty,m,b,off,v. |
---|
1433 | access_mode ty = By_value (typ_of_type ty) → |
---|
1434 | load_value_of_type ty m b off = Some ? v → |
---|
1435 | valid_block m b. |
---|
1436 | #ty #m #b #off #v #Haccess_mode #Hload |
---|
1437 | @valid_block_from_bool |
---|
1438 | elim (load_by_value_success_valid_ptr_aux ty m b off v Haccess_mode Hload) * // |
---|
1439 | qed. |
---|
1440 | |
---|
1441 | lemma load_by_value_success_valid_pointer : |
---|
1442 | ∀ty,m,b,off,v. |
---|
1443 | access_mode ty = By_value (typ_of_type ty) → |
---|
1444 | load_value_of_type ty m b off = Some ? v → |
---|
1445 | valid_pointer m (mk_pointer b off). |
---|
1446 | #ty #m #b #off #v #Haccess_mode #Hload normalize |
---|
1447 | elim (load_by_value_success_valid_ptr_aux ty m b off v Haccess_mode Hload) |
---|
1448 | * #H1 #H2 #H3 >H1 >H2 normalize nodelta |
---|
1449 | >Zle_to_Zleb_true try // |
---|
1450 | lapply (Zlt_to_Zle … (Zltb_true_to_Zlt … H3)) /2/ |
---|
1451 | qed. |
---|
1452 | |
---|
1453 | |
---|
1454 | (* Making explicit the contents of memory_inj for load_value_of_type *) |
---|
1455 | lemma load_value_of_type_inj : ∀E,m1,m2,b1,off1,v1,b2,off2,ty. |
---|
1456 | memory_inj E m1 m2 → |
---|
1457 | value_eq E (Vptr (mk_pointer b1 off1)) (Vptr (mk_pointer b2 off2)) → |
---|
1458 | load_value_of_type ty m1 b1 off1 = Some ? v1 → |
---|
1459 | ∃v2. load_value_of_type ty m2 b2 off2 = Some ? v2 ∧ value_eq E v1 v2. |
---|
1460 | #E #m1 #m2 #b1 #off1 #v1 #b2 #off2 #ty #Hinj #Hvalue_eq |
---|
1461 | lapply (value_eq_ptr_inversion … Hvalue_eq) * #p2 * #Hp2_eq #Hembed destruct |
---|
1462 | lapply (refl ? (access_mode ty)) |
---|
1463 | cases ty |
---|
1464 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1465 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] |
---|
1466 | normalize in ⊢ ((???%) → ?); #Hmode #Hyp |
---|
1467 | [ 1,7,8: normalize in Hyp; destruct (Hyp) |
---|
1468 | | 5,6: normalize in Hyp ⊢ %; destruct (Hyp) /3 by ex_intro, conj, vptr_eq/ ] |
---|
1469 | lapply (load_by_value_success_valid_pointer … Hmode … Hyp) #Hvalid_pointer |
---|
1470 | lapply (mi_inj … Hinj b1 off1 b2 off2 … Hvalid_pointer Hembed Hyp) #H @H |
---|
1471 | qed. |
---|
1472 | |
---|
1473 | |
---|
1474 | (* -------------------------------------- *) |
---|
1475 | (* Lemmas pertaining to memory allocation *) |
---|
1476 | |
---|
1477 | (* A valid block stays valid after an alloc. *) |
---|
1478 | lemma alloc_valid_block_conservation : |
---|
1479 | ∀m,m',z1,z2,r,new_block. |
---|
1480 | alloc m z1 z2 r = 〈m', new_block〉 → |
---|
1481 | ∀b. valid_block m b → valid_block m' b. |
---|
1482 | #m #m' #z1 #z2 #r * #b' #Hregion_eq |
---|
1483 | elim m #contents #nextblock #Hcorrect whd in match (alloc ????); |
---|
1484 | #Halloc destruct (Halloc) |
---|
1485 | #b whd in match (valid_block ??) in ⊢ (% → %); /2/ |
---|
1486 | qed. |
---|
1487 | |
---|
1488 | (* Allocating a new zone produces a valid block. *) |
---|
1489 | lemma alloc_valid_new_block : |
---|
1490 | ∀m,m',z1,z2,r,new_block. |
---|
1491 | alloc m z1 z2 r = 〈m', new_block〉 → |
---|
1492 | valid_block m' new_block. |
---|
1493 | * #contents #nextblock #Hcorrect #m' #z1 #z2 #r * #new_block #Hregion_eq |
---|
1494 | whd in match (alloc ????); whd in match (valid_block ??); |
---|
1495 | #Halloc destruct (Halloc) /2/ |
---|
1496 | qed. |
---|
1497 | |
---|
1498 | (* All data in a valid block is unchanged after an alloc. *) |
---|
1499 | lemma alloc_beloadv_conservation : |
---|
1500 | ∀m,m',block,offset,z1,z2,r,new_block. |
---|
1501 | valid_block m block → |
---|
1502 | alloc m z1 z2 r = 〈m', new_block〉 → |
---|
1503 | beloadv m (mk_pointer block offset) = beloadv m' (mk_pointer block offset). |
---|
1504 | * #contents #next #Hcorrect #m' #block #offset #z1 #z2 #r #new_block #Hvalid #Halloc |
---|
1505 | whd in Halloc:(??%?); destruct (Halloc) |
---|
1506 | whd in match (beloadv ??) in ⊢ (??%%); |
---|
1507 | lapply (valid_block_to_bool … Hvalid) #Hlt |
---|
1508 | >Hlt >(zlt_succ … Hlt) |
---|
1509 | normalize nodelta whd in match (update_block ?????); whd in match (eq_block ??); |
---|
1510 | cut (eqZb (block_id block) next = false) |
---|
1511 | [ lapply (Zltb_true_to_Zlt … Hlt) #Hlt' @eqZb_false /2/ ] #Hneq |
---|
1512 | >Hneq cases (eq_region ??) normalize nodelta @refl |
---|
1513 | qed. |
---|
1514 | |
---|
1515 | (* Lift [alloc_beloadv_conservation] to loadn *) |
---|
1516 | lemma alloc_loadn_conservation : |
---|
1517 | ∀m,m',z1,z2,r,new_block. |
---|
1518 | alloc m z1 z2 r = 〈m', new_block〉 → |
---|
1519 | ∀n. ∀block,offset. |
---|
1520 | valid_block m block → |
---|
1521 | loadn m (mk_pointer block offset) n = loadn m' (mk_pointer block offset) n. |
---|
1522 | #m #m' #z1 #z2 #r #new_block #Halloc #n |
---|
1523 | elim n try // |
---|
1524 | #n' #Hind #block #offset #Hvalid_block |
---|
1525 | whd in ⊢ (??%%); |
---|
1526 | >(alloc_beloadv_conservation … Hvalid_block Halloc) |
---|
1527 | cases (beloadv m' (mk_pointer block offset)) // |
---|
1528 | #bev normalize nodelta |
---|
1529 | whd in match (shift_pointer ???); >Hind try // |
---|
1530 | qed. |
---|
1531 | |
---|
1532 | (* Memory allocation preserves [memory_inj] *) |
---|
1533 | lemma alloc_memory_inj : |
---|
1534 | ∀E:embedding.∀m1,m2,m2',z1,z2,r,new_block. ∀H:memory_inj E m1 m2. |
---|
1535 | alloc m2 z1 z2 r = 〈m2', new_block〉 → |
---|
1536 | memory_inj E m1 m2'. |
---|
1537 | #E #m1 #m2 #m2' #z1 #z2 #r * #new_block #Hregion #Hmemory_inj #Halloc |
---|
1538 | % |
---|
1539 | [ 1: |
---|
1540 | whd |
---|
1541 | #b1 #off1 #b2 #off2 #ty #v1 #Hvalid #Hembed #Hload |
---|
1542 | elim (mi_inj E m1 m2 Hmemory_inj b1 off1 b2 off2 … ty v1 Hvalid Hembed Hload) |
---|
1543 | #v2 * #Hload_eq #Hvalue_eq %{v2} @conj try // |
---|
1544 | lapply (refl ? (access_mode ty)) |
---|
1545 | cases ty in Hload_eq; |
---|
1546 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1547 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] |
---|
1548 | #Hload normalize in ⊢ ((???%) → ?); #Haccess |
---|
1549 | [ 1,7,8: normalize in Hload; destruct (Hload) |
---|
1550 | | 2,3,4,9: whd in match (load_value_of_type ????); |
---|
1551 | whd in match (load_value_of_type ????); |
---|
1552 | lapply (load_by_value_success_valid_block … Haccess Hload) |
---|
1553 | #Hvalid_block |
---|
1554 | whd in match (load_value_of_type ????) in Hload; |
---|
1555 | <(alloc_loadn_conservation … Halloc … Hvalid_block) |
---|
1556 | @Hload |
---|
1557 | | 5,6: whd in match (load_value_of_type ????) in Hload ⊢ %; @Hload ] |
---|
1558 | | 2: @(mi_freeblock … Hmemory_inj) |
---|
1559 | | 3: #p #p' #Hvalid #Hptr_trans lapply (mi_valid_pointers … Hmemory_inj p p' Hvalid Hptr_trans) |
---|
1560 | elim m2 in Halloc; #contentmap #nextblock #Hnextblock |
---|
1561 | elim p' * #br' #bid' #o' #Halloc whd in Halloc:(??%?) ⊢ ?; destruct (Halloc) |
---|
1562 | whd in match (valid_pointer ??) in ⊢ (% → %); |
---|
1563 | @Zltb_elim_Type0 |
---|
1564 | [ 2: normalize #_ #Habsurd destruct (Habsurd) ] |
---|
1565 | #Hbid' cut (Zltb bid' (Zsucc nextblock) = true) [ lapply (Zlt_to_Zltb_true … Hbid') @zlt_succ ] |
---|
1566 | #Hbid_succ >Hbid_succ whd in match (low_bound ??) in ⊢ (% → %); |
---|
1567 | whd in match (high_bound ??) in ⊢ (% → %); |
---|
1568 | whd in match (update_block ?????); |
---|
1569 | whd in match (eq_block ??); |
---|
1570 | cut (eqZb bid' nextblock = false) [ 1: @eqZb_false /2 by not_to_not/ ] |
---|
1571 | #Hbid_neq >Hbid_neq |
---|
1572 | cases (eq_region br' r) normalize #H @H |
---|
1573 | | 4: @(mi_region … Hmemory_inj) |
---|
1574 | | 5: @(mi_disjoint … Hmemory_inj) |
---|
1575 | ] qed. |
---|
1576 | |
---|
1577 | (* Memory allocation induces a memory extension. *) |
---|
1578 | lemma alloc_memory_ext : |
---|
1579 | ∀E:embedding.∀m1,m2,m2',z1,z2,r,new_block. ∀H:memory_inj E m1 m2. |
---|
1580 | alloc m2 z1 z2 r = 〈m2', new_block〉 → |
---|
1581 | memory_ext E m1 m2'. |
---|
1582 | #E #m1 #m2 #m2' #z1 #z2 #r * #new_block #Hblock_region_eq #Hmemory_inj #Halloc |
---|
1583 | lapply (alloc_memory_inj … Hmemory_inj Halloc) |
---|
1584 | #Hinj' % |
---|
1585 | [ 1: @Hinj' |
---|
1586 | | 2: @[new_block] |
---|
1587 | | 3: #b normalize in ⊢ (%→ ?); * [ 2: #H @(False_ind … H) ] |
---|
1588 | #Heq destruct (Heq) whd elim m2 in Halloc; |
---|
1589 | #Hcontents #nextblock #Hnextblock |
---|
1590 | whd in ⊢ ((??%?) → ?); #Heq destruct (Heq) |
---|
1591 | /2/ |
---|
1592 | | 4: * #b #o * #b' #o' #Hvalid_ptr #Hembed % |
---|
1593 | normalize in ⊢ (% → ?); * [ 2: #H @H ] |
---|
1594 | #Heq destruct (Heq) |
---|
1595 | lapply (mi_valid_pointers … Hmemory_inj … Hvalid_ptr Hembed) |
---|
1596 | whd in ⊢ (% → ?); |
---|
1597 | (* contradiction because ¬ (valid_block m2 new_block) *) |
---|
1598 | elim m2 in Halloc; |
---|
1599 | #contents_m2 #nextblock_m2 #Hnextblock_m2 |
---|
1600 | whd in ⊢ ((??%?) → ?); |
---|
1601 | #Heq_alloc destruct (Heq_alloc) |
---|
1602 | normalize |
---|
1603 | lapply (irreflexive_Zlt nextblock_m2) |
---|
1604 | @Zltb_elim_Type0 |
---|
1605 | [ #H * #Habsurd @(False_ind … (Habsurd H)) ] #_ #_ normalize #Habsurd destruct (Habsurd) |
---|
1606 | ] qed. |
---|
1607 | |
---|
1608 | lemma bestorev_beloadv_conservation : |
---|
1609 | ∀mA,mB,wb,wo,v. |
---|
1610 | bestorev mA (mk_pointer wb wo) v = Some ? mB → |
---|
1611 | ∀rb,ro. eq_block wb rb = false → |
---|
1612 | beloadv mA (mk_pointer rb ro) = beloadv mB (mk_pointer rb ro). |
---|
1613 | #mA #mB #wb #wo #v #Hstore #rb #ro #Hblock_neq |
---|
1614 | whd in ⊢ (??%%); |
---|
1615 | elim mB in Hstore; #contentsB #nextblockB #HnextblockB |
---|
1616 | normalize in ⊢ (% → ?); |
---|
1617 | cases (Zltb (block_id wb) (nextblock mA)) normalize nodelta |
---|
1618 | [ 2: #Habsurd destruct (Habsurd) ] |
---|
1619 | cases (if Zleb (low (blocks mA wb)) (Z_of_unsigned_bitvector 16 (offv wo)) |
---|
1620 | then Zltb (Z_of_unsigned_bitvector 16 (offv wo)) (high (blocks mA wb)) |
---|
1621 | else false) normalize nodelta |
---|
1622 | [ 2: #Habsurd destruct (Habsurd) ] |
---|
1623 | #Heq destruct (Heq) elim rb in Hblock_neq; #rr #rid elim wb #wr #wid |
---|
1624 | cases rr cases wr normalize try // |
---|
1625 | @(eqZb_elim … rid wid) |
---|
1626 | [ 1,3: #Heq destruct (Heq) >(eqZb_reflexive wid) #Habsurd destruct (Habsurd) ] |
---|
1627 | try // |
---|
1628 | qed. |
---|
1629 | |
---|
1630 | (* lift [bestorev_beloadv_conservation to [loadn] *) |
---|
1631 | lemma bestorev_loadn_conservation : |
---|
1632 | ∀mA,mB,n,wb,wo,v. |
---|
1633 | bestorev mA (mk_pointer wb wo) v = Some ? mB → |
---|
1634 | ∀rb,ro. eq_block wb rb = false → |
---|
1635 | loadn mA (mk_pointer rb ro) n = loadn mB (mk_pointer rb ro) n. |
---|
1636 | #mA #mB #n |
---|
1637 | elim n |
---|
1638 | [ 1: #wb #wo #v #Hstore #rb #ro #Hblock_neq normalize @refl |
---|
1639 | | 2: #n' #Hind #wb #wo #v #Hstore #rb #ro #Hneq |
---|
1640 | whd in ⊢ (??%%); |
---|
1641 | >(bestorev_beloadv_conservation … Hstore … Hneq) |
---|
1642 | >(Hind … Hstore … Hneq) @refl |
---|
1643 | ] qed. |
---|
1644 | |
---|
1645 | (* lift [bestorev_loadn_conservation] to [load_value_of_type] *) |
---|
1646 | lemma bestorev_load_value_of_type_conservation : |
---|
1647 | ∀mA,mB,wb,wo,v. |
---|
1648 | bestorev mA (mk_pointer wb wo) v = Some ? mB → |
---|
1649 | ∀rb,ro. eq_block wb rb = false → |
---|
1650 | ∀ty.load_value_of_type ty mA rb ro = load_value_of_type ty mB rb ro. |
---|
1651 | #mA #mB #wb #wo #v #Hstore #rb #ro #Hneq #ty |
---|
1652 | cases ty |
---|
1653 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1654 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] try // |
---|
1655 | [ 1: elim sz | 2: elim fsz | 3: | 4: ] |
---|
1656 | whd in ⊢ (??%%); |
---|
1657 | >(bestorev_loadn_conservation … Hstore … Hneq) @refl |
---|
1658 | qed. |
---|
1659 | |
---|
1660 | (* Writing in the "extended" part of a memory preserves the underlying injection *) |
---|
1661 | lemma bestorev_memory_ext_to_load_sim : |
---|
1662 | ∀E,mA,mB,mC. |
---|
1663 | ∀Hext:memory_ext E mA mB. |
---|
1664 | ∀wb,wo,v. meml ? wb (me_writeable … Hext) → |
---|
1665 | bestorev mB (mk_pointer wb wo) v = Some ? mC → |
---|
1666 | load_sim_ptr E mA mC. |
---|
1667 | #E #mA #mB #mC #Hext #wb #wo #v #Hwb #Hstore whd |
---|
1668 | #b1 #off1 #b2 #off2 #ty #v1 #Hvalid #Hembed #Hload |
---|
1669 | (* Show that (wb ≠ b2) by showing b2 ∉ (me_writeable ...) *) |
---|
1670 | lapply (me_writeable_ok … Hext (mk_pointer b1 off1) (mk_pointer b2 off2) Hvalid Hembed) #Hb2 |
---|
1671 | lapply (mem_not_mem_neq … Hwb Hb2) #Hwb_neq_b2 |
---|
1672 | cut ((eq_block wb b2) = false) [ @neq_block_eq_block_false @Hwb_neq_b2 ] #Heq_block_false |
---|
1673 | <(bestorev_load_value_of_type_conservation … Hstore … Heq_block_false) |
---|
1674 | @(mi_inj … (me_inj … Hext) … Hvalid … Hembed … Hload) |
---|
1675 | qed. |
---|
1676 | |
---|
1677 | (* Writing in the "extended" part of a memory preserves the whole memory injection *) |
---|
1678 | lemma bestorev_memory_ext_to_memory_inj : |
---|
1679 | ∀E,mA,mB,mC. |
---|
1680 | ∀Hext:memory_ext E mA mB. |
---|
1681 | ∀wb,wo,v. meml ? wb (me_writeable … Hext) → |
---|
1682 | bestorev mB (mk_pointer wb wo) v = Some ? mC → |
---|
1683 | memory_inj E mA mC. |
---|
1684 | #E #mA * #contentsB #nextblockB #HnextblockB #mC |
---|
1685 | #Hext #wb #wo #v #Hwb #Hstore |
---|
1686 | % |
---|
1687 | [ 1: @(bestorev_memory_ext_to_load_sim … Hext … Hwb Hstore) ] |
---|
1688 | elim Hext in Hwb; * #Hinj #Hvalid #Hcodomain #Hregion #Hdisjoint #writeable #Hwriteable_valid #Hwriteable_ok |
---|
1689 | #Hmem |
---|
1690 | [ 1: @Hvalid | 3: @Hregion | 4: @Hdisjoint ] -Hvalid -Hregion -Hdisjoint |
---|
1691 | whd in Hstore:(??%?); lapply (Hwriteable_valid … Hmem) |
---|
1692 | normalize in ⊢ (% → ?); #Hlt_wb |
---|
1693 | #p #p' #HvalidA #Hembed lapply (Hcodomain … HvalidA Hembed) -Hcodomain |
---|
1694 | normalize in match (valid_pointer ??) in ⊢ (% → %); |
---|
1695 | >(Zlt_to_Zltb_true … Hlt_wb) in Hstore; normalize nodelta |
---|
1696 | cases (Zleb (low (contentsB wb)) (Z_of_unsigned_bitvector offset_size (offv wo)) |
---|
1697 | ∧Zltb (Z_of_unsigned_bitvector offset_size (offv wo)) (high (contentsB wb))) |
---|
1698 | normalize nodelta |
---|
1699 | [ 2: #Habsurd destruct (Habsurd) ] |
---|
1700 | #Heq destruct (Heq) |
---|
1701 | cases (Zltb (block_id (pblock p')) nextblockB) normalize nodelta |
---|
1702 | [ 2: // ] |
---|
1703 | whd in match (update_block ?????); |
---|
1704 | cut (eq_block (pblock p') wb = false) |
---|
1705 | [ 2: #Heq >Heq normalize nodelta #H @H ] |
---|
1706 | @neq_block_eq_block_false @sym_neq |
---|
1707 | @(mem_not_mem_neq writeable … Hmem) |
---|
1708 | @(Hwriteable_ok … HvalidA Hembed) |
---|
1709 | qed. |
---|
1710 | |
---|
1711 | (* It even preserves memory extensions, with the same writeable blocks. *) |
---|
1712 | lemma bestorev_memory_ext_to_memory_ext : |
---|
1713 | ∀E,mA,mB. |
---|
1714 | ∀Hext:memory_ext E mA mB. |
---|
1715 | ∀wb,wo,v. meml ? wb (me_writeable … Hext) → |
---|
1716 | ∀mC.bestorev mB (mk_pointer wb wo) v = Some ? mC → |
---|
1717 | ΣExt:memory_ext E mA mC.(me_writeable … Hext = me_writeable … Ext). |
---|
1718 | #E #mA #mB #Hext #wb #wo #v #Hmem #mC #Hstore |
---|
1719 | %{(mk_memory_ext … |
---|
1720 | (bestorev_memory_ext_to_memory_inj … Hext … Hmem … Hstore) |
---|
1721 | (me_writeable … Hext) |
---|
1722 | ? |
---|
1723 | (me_writeable_ok … Hext) |
---|
1724 | )} try @refl |
---|
1725 | #b #Hmemb |
---|
1726 | lapply (me_writeable_valid … Hext b Hmemb) |
---|
1727 | lapply (me_writeable_valid … Hext wb Hmem) |
---|
1728 | elim mB in Hstore; #contentsB #nextblockB #HnextblockB #Hstore #Hwb_valid #Hb_valid |
---|
1729 | lapply Hstore normalize in Hwb_valid Hb_valid ⊢ (% → ?); |
---|
1730 | >(Zlt_to_Zltb_true … Hwb_valid) normalize nodelta |
---|
1731 | cases (if Zleb (low (contentsB wb)) (Z_of_unsigned_bitvector 16 (offv wo)) |
---|
1732 | then Zltb (Z_of_unsigned_bitvector 16 (offv wo)) (high (contentsB wb)) |
---|
1733 | else false) |
---|
1734 | normalize [ 2: #Habsurd destruct (Habsurd) ] |
---|
1735 | #Heq destruct (Heq) @Hb_valid |
---|
1736 | qed. |
---|
1737 | |
---|
1738 | (* Lift [bestorev_memory_ext_to_memory_ext] to storen *) |
---|
1739 | lemma storen_memory_ext_to_memory_ext : |
---|
1740 | ∀E,mA,l,mB,mC. |
---|
1741 | ∀Hext:memory_ext E mA mB. |
---|
1742 | ∀wb,wo. meml ? wb (me_writeable … Hext) → |
---|
1743 | storen mB (mk_pointer wb wo) l = Some ? mC → |
---|
1744 | memory_ext E mA mC. |
---|
1745 | #E #mA #l elim l |
---|
1746 | [ 1: #mB #mC #Hext #wb #wo #Hmem normalize in ⊢ (% → ?); #Heq destruct (Heq) |
---|
1747 | @Hext |
---|
1748 | | 2: #hd #tl #Hind #mB #mC #Hext #wb #wo #Hmem |
---|
1749 | whd in ⊢ ((??%?) → ?); |
---|
1750 | lapply (bestorev_memory_ext_to_memory_ext … Hext … wb wo hd Hmem) |
---|
1751 | cases (bestorev mB (mk_pointer wb wo) hd) |
---|
1752 | normalize nodelta |
---|
1753 | [ 1: #H #Habsurd destruct (Habsurd) ] |
---|
1754 | #mD #H lapply (H mD (refl ??)) * #HextD #Heq #Hstore |
---|
1755 | @(Hind … HextD … Hstore) |
---|
1756 | <Heq @Hmem |
---|
1757 | ] qed. |
---|
1758 | |
---|
1759 | (* Lift [storen_memory_ext_to_memory_ext] to store_value_of_type *) |
---|
1760 | lemma store_value_of_type_memory_ext_to_memory_ext : |
---|
1761 | ∀E,mA,mB,mC. |
---|
1762 | ∀Hext:memory_ext E mA mB. |
---|
1763 | ∀wb,wo. meml ? wb (me_writeable … Hext) → |
---|
1764 | ∀ty,v.store_value_of_type ty mB wb wo v = Some ? mC → |
---|
1765 | memory_ext E mA mC. |
---|
1766 | #E #mA #mB #mC #Hext #wb #wo #Hmem #ty #v |
---|
1767 | cases ty |
---|
1768 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #ptr_ty | 5: #array_ty #array_sz | 6: #domain #codomain |
---|
1769 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #id ] |
---|
1770 | whd in ⊢ ((??%?) → ?); |
---|
1771 | [ 1,5,6,7,8: #Habsurd destruct (Habsurd) ] |
---|
1772 | #Hstore |
---|
1773 | @(storen_memory_ext_to_memory_ext … Hext … Hmem … Hstore) |
---|
1774 | qed. |
---|
1775 | |
---|
1776 | (* End of the memory injection-related stuff. *) |
---|
1777 | (* ------------------------------------------ *) |
---|
1778 | |
---|
1779 | (* Lookup functions in list environments (used to type local variables in functions) *) |
---|
1780 | let rec mem_assoc_env (i : ident) (l : list (ident×type)) on l : bool ≝ |
---|
1781 | match l with |
---|
1782 | [ nil ⇒ false |
---|
1783 | | cons hd tl ⇒ |
---|
1784 | let 〈id, ty〉 ≝ hd in |
---|
1785 | match identifier_eq SymbolTag i id with |
---|
1786 | [ inl Hid_eq ⇒ true |
---|
1787 | | inr Hid_neq ⇒ mem_assoc_env i tl |
---|
1788 | ] |
---|
1789 | ]. |
---|
1790 | |
---|
1791 | let rec assoc_env (i : ident) (l : list (ident×type)) on l : option type ≝ |
---|
1792 | match l with |
---|
1793 | [ nil ⇒ None ? |
---|
1794 | | cons hd tl ⇒ |
---|
1795 | let 〈id, ty〉 ≝ hd in |
---|
1796 | match identifier_eq SymbolTag i id with |
---|
1797 | [ inl Hid_eq ⇒ Some ? ty |
---|
1798 | | inr Hid_neq ⇒ assoc_env i tl |
---|
1799 | ] |
---|
1800 | ]. |
---|
1801 | |
---|
1802 | (* [disjoint_extension e1 m1 e2 m2 types ext] states that [e2] is an extension |
---|
1803 | of the environment [e1] s.t. the new binders are in [new], and such that those |
---|
1804 | new binders are "writeable" in the memory extension [Hext] *) |
---|
1805 | definition disjoint_extension ≝ |
---|
1806 | λ(e1 : env). λ(m1 : mem). λ(e2 : env). λ(m2 : mem). |
---|
1807 | λ(new : list (ident × type)). λ(E:embedding). λ(Hext: memory_ext E m1 m2). |
---|
1808 | ∀id. match mem_assoc_env id new with |
---|
1809 | [ true ⇒ |
---|
1810 | ∃b. lookup ?? e2 id = Some ? b |
---|
1811 | ∧ meml ? b (me_writeable … Hext) |
---|
1812 | ∧ lookup ?? e1 id = None ? |
---|
1813 | | false ⇒ |
---|
1814 | match lookup ?? e1 id with |
---|
1815 | [ None ⇒ lookup ?? e2 id = None ? |
---|
1816 | | Some b1 ⇒ |
---|
1817 | match lookup ?? e2 id with |
---|
1818 | [ None ⇒ False |
---|
1819 | | Some b2 ⇒ |
---|
1820 | valid_block m1 b1 ∧ |
---|
1821 | value_eq E (Vptr (mk_pointer b1 zero_offset)) (Vptr (mk_pointer b2 zero_offset)) |
---|
1822 | ] |
---|
1823 | ] |
---|
1824 | ]. |
---|
1825 | |
---|
1826 | (* In proofs, [disjoint_extension] is not enough. When a variable lookup arises, if |
---|
1827 | * the variable is not in a local environment, then we search into the global one. |
---|
1828 | * A proper "extension" of a local environment should be such that the extension |
---|
1829 | * does not collide with a given global env. |
---|
1830 | * To see the details of why we need that, see [exec_lvalue'], Evar id case. |
---|
1831 | *) |
---|
1832 | definition ext_fresh_for_genv ≝ |
---|
1833 | λ(ext : list (ident × type)). λ(ge : genv). |
---|
1834 | ∀id. mem_assoc_env id ext = true → find_symbol … ge id = None ?. |
---|
1835 | |
---|
1836 | (* Any environment is a "disjoint" extension of itself with nothing. *) |
---|
1837 | (* |
---|
1838 | lemma disjoint_extension_nil : ∀e,m,types. disjoint_extension e m e m types []. |
---|
1839 | #e #m #ty #id |
---|
1840 | normalize in match (mem_assoc_env id []); normalize nodelta |
---|
1841 | cases (lookup ?? e id) try // |
---|
1842 | #b normalize nodelta |
---|
1843 | % #ty cases (load_value_of_type ????) |
---|
1844 | [ 1: %2 /2/ | 2: #v %1 %{v} %{v} @conj // |
---|
1845 | cases (assoc_env id ty) // |
---|
1846 | qed. *) |
---|
1847 | |
---|
1848 | |
---|
1849 | (* "generic" simulation relation on [res ?] *) |
---|
1850 | definition res_sim ≝ |
---|
1851 | λ(A : Type[0]). |
---|
1852 | λ(eq : A → A → Prop). |
---|
1853 | λ(r1, r2 : res A). |
---|
1854 | ∀a1. r1 = OK ? a1 → ∃a2. r2 = OK ? a2 ∧ eq a1 a2. |
---|
1855 | |
---|
1856 | (* Specialisation of [res_sim] to match [exec_expr] *) |
---|
1857 | definition exec_expr_sim ≝ λE. |
---|
1858 | res_sim (val × trace) (λr1,r2. value_eq E (\fst r1) (\fst r2) ∧ (\snd r1 = \snd r2)). |
---|
1859 | |
---|
1860 | (* Specialisation of [res_sim] to match [exec_lvalue] *) |
---|
1861 | definition exec_lvalue_sim ≝ λE. |
---|
1862 | res_sim (block × offset × trace) |
---|
1863 | (λr1,r2. |
---|
1864 | let 〈b1,o1,tr1〉 ≝ r1 in |
---|
1865 | let 〈b2,o2,tr2〉 ≝ r2 in |
---|
1866 | value_eq E (Vptr (mk_pointer b1 o1)) (Vptr (mk_pointer b2 o2)) ∧ tr1 = tr2). |
---|
1867 | |
---|
1868 | lemma load_value_of_type_dec : ∀ty, m, b, o. load_value_of_type ty m b o = None ? ∨ ∃r. load_value_of_type ty m b o = Some ? r. |
---|
1869 | #ty #m #b #o cases (load_value_of_type ty m b o) |
---|
1870 | [ 1: %1 // | 2: #v %2 /2 by ex_intro/ ] qed. |
---|
1871 | |
---|
1872 | (* |
---|
1873 | lemma switch_removal_alloc_extension : ∀f, f', vars, env, env', m, m'. |
---|
1874 | env = \fst (exec_alloc_variables empty_env m ((fn_params f) @ (fn_vars f))) → |
---|
1875 | 〈f',vars〉 = function_switch_removal f → |
---|
1876 | env' = \fst (exec_alloc_variables empty_env m' ((fn_params f) @ vars @ (fn_vars f))) → |
---|
1877 | environment_extension env env' vars. |
---|
1878 | |
---|
1879 | #f #f' |
---|
1880 | cut (∀l:list (ident × type). [ ] @ l = l) [ // ] #nil_append |
---|
1881 | cases (fn_params f) cases (fn_vars f) |
---|
1882 | [ 1: #vars >append_nil >append_nil >nil_append elim vars |
---|
1883 | [ 1: #env #env' #m #m' normalize in ⊢ (% → ? → % → ?); #Henv1 #_ #Henv2 destruct // |
---|
1884 | | 2: #hd #tl #Hind #env #env' #m #m' #Henv1 #Heq |
---|
1885 | whd in ⊢ ((???(???%)) → ?); |
---|
1886 | #Henv #Hswrem #Henv' |
---|
1887 | #id |
---|
1888 | *) |
---|
1889 | |
---|
1890 | (* |
---|
1891 | lemma substatement_fresh : ∀s,u. |
---|
1892 | fresh_for_statement s u → |
---|
1893 | substatement_P s (λs'. fresh_for_statement s' u) (λe. fresh_for_expression e u). |
---|
1894 | #s #u @(statement_ind2 ? (λls.fresh_for_labeled_statements ls u → substatement_ls ls (λs':statement.fresh_for_statement s' u)) … s) |
---|
1895 | try /by I/ |
---|
1896 | [ 1: #e1 #e2 #H lapply (fresh_max_split … H) * #H1 #H2 whd @conj assumption |
---|
1897 | | 2: * |
---|
1898 | [ 1: #e #args whd in ⊢ (% → %); #H lapply (fresh_max_split ??? H) * |
---|
1899 | #Hfresh_e #Hfresh_args @conj try assumption |
---|
1900 | normalize nodelta in Hfresh_args; |
---|
1901 | >max_id_commutative in Hfresh_args; >max_id_one_neutral |
---|
1902 | #Hfresh_args |
---|
1903 | | 2: #ret #e #args whd in ⊢ (% → %); #H lapply (fresh_max_split ??? H) * |
---|
1904 | #Hfresh_e #H lapply (fresh_max_split ??? H) * |
---|
1905 | #Hfresh_ret #Hfresh_args @conj try @conj try assumption ] |
---|
1906 | elim args in Hfresh_args; |
---|
1907 | [ 1,3: // |
---|
1908 | | 2,4: #hd #tl #Hind whd in match (foldl ?????); whd in match (All ???); |
---|
1909 | >foldl_max #H elim (fresh_max_split ??? H) #Hu #HAll @conj |
---|
1910 | [ 1,3: @Hu |
---|
1911 | | 2,4: @Hind assumption ] ] |
---|
1912 | | 3: #s1 #s2 #_ #_ |
---|
1913 | whd in ⊢ (% → ?); #H lapply (fresh_max_split … H) * |
---|
1914 | whd in match (substatement_P ??); /2/ |
---|
1915 | | 4: #e #cond #iftrue #iffalse #_ |
---|
1916 | whd in ⊢ (% → ?); #H lapply (fresh_max_split … H) * |
---|
1917 | #Hexpr #H2 lapply (fresh_max_split … H2) * /2/ |
---|
1918 | | 5,6: #e #stm #_ |
---|
1919 | whd in ⊢ (% → ?); #H lapply (fresh_max_split … H) * /2/ |
---|
1920 | | 7: #init #cond #step #body #_ #_ #_ #H lapply (fresh_max_split … H) * |
---|
1921 | #H1 #H2 elim (fresh_max_split … H1) #Hinit #Hcond |
---|
1922 | elim (fresh_max_split … H2) #Hstep #Hbody whd @conj try @conj try @conj /3/ |
---|
1923 | | 8: #ret #H whd elim ret in H; try // |
---|
1924 | | 9: #expr #ls #Hind #H whd @conj |
---|
1925 | [ 1: elim (fresh_max_split … H) // |
---|
1926 | | 2: @Hind elim (fresh_max_split … H) // ] |
---|
1927 | | 10: #l #body #Hind #H whd elim (fresh_max_split … H) // |
---|
1928 | | 11: #sz #i #hd #tl #Hhd #Htl #H whd |
---|
1929 | elim (fresh_max_split … H) #Htl_fresh #Hhd_fresh @conj // |
---|
1930 | @Htl // |
---|
1931 | ] qed. |
---|
1932 | *) |
---|
1933 | |
---|
1934 | (* Eliminating switches introduces fresh variables. [environment_extension] characterizes |
---|
1935 | * a local environment extended by some local variables. *) |
---|
1936 | |
---|
1937 | |
---|
1938 | (* lookup on environment extension *) |
---|
1939 | (* |
---|
1940 | lemma extension_lookup : |
---|
1941 | ∀map, map', ext, id, result. |
---|
1942 | environment_extension map map' ext → |
---|
1943 | lookup ?? map id = Some ? result → |
---|
1944 | lookup ?? map' id = Some ? result. |
---|
1945 | #map #map' #ext #id #result #Hext lapply (Hext id) |
---|
1946 | cases (mem_assoc_env ??) normalize nodelta |
---|
1947 | [ 1: * * #ext_result #H1 >H1 #Habsurd destruct (Habsurd) |
---|
1948 | | 2: #H >H // ] qed. |
---|
1949 | |
---|
1950 | *) |
---|
1951 | |
---|
1952 | (* Extending a map by an empty list of variables yields an observationally equivalent |
---|
1953 | * environment. *) |
---|
1954 | (* |
---|
1955 | lemma environment_extension_nil : ∀en,en':env. (environment_extension en en' [ ]) → imap_eq ?? en en'. |
---|
1956 | * #map1 * #map2 whd in ⊢ (% → ?); #Hext whd % #id #v #H |
---|
1957 | [ 1: lapply (Hext (an_identifier ? id)) whd in match (lookup ????); normalize nodelta |
---|
1958 | cases (lookup_opt block id map2) normalize |
---|
1959 | [ 1: >H #H2 >H2 @refl |
---|
1960 | | 2: #b >H cases v |
---|
1961 | [ 1: normalize * #H @(False_ind … H) |
---|
1962 | | 2: #block normalize // ] ] |
---|
1963 | | 2: lapply (Hext (an_identifier ? id)) whd in match (lookup ????); normalize nodelta |
---|
1964 | >H cases v normalize try // |
---|
1965 | #block cases (lookup_opt ? id map1) normalize try // |
---|
1966 | * #H @(False_ind … H) |
---|
1967 | ] qed. *) |
---|
1968 | |
---|
1969 | (* If two identifier maps are observationally equal, then they contain the same bocks. |
---|
1970 | * see maps_obsequiv.ma for the details of the proof. *) |
---|
1971 | (* |
---|
1972 | lemma blocks_of_env_eq : ∀e,e'. imap_eq ?? e e' → blocks_of_env e = blocks_of_env e'. |
---|
1973 | * #map1 * #map2 normalize #Hpmap_eq lapply (pmap_eq_fold … Hpmap_eq) #Hfold |
---|
1974 | >Hfold @refl |
---|
1975 | qed. |
---|
1976 | *) |
---|
1977 | |
---|
1978 | (* Simulation relations. *) |
---|
1979 | inductive switch_cont_sim : (list ident) → cont → cont → Prop ≝ |
---|
1980 | | swc_stop : ∀fvs. |
---|
1981 | switch_cont_sim fvs Kstop Kstop |
---|
1982 | | swc_seq : ∀fvs,s,k,k',u,result. |
---|
1983 | fresh_for_statement s u → |
---|
1984 | switch_cont_sim fvs k k' → |
---|
1985 | switch_removal s fvs u = Some ? result → |
---|
1986 | switch_cont_sim fvs (Kseq s k) (Kseq (ret_st ? result) k') |
---|
1987 | | swc_while : ∀fvs,e,s,k,k',u,result. |
---|
1988 | fresh_for_statement (Swhile e s) u → |
---|
1989 | switch_cont_sim fvs k k' → |
---|
1990 | switch_removal s fvs u = Some ? result → |
---|
1991 | switch_cont_sim fvs (Kwhile e s k) (Kwhile e (ret_st ? result) k') |
---|
1992 | | swc_dowhile : ∀fvs,e,s,k,k',u,result. |
---|
1993 | fresh_for_statement (Sdowhile e s) u → |
---|
1994 | switch_cont_sim fvs k k' → |
---|
1995 | switch_removal s fvs u = Some ? result → |
---|
1996 | switch_cont_sim fvs (Kdowhile e s k) (Kdowhile e (ret_st ? result) k') |
---|
1997 | | swc_for1 : ∀fvs,e,s1,s2,k,k',u,result. |
---|
1998 | fresh_for_statement (Sfor Sskip e s1 s2) u → |
---|
1999 | switch_cont_sim fvs k k' → |
---|
2000 | switch_removal (Sfor Sskip e s1 s2) fvs u = Some ? result → |
---|
2001 | switch_cont_sim fvs (Kseq (Sfor Sskip e s1 s2) k) (Kseq (ret_st ? result) k') |
---|
2002 | | swc_for2 : ∀fvs,e,s1,s2,k,k',u,result1,result2. |
---|
2003 | fresh_for_statement (Sfor Sskip e s1 s2) u → |
---|
2004 | switch_cont_sim fvs k k' → |
---|
2005 | switch_removal s1 fvs u = Some ? result1 → |
---|
2006 | switch_removal s2 fvs (ret_u ? result1) = Some ? result2 → |
---|
2007 | switch_cont_sim fvs (Kfor2 e s1 s2 k) (Kfor2 e (ret_st ? result1) (ret_st ? result2) k') |
---|
2008 | | swc_for3 : ∀fvs,e,s1,s2,k,k',u,result1,result2. |
---|
2009 | fresh_for_statement (Sfor Sskip e s1 s2) u → |
---|
2010 | switch_cont_sim fvs k k' → |
---|
2011 | switch_removal s1 fvs u = Some ? result1 → |
---|
2012 | switch_removal s2 fvs (ret_u ? result1) = Some ? result2 -> |
---|
2013 | switch_cont_sim fvs (Kfor3 e s1 s2 k) (Kfor3 e (ret_st ? result1) (ret_st ? result2) k') |
---|
2014 | | swc_switch : ∀fvs,k,k'. |
---|
2015 | switch_cont_sim fvs k k' → |
---|
2016 | switch_cont_sim fvs (Kswitch k) (Kswitch k') |
---|
2017 | | swc_call : ∀fvs,en,en',r,f,k,k'. (* Warning: possible caveat with environments here. *) |
---|
2018 | switch_cont_sim fvs k k' → |
---|
2019 | (* /!\ Update [en] with [fvs'] ... *) |
---|
2020 | switch_cont_sim |
---|
2021 | (map … (fst ??) (\snd (function_switch_removal f))) |
---|
2022 | (Kcall r f en k) |
---|
2023 | (Kcall r (\fst (function_switch_removal f)) en' k'). |
---|
2024 | |
---|
2025 | |
---|
2026 | (* |
---|
2027 | en' = exec_alloc_variables en m (\snd (function_switch_removal f)) |
---|
2028 | TODO : si variable héréditairement générée depuis [u], alors variable dans \snd (function_switch_removal f) et donc |
---|
2029 | variable dans en'. |
---|
2030 | |
---|
2031 | 1) Pb: je voudrais que les noms générés dans (switch_removal s u) soient les mêmes que |
---|
2032 | dans (function_switch_removal f). Pas faisable. Ce dont on a réellement besoin, c'est |
---|
2033 | de savoir que : |
---|
2034 | si je lookup une variable générée à partir d'un univers frais dans l'environement en', |
---|
2035 | alors j'aurais un hit. L'environnement en' doit être à la fois fixe de step en step, |
---|
2036 | et contenir tout ce qui est généré par u. Donc, on contraint u à etre "fresh for s" |
---|
2037 | et à etre "(function_switch_removal f)-contained". |
---|
2038 | |
---|
2039 | 2) J'aurais surement besoin de l'hypothèse de freshness pour montrer que le lookup |
---|
2040 | et l'update n'altèrent pas le comportement du reste du programme. |
---|
2041 | |
---|
2042 | relation : si un statement S0 est inclus dans un statement S1, alors les variables générées |
---|
2043 | depuis tout freshgen u sur S0 sont inclus dans celles générées pour S1. |
---|
2044 | en particulier, si u est frais pour S1 u est frais pour S0. |
---|
2045 | |
---|
2046 | Montrer que "environment_extension en en' (\snd (function_switch_removal f))" implique |
---|
2047 | "environment_extension en en' (\fst (\fst (switch_removal s u)))" |
---|
2048 | |
---|
2049 | --------------------------------------------------------------- |
---|
2050 | . constante de la transformation: exec_step laisse $en$ et $m$ invariants, sauf lors d'un appel de fonction |
---|
2051 | et d'updates. Il est donc impossible d'allouer les variables sur [en] au fur et à mesure de leur génération. |
---|
2052 | on doit donc utiliser l'env créé lors de l'allocation de la fonction. Conséquence directe : on doit donner |
---|
2053 | en argument les freshgens qui correspondent à ce que la fonction switch_removal fait. |
---|
2054 | *) |
---|
2055 | |
---|
2056 | inductive switch_state_sim : state → state → Prop ≝ |
---|
2057 | | sws_state : ∀u,f,s,k,k',m,m',result. |
---|
2058 | ∀env, env', f', vars. |
---|
2059 | ∀E:embedding. |
---|
2060 | ∀Hext:memory_ext E m m'. |
---|
2061 | fresh_for_statement s u → |
---|
2062 | (* |
---|
2063 | env = \fst (exec_alloc_variables empty_env m ((fn_params f) @ (fn_vars f))) → |
---|
2064 | env' = \fst (exec_alloc_variables empty_env m' ((fn_params f) @ vars @ (fn_vars f))) → |
---|
2065 | *) |
---|
2066 | 〈f',vars〉 = function_switch_removal f → |
---|
2067 | disjoint_extension env m env' m' vars E Hext → |
---|
2068 | switch_removal s (map ?? (fst ??) vars) u = Some ? result → |
---|
2069 | switch_cont_sim (map ?? (fst ??) vars) k k' → |
---|
2070 | switch_state_sim |
---|
2071 | (State f s k env m) |
---|
2072 | (State f' (ret_st ? result) k' env' m') |
---|
2073 | | sws_callstate : ∀vars, fd,args,k,k',m. |
---|
2074 | switch_cont_sim vars k k' → |
---|
2075 | switch_state_sim (Callstate fd args k m) (Callstate (fundef_switch_removal fd) args k' m) |
---|
2076 | | sws_returnstate : ∀vars,res,k,k',m. |
---|
2077 | switch_cont_sim vars k k' → |
---|
2078 | switch_state_sim (Returnstate res k m) (Returnstate res k' m) |
---|
2079 | | sws_finalstate : ∀r. |
---|
2080 | switch_state_sim (Finalstate r) (Finalstate r). |
---|
2081 | |
---|
2082 | lemma call_cont_swremoval : ∀fv,k,k'. |
---|
2083 | switch_cont_sim fv k k' → |
---|
2084 | switch_cont_sim fv (call_cont k) (call_cont k'). |
---|
2085 | #fv #k0 #k0' #K elim K /2/ |
---|
2086 | qed. |
---|
2087 | |
---|
2088 | (* [eventually ge P s tr] states that after a finite number of [exec_step], the |
---|
2089 | property P on states will be verified. *) |
---|
2090 | inductive eventually (ge : genv) (P : state → Prop) : state → trace → Prop ≝ |
---|
2091 | | eventually_base : ∀s,t,s'. |
---|
2092 | exec_step ge s = Value io_out io_in ? 〈t, s'〉 → |
---|
2093 | P s' → |
---|
2094 | eventually ge P s t |
---|
2095 | | eventually_step : ∀s,t,s',t',trace. |
---|
2096 | exec_step ge s = Value io_out io_in ? 〈t, s'〉 → |
---|
2097 | eventually ge P s' t' → |
---|
2098 | trace = (t ⧺ t') → |
---|
2099 | eventually ge P s trace. |
---|
2100 | |
---|
2101 | (* [eventually] is not so nice to use directly, we would like to make the mandatory |
---|
2102 | * [exec_step ge s = Value ??? 〈t, s'] visible - and in the end we would like not |
---|
2103 | to give [s'] ourselves, but matita to compute it. Hence this little intro-wrapper. *) |
---|
2104 | lemma eventually_now : ∀ge,P,s,t. |
---|
2105 | (∃s'.exec_step ge s = Value io_out io_in ? 〈t,s'〉 ∧ P s') → |
---|
2106 | eventually ge P s t. |
---|
2107 | #ge #P #s #t * #s' * #Hexec #HP %1{… Hexec HP} (* %{E0} normalize >(append_nil ? t) %1{????? Hexec HP} *) |
---|
2108 | qed. |
---|
2109 | (* |
---|
2110 | lemma eventually_now : ∀ge,P,s,t. (∃s'.exec_step ge s = Value io_out io_in ? 〈t,s'〉 ∧ P s') → |
---|
2111 | ∃t'.eventually ge P s (t ⧺ t'). |
---|
2112 | #ge #P #s #t * #s' * #Hexec #HP %{E0} normalize >(append_nil ? t) %1{????? Hexec HP} |
---|
2113 | qed. |
---|
2114 | *) |
---|
2115 | lemma eventually_later : ∀ge,P,s,t. |
---|
2116 | (∃s',tstep.exec_step ge s = Value io_out io_in ? 〈tstep,s'〉 ∧ ∃tnext. t = tstep ⧺ tnext ∧ eventually ge P s' tnext) → |
---|
2117 | eventually ge P s t. |
---|
2118 | #ge #P #s #t * #s' * #tstep * #Hexec_step * #tnext * #Heq #Heventually %2{s tstep s' tnext … Heq} |
---|
2119 | try assumption |
---|
2120 | qed. |
---|
2121 | |
---|
2122 | (* lift value_eq to option block *) |
---|
2123 | definition option_block_eq ≝ λE,ob1,ob2. |
---|
2124 | match ob1 with |
---|
2125 | [ None ⇒ |
---|
2126 | match ob2 with |
---|
2127 | [ None ⇒ True |
---|
2128 | | Some _ ⇒ False ] |
---|
2129 | | Some b1 ⇒ |
---|
2130 | match ob2 with |
---|
2131 | [ None ⇒ False |
---|
2132 | | Some b2 ⇒ value_eq E (Vptr (mk_pointer b1 zero_offset)) (Vptr (mk_pointer b2 zero_offset)) ] |
---|
2133 | ]. |
---|
2134 | |
---|
2135 | definition value_eq_opt ≝ λE,ov1,ov2. |
---|
2136 | match ov1 with |
---|
2137 | [ None ⇒ |
---|
2138 | match ov2 with |
---|
2139 | [ None ⇒ True |
---|
2140 | | Some _ ⇒ False ] |
---|
2141 | | Some v1 ⇒ |
---|
2142 | match ov2 with |
---|
2143 | [ None ⇒ False |
---|
2144 | | Some v2 ⇒ |
---|
2145 | value_eq E v1 v2 ] |
---|
2146 | ]. |
---|
2147 | |
---|
2148 | record switch_removal_globals (E : embedding) (F:Type[0]) (t:F → F) (ge:genv_t F) (ge':genv_t F) : Prop ≝ { |
---|
2149 | rg_find_symbol: ∀s. |
---|
2150 | option_block_eq E (find_symbol ? ge s) (find_symbol ? ge' s); |
---|
2151 | rg_find_funct: ∀v,f. |
---|
2152 | find_funct ? ge v = Some ? f → |
---|
2153 | find_funct ? ge' v = Some ? (t f); |
---|
2154 | rg_find_funct_ptr: ∀b,f. |
---|
2155 | find_funct_ptr ? ge b = Some ? f → |
---|
2156 | find_funct_ptr ? ge' b = Some ? (t f) |
---|
2157 | }. |
---|
2158 | |
---|
2159 | lemma exec_lvalue_expr_elim : |
---|
2160 | ∀E,r1,r2,Pok,Qok. |
---|
2161 | ∀H:exec_lvalue_sim E r1 r2. |
---|
2162 | (∀bo1,bo2,tr. |
---|
2163 | let 〈b1,o1〉 ≝ bo1 in |
---|
2164 | let 〈b2,o2〉 ≝ bo2 in |
---|
2165 | value_eq E (Vptr (mk_pointer b1 o1)) (Vptr (mk_pointer b2 o2)) → |
---|
2166 | match Pok 〈bo1,tr〉 with |
---|
2167 | [ Error err ⇒ True |
---|
2168 | | OK vt1 ⇒ |
---|
2169 | let 〈val1,trace1〉 ≝ vt1 in |
---|
2170 | match Qok 〈bo2,tr〉 with |
---|
2171 | [ Error err ⇒ False |
---|
2172 | | OK vt2 ⇒ |
---|
2173 | let 〈val2,trace2〉 ≝ vt2 in |
---|
2174 | trace1 = trace2 ∧ value_eq E val1 val2 |
---|
2175 | ] |
---|
2176 | ]) → |
---|
2177 | exec_expr_sim E |
---|
2178 | (match r1 with [ OK x ⇒ Pok x | Error err ⇒ Error ? err ]) |
---|
2179 | (match r2 with [ OK x ⇒ Qok x | Error err ⇒ Error ? err ]). |
---|
2180 | #E #r1 #r2 #Pok #Qok whd in ⊢ (% → ?); |
---|
2181 | elim r1 |
---|
2182 | [ 2: #error #_ #_ normalize #a1 #Habsurd destruct (Habsurd) |
---|
2183 | | 1: normalize nodelta #a1 #H lapply (H a1 (refl ??)) |
---|
2184 | * #a2 * #Hr2 >Hr2 normalize nodelta |
---|
2185 | elim a1 * #b1 #o1 #tr1 |
---|
2186 | elim a2 * #b2 #o2 #tr2 normalize nodelta |
---|
2187 | * #Hvalue_eq #Htrace_eq #H2 |
---|
2188 | destruct (Htrace_eq) |
---|
2189 | lapply (H2 〈b1, o1〉 〈b2, o2〉 tr2 Hvalue_eq) |
---|
2190 | cases (Pok 〈b1, o1, tr2〉) |
---|
2191 | [ 2: #error #_ normalize #a1' #Habsurd destruct (Habsurd) |
---|
2192 | | 1: * #v1 #tr1' normalize nodelta #H3 whd |
---|
2193 | * #v1' #tr1'' #Heq destruct (Heq) |
---|
2194 | cases (Qok 〈b2,o2,tr2〉) in H3; |
---|
2195 | [ 2: #error #Hfalse @(False_ind … Hfalse) |
---|
2196 | | 1: * #v2 #tr2 normalize nodelta * #Htrace_eq destruct (Htrace_eq) |
---|
2197 | #Hvalue_eq' %{〈v2,tr2〉} @conj try @conj // |
---|
2198 | ] ] ] qed. |
---|
2199 | |
---|
2200 | lemma exec_expr_expr_elim : |
---|
2201 | ∀E,r1,r2,Pok,Qok. |
---|
2202 | ∀H:exec_expr_sim E r1 r2. |
---|
2203 | (∀v1,v2,trace. |
---|
2204 | value_eq E v1 v2 → |
---|
2205 | match Pok 〈v1,trace〉 with |
---|
2206 | [ Error err ⇒ True |
---|
2207 | | OK vt1 ⇒ |
---|
2208 | let 〈val1,trace1〉 ≝ vt1 in |
---|
2209 | match Qok 〈v2,trace〉 with |
---|
2210 | [ Error err ⇒ False |
---|
2211 | | OK vt2 ⇒ |
---|
2212 | let 〈val2,trace2〉 ≝ vt2 in |
---|
2213 | trace1 = trace2 ∧ value_eq E val1 val2 |
---|
2214 | ] |
---|
2215 | ]) → |
---|
2216 | exec_expr_sim E |
---|
2217 | (match r1 with [ OK x ⇒ Pok x | Error err ⇒ Error ? err ]) |
---|
2218 | (match r2 with [ OK x ⇒ Qok x | Error err ⇒ Error ? err ]). |
---|
2219 | #E #r1 #r2 #Pok #Qok whd in ⊢ (% → ?); |
---|
2220 | elim r1 |
---|
2221 | [ 2: #error #_ #_ normalize #a1 #Habsurd destruct (Habsurd) |
---|
2222 | | 1: normalize nodelta #a1 #H lapply (H a1 (refl ??)) |
---|
2223 | * #a2 * #Hr2 >Hr2 normalize nodelta |
---|
2224 | elim a1 #v1 #tr1 |
---|
2225 | elim a2 #v2 #tr2 normalize nodelta |
---|
2226 | * #Hvalue_eq #Htrace_eq #H2 |
---|
2227 | destruct (Htrace_eq) |
---|
2228 | lapply (H2 v1 v2 tr2 Hvalue_eq) |
---|
2229 | cases (Pok 〈v1, tr2〉) |
---|
2230 | [ 2: #error #_ normalize #a1' #Habsurd destruct (Habsurd) |
---|
2231 | | 1: * #v1 #tr1' normalize nodelta #H3 whd |
---|
2232 | * #v1' #tr1'' #Heq destruct (Heq) |
---|
2233 | cases (Qok 〈v2,tr2〉) in H3; |
---|
2234 | [ 2: #error #Hfalse @(False_ind … Hfalse) |
---|
2235 | | 1: * #v2 #tr2 normalize nodelta * #Htrace_eq destruct (Htrace_eq) |
---|
2236 | #Hvalue_eq' %{〈v2,tr2〉} @conj try @conj // |
---|
2237 | ] ] ] qed. |
---|
2238 | |
---|
2239 | (* Commutation results of standard binary operations with value_eq. *) |
---|
2240 | lemma unary_operation_value_eq : |
---|
2241 | ∀E,op,v1,v2,ty. |
---|
2242 | value_eq E v1 v2 → |
---|
2243 | ∀r1. |
---|
2244 | sem_unary_operation op v1 ty = Some ? r1 → |
---|
2245 | ∃r2.sem_unary_operation op v2 ty = Some ? r2 ∧ value_eq E r1 r2. |
---|
2246 | #E #op #v1 #v2 #ty #Hvalue_eq #r1 |
---|
2247 | inversion Hvalue_eq |
---|
2248 | [ 1: #v #Hv1 #Hv2 #_ destruct |
---|
2249 | cases op normalize |
---|
2250 | [ 1: cases ty [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2251 | normalize #Habsurd destruct (Habsurd) |
---|
2252 | | 3: cases ty [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2253 | normalize #Habsurd destruct (Habsurd) |
---|
2254 | | 2: #Habsurd destruct (Habsurd) ] |
---|
2255 | | 2: #vsz #i #Hv1 #Hv2 #_ |
---|
2256 | cases op |
---|
2257 | [ 1: cases ty |
---|
2258 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2259 | whd in ⊢ ((??%?) → ?); whd in match (sem_unary_operation ???); |
---|
2260 | [ 2: cases (eq_intsize sz vsz) normalize nodelta #Heq1 destruct |
---|
2261 | %{(of_bool (eq_bv (bitsize_of_intsize vsz) i (zero (bitsize_of_intsize vsz))))} |
---|
2262 | cases (eq_bv (bitsize_of_intsize vsz) i (zero (bitsize_of_intsize vsz))) @conj |
---|
2263 | // |
---|
2264 | | *: #Habsurd destruct (Habsurd) ] |
---|
2265 | | 2: whd in match (sem_unary_operation ???); |
---|
2266 | #Heq1 destruct %{(Vint vsz (exclusive_disjunction_bv (bitsize_of_intsize vsz) i (mone vsz)))} @conj // |
---|
2267 | | 3: whd in match (sem_unary_operation ???); |
---|
2268 | cases ty |
---|
2269 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2270 | normalize nodelta |
---|
2271 | whd in ⊢ ((??%?) → ?); |
---|
2272 | [ 2: cases (eq_intsize sz vsz) normalize nodelta #Heq1 destruct |
---|
2273 | %{(Vint vsz (two_complement_negation (bitsize_of_intsize vsz) i))} @conj // |
---|
2274 | | *: #Habsurd destruct (Habsurd) ] ] |
---|
2275 | | 3: #f #Hv1 #Hv2 #_ destruct whd in match (sem_unary_operation ???); |
---|
2276 | cases op normalize nodelta |
---|
2277 | [ 1: cases ty |
---|
2278 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2279 | whd in match (sem_notbool ??); |
---|
2280 | #Heq1 destruct |
---|
2281 | cases (Fcmp Ceq f Fzero) /3 by ex_intro, vint_eq, conj/ |
---|
2282 | | 2: normalize #Habsurd destruct (Habsurd) |
---|
2283 | | 3: cases ty |
---|
2284 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2285 | whd in match (sem_neg ??); |
---|
2286 | #Heq1 destruct /3 by ex_intro, vfloat_eq, conj/ ] |
---|
2287 | | 4: #Hv1 #Hv2 #_ destruct whd in match (sem_unary_operation ???); |
---|
2288 | cases op normalize nodelta |
---|
2289 | [ 1: cases ty |
---|
2290 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2291 | whd in match (sem_notbool ??); |
---|
2292 | #Heq1 destruct /3 by ex_intro, vint_eq, conj/ |
---|
2293 | | 2: normalize #Habsurd destruct (Habsurd) |
---|
2294 | | 3: cases ty |
---|
2295 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2296 | whd in match (sem_neg ??); |
---|
2297 | #Heq1 destruct ] |
---|
2298 | | 5: #p1 #p2 #Hptr_translation #Hv1 #Hv2 #_ whd in match (sem_unary_operation ???); |
---|
2299 | cases op normalize nodelta |
---|
2300 | [ 1: cases ty |
---|
2301 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2302 | whd in match (sem_notbool ??); |
---|
2303 | #Heq1 destruct /3 by ex_intro, vint_eq, conj/ |
---|
2304 | | 2: normalize #Habsurd destruct (Habsurd) |
---|
2305 | | 3: cases ty |
---|
2306 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
2307 | whd in match (sem_neg ??); |
---|
2308 | #Heq1 destruct ] |
---|
2309 | ] |
---|
2310 | qed. |
---|
2311 | |
---|
2312 | lemma commutative_add_with_carries : ∀n,a,b,carry. add_with_carries n a b carry = add_with_carries n b a carry. |
---|
2313 | #n elim n |
---|
2314 | [ 1: #a #b #carry |
---|
2315 | lapply (BitVector_O … a) lapply (BitVector_O … b) #H1 #H2 destruct @refl |
---|
2316 | | 2: #n' #Hind #a #b #carry |
---|
2317 | lapply (BitVector_Sn … a) lapply (BitVector_Sn … b) |
---|
2318 | * #bhd * #btl #Heqb |
---|
2319 | * #ahd * #atl #Heqa destruct |
---|
2320 | lapply (Hind atl btl carry) |
---|
2321 | whd in match (add_with_carries ????) in ⊢ ((??%%) → (??%%)); |
---|
2322 | normalize in match (rewrite_l ??????); |
---|
2323 | normalize nodelta |
---|
2324 | #Heq >Heq |
---|
2325 | generalize in match (fold_right2_i ????????); * #res #carries |
---|
2326 | normalize nodelta |
---|
2327 | cases ahd cases bhd @refl |
---|
2328 | ] qed. |
---|
2329 | |
---|
2330 | axiom associative_add_with_carries : |
---|
2331 | ∀n,a,b,c,carry1,carry2. |
---|
2332 | ((let 〈res,flags〉 ≝ |
---|
2333 | add_with_carries n a |
---|
2334 | (let 〈res,flags〉 ≝add_with_carries n b c carry1 in res) carry2 in |
---|
2335 | res) |
---|
2336 | =(let 〈res,flags〉 ≝ |
---|
2337 | add_with_carries n |
---|
2338 | (let 〈res,flags〉 ≝add_with_carries n a b carry1 in res) c carry2 in |
---|
2339 | res)). |
---|
2340 | (* |
---|
2341 | (\fst (add_with_carries n a (\fst (add_with_carries n b c carry1)) carry2)) = |
---|
2342 | (\fst (add_with_carries n (\fst (add_with_carries n a b carry1)) c carry2)). |
---|
2343 | |
---|
2344 | #n elim n |
---|
2345 | [ 1: #a #b #c #carry1 #carry2 |
---|
2346 | lapply (BitVector_O … a) |
---|
2347 | lapply (BitVector_O … b) |
---|
2348 | lapply (BitVector_O … c) |
---|
2349 | #Ha #Hb #Hc |
---|
2350 | destruct // |
---|
2351 | | 2: #n' #Hind #a #b #c #carry1 #carry2 |
---|
2352 | lapply (BitVector_Sn … a) |
---|
2353 | lapply (BitVector_Sn … b) |
---|
2354 | lapply (BitVector_Sn … c) |
---|
2355 | * #chd * #ctl #Heqc |
---|
2356 | * #bhd * #btl #Heqb |
---|
2357 | * #ahd * #atl #Heqa |
---|
2358 | lapply (Hind atl btl ctl carry2 carry1) #Hind |
---|
2359 | lapply (BitVector_Sn … (\fst (add_with_carries (S n') b c carry1))) |
---|
2360 | lapply (BitVector_Sn … (\fst (add_with_carries (S n') a b carry1))) |
---|
2361 | * #ab1 * #abtl1 #Heq_ab |
---|
2362 | * #bc1 * #bctl1 #Heq_bc |
---|
2363 | >Heq_ab >Heq_bc destruct |
---|
2364 | whd in match (add_with_carries) in ⊢ (??%%); |
---|
2365 | normalize nodelta |
---|
2366 | whd in match (add_with_carries) in Heq_bc Heq_ab; |
---|
2367 | normalize nodelta in Heq_bc Heq_ab; |
---|
2368 | <Heq_ab <Heq_bc |
---|
2369 | >fold_right2_i_unfold |
---|
2370 | >fold_right2_i_unfold |
---|
2371 | lapply Hind; |
---|
2372 | whd in match (add_with_carries ????) in ⊢ ((??%%) → ?); |
---|
2373 | normalize in match (add_with_carries ????) in ⊢ ((??%%) → ?); |
---|
2374 | normalize |
---|
2375 | #Hind >Hind |
---|
2376 | normalize nodelta |
---|
2377 | |
---|
2378 | normalize in Hind; |
---|
2379 | *) |
---|
2380 | |
---|
2381 | lemma commutative_addition_n : ∀n,a,b. addition_n n a b = addition_n n b a. |
---|
2382 | #n #a #b whd in match (addition_n ???) in ⊢ (??%%); >commutative_add_with_carries |
---|
2383 | @refl |
---|
2384 | qed. |
---|
2385 | |
---|
2386 | lemma associative_addition_n : ∀n,a,b,c. addition_n n a (addition_n n b c) = addition_n n (addition_n n a b) c. |
---|
2387 | #n #a #b #c whd in match (addition_n ???) in ⊢ (??%%); |
---|
2388 | whd in match (addition_n n b c); |
---|
2389 | whd in match (addition_n n a b); |
---|
2390 | <(associative_add_with_carries … n a b c false false) |
---|
2391 | @refl |
---|
2392 | qed. |
---|
2393 | |
---|
2394 | (* value_eq lifts to addition *) |
---|
2395 | lemma add_value_eq : |
---|
2396 | ∀E,v1,v2,v1',v2',ty1,ty2. |
---|
2397 | value_eq E v1 v2 → |
---|
2398 | value_eq E v1' v2' → |
---|
2399 | (* memory_inj E m1 m2 → This injection seems useless TODO *) |
---|
2400 | ∀r1. (sem_add v1 ty1 v1' ty2=Some val r1→ |
---|
2401 | ∃r2:val.sem_add v2 ty1 v2' ty2=Some val r2∧value_eq E r1 r2). |
---|
2402 | #E #v1 #v2 #v1' #v2' #ty1 #ty2 #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2403 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2404 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2405 | [ 1: whd in match (sem_add ????); normalize nodelta |
---|
2406 | cases (classify_add ty1 ty2) normalize nodelta |
---|
2407 | [ 1: #sz #sg | 2: #fsz | 3: #n #ty #sz #sg | 4: #n #sz #sg #ty | 5: #ty1' #ty2' ] |
---|
2408 | #Habsurd destruct (Habsurd) |
---|
2409 | | 2: whd in match (sem_add ????); whd in match (sem_add ????); normalize nodelta |
---|
2410 | cases (classify_add ty1 ty2) normalize nodelta |
---|
2411 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2412 | [ 2,3,5: #Habsurd destruct (Habsurd) ] |
---|
2413 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2414 | [ 1,6: #v' | 2,7: #sz' #i' | 3,8: #f' | 4,9: | 5,10: #p1' #p2' #Hembed' ] |
---|
2415 | [ 1,2,4,5,6,7,9: #Habsurd destruct (Habsurd) ] |
---|
2416 | [ 1: @intsize_eq_elim_elim |
---|
2417 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2418 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2419 | #Heq destruct (Heq) |
---|
2420 | /3 by ex_intro, conj, vint_eq/ ] |
---|
2421 | | 2: @eq_bv_elim normalize nodelta #Heq1 #Heq2 destruct |
---|
2422 | /3 by ex_intro, conj, vint_eq/ |
---|
2423 | | 3: #Heq destruct (Heq) |
---|
2424 | normalize in Hembed'; elim p1' in Hembed'; #b1' #o1' normalize nodelta #Hembed |
---|
2425 | %{(Vptr (shift_pointer_n (bitsize_of_intsize sz) p2' (sizeof ty) i))} @conj try @refl |
---|
2426 | @vptr_eq whd in match (pointer_translation ??); |
---|
2427 | cases (E b1') in Hembed; |
---|
2428 | [ 1: normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) |
---|
2429 | | 2: * #block #offset normalize nodelta #Heq destruct (Heq) |
---|
2430 | whd in match (shift_pointer_n ????); |
---|
2431 | cut (offset_plus (shift_offset_n (bitsize_of_intsize sz) o1' (sizeof ty) i) offset = |
---|
2432 | (shift_offset_n (bitsize_of_intsize sz) (mk_offset (addition_n ? (offv o1') (offv offset))) (sizeof ty) i)) |
---|
2433 | [ 1: whd in match (offset_plus ??); |
---|
2434 | whd in match (shift_offset_n ????) in ⊢ (??%%); |
---|
2435 | >commutative_addition_n >associative_addition_n |
---|
2436 | <(commutative_addition_n … (offv offset) (offv o1')) @refl ] |
---|
2437 | #Heq >Heq @refl ] |
---|
2438 | ] |
---|
2439 | | 3: whd in match (sem_add ????); whd in match (sem_add ????); normalize nodelta |
---|
2440 | cases (classify_add ty1 ty2) normalize nodelta |
---|
2441 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2442 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2443 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2444 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2445 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2446 | #Heq destruct (Heq) |
---|
2447 | /3 by ex_intro, conj, vfloat_eq/ |
---|
2448 | | 4: whd in match (sem_add ????); whd in match (sem_add ????); normalize nodelta |
---|
2449 | cases (classify_add ty1 ty2) normalize nodelta |
---|
2450 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2451 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2452 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2453 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2454 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2455 | @eq_bv_elim |
---|
2456 | [ 1: normalize nodelta #Heq1 #Heq2 destruct /3 by ex_intro, conj, vnull_eq/ |
---|
2457 | | 2: #_ normalize nodelta #Habsurd destruct (Habsurd) ] |
---|
2458 | | 5: whd in match (sem_add ????); whd in match (sem_add ????); normalize nodelta |
---|
2459 | cases (classify_add ty1 ty2) normalize nodelta |
---|
2460 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2461 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2462 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2463 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2464 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2465 | #Heq destruct (Heq) |
---|
2466 | %{(Vptr (shift_pointer_n (bitsize_of_intsize sz') p2 (sizeof ty) i'))} @conj try @refl |
---|
2467 | @vptr_eq whd in match (pointer_translation ??) in Hembed ⊢ %; |
---|
2468 | elim p1 in Hembed; #b1 #o1 normalize nodelta |
---|
2469 | cases (E b1) |
---|
2470 | [ 1: normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) |
---|
2471 | | 2: * #block #offset normalize nodelta #Heq destruct (Heq) |
---|
2472 | whd in match (shift_pointer_n ????); |
---|
2473 | whd in match (shift_offset_n ????) in ⊢ (??%%); |
---|
2474 | whd in match (offset_plus ??); |
---|
2475 | whd in match (offset_plus ??); |
---|
2476 | >commutative_addition_n >(associative_addition_n … offset_size ?) |
---|
2477 | >(commutative_addition_n ? (offv offset) ?) @refl |
---|
2478 | ] |
---|
2479 | ] qed. |
---|
2480 | |
---|
2481 | lemma fold_right2_O : ∀A,B,C,f,init,vec1,vec2. |
---|
2482 | fold_right2_i A B C f init 0 vec1 vec2 = init. |
---|
2483 | #A #B #C #f #init #vec1 #vec2 |
---|
2484 | >(Vector_O … vec1) |
---|
2485 | >(Vector_O … vec2) |
---|
2486 | normalize @refl |
---|
2487 | qed. |
---|
2488 | |
---|
2489 | lemma map_unfold : ∀A,B:Type[0].∀n,f,hd.∀tl:Vector A n. |
---|
2490 | map A B (S n) f (hd ::: tl) = (f hd) ::: (map A B n f tl). |
---|
2491 | #A #B #n #f #hd #tl normalize @refl qed. |
---|
2492 | |
---|
2493 | lemma replicate_unfold : ∀A,sz,elt. |
---|
2494 | replicate A (S sz) elt = elt ::: (replicate A sz elt). |
---|
2495 | // qed. |
---|
2496 | |
---|
2497 | axiom subtraction_delta : ∀x,y,delta. |
---|
2498 | subtraction offset_size |
---|
2499 | (addition_n offset_size x delta) |
---|
2500 | (addition_n offset_size y delta) = |
---|
2501 | subtraction offset_size x y. |
---|
2502 | (* |
---|
2503 | elim offset_size |
---|
2504 | [ 1: #x #y #delta |
---|
2505 | >(BitVector_O … x) |
---|
2506 | >(BitVector_O … y) |
---|
2507 | >(BitVector_O … delta) |
---|
2508 | // |
---|
2509 | |
---|
2510 | | 2: #sz elim sz (* I would like to do this elim much later, but it fails. *) |
---|
2511 | [ 1: #Hind #x #y #delta |
---|
2512 | lapply (BitVector_Sn … x) |
---|
2513 | lapply (BitVector_Sn … y) |
---|
2514 | lapply (BitVector_Sn … delta) |
---|
2515 | * #delta_hd * #delta_tl #Heq_delta |
---|
2516 | * #y_hd * #y_tl #Heq_y |
---|
2517 | * #x_hd * #x_tl #Heq_x |
---|
2518 | destruct |
---|
2519 | whd in match (addition_n ? (x_hd:::x_tl) ?); |
---|
2520 | whd in match (addition_n ? (y_hd:::y_tl) ?); |
---|
2521 | >add_with_carries_unfold |
---|
2522 | >add_with_carries_unfold |
---|
2523 | >fold_right2_i_unfold |
---|
2524 | >fold_right2_i_unfold |
---|
2525 | <add_with_carries_unfold |
---|
2526 | <add_with_carries_unfold |
---|
2527 | cases (add_with_carries 0 x_tl delta_tl false); |
---|
2528 | #x_delta_res #x_delta_flags normalize nodelta |
---|
2529 | cases (add_with_carries 0 y_tl delta_tl false) |
---|
2530 | #y_delta_res #y_delta_flags normalize nodelta |
---|
2531 | >(BitVector_O … x_delta_flags) |
---|
2532 | >(BitVector_O … y_delta_flags) |
---|
2533 | >(BitVector_O … x_delta_res) |
---|
2534 | >(BitVector_O … y_delta_res) |
---|
2535 | normalize nodelta |
---|
2536 | whd in match (xorb ? false) in ⊢ (??(??%%)?); normalize nodelta |
---|
2537 | whd in match (subtraction ???) in ⊢ (??%%); |
---|
2538 | >add_with_carries_unfold |
---|
2539 | whd in match (two_complement_negation ??); |
---|
2540 | whd in match (negation_bv ??); |
---|
2541 | whd in match (zero ?); |
---|
2542 | >add_with_carries_unfold |
---|
2543 | >fold_right2_i_unfold >fold_right2_O |
---|
2544 | normalize nodelta |
---|
2545 | >fold_right2_i_unfold >fold_right2_O |
---|
2546 | normalize nodelta |
---|
2547 | cases x_hd cases y_hd cases delta_hd normalize try @refl |
---|
2548 | | 2: #sz' #HindA #HindB #x #y #delta |
---|
2549 | lapply (BitVector_Sn … x) |
---|
2550 | lapply (BitVector_Sn … y) |
---|
2551 | lapply (BitVector_Sn … delta) |
---|
2552 | * #delta_hd * #delta_tl #Heq_delta |
---|
2553 | * #y_hd * #y_tl #Heq_y |
---|
2554 | * #x_hd * #x_tl #Heq_x |
---|
2555 | lapply (HindB x_tl y_tl delta_tl) |
---|
2556 | destruct |
---|
2557 | whd in match (addition_n ???) in ⊢ ((??(??%%)?) → ?); #Hind0 |
---|
2558 | whd in match (addition_n ? (x_hd:::x_tl) ?); |
---|
2559 | whd in match (addition_n ? (y_hd:::y_tl) ?); |
---|
2560 | >add_with_carries_unfold |
---|
2561 | >add_with_carries_unfold |
---|
2562 | >fold_right2_i_unfold |
---|
2563 | >fold_right2_i_unfold |
---|
2564 | <add_with_carries_unfold |
---|
2565 | <add_with_carries_unfold |
---|
2566 | cases (add_with_carries (S sz') x_tl delta_tl false) in Hind0; |
---|
2567 | #x_delta_res #x_delta_flags normalize nodelta |
---|
2568 | cases (add_with_carries (S sz') y_tl delta_tl false) |
---|
2569 | #y_delta_res #y_delta_flags normalize nodelta |
---|
2570 | elim (BitVector_Sn … x_delta_flags) #hd_x_delta * #tl_x_delta #Heq_xdelta >Heq_xdelta |
---|
2571 | elim (BitVector_Sn … y_delta_flags) #hd_y_delta * #tl_y_delta #Heq_ydelta >Heq_ydelta |
---|
2572 | #Heq_ind |
---|
2573 | normalize nodelta |
---|
2574 | cases hd_x_delta cases hd_y_delta normalize nodelta |
---|
2575 | whd in match (subtraction ???) in ⊢ (??%%); |
---|
2576 | whd in match (two_complement_negation ??) in ⊢ (??%%); |
---|
2577 | whd in match (negation_bv ??) in ⊢ (??%%); |
---|
2578 | whd in match (zero (S (S sz'))); |
---|
2579 | >add_with_carries_unfold in match (\fst (add_with_carries ????)) in ⊢ (??%?); |
---|
2580 | >add_with_carries_unfold in match (\fst (add_with_carries ????)) in ⊢ (???%); |
---|
2581 | lapply (add_with_carries_unfold |
---|
2582 | (S (S sz')) |
---|
2583 | ((¬y_hd):::map bool bool (S sz') notb y_tl) |
---|
2584 | (false:::replicate bool (S sz') false) |
---|
2585 | true) #Heq >Heq |
---|
2586 | >fold_right2_i_unfold >fold_right2_i_unfold |
---|
2587 | >add_with_carries_unfold in ⊢ (???(match (???%?) with [ _ ⇒ ? ] )); |
---|
2588 | |
---|
2589 | *) |
---|
2590 | |
---|
2591 | (* Offset subtraction is invariant by translation *) |
---|
2592 | lemma sub_offset_translation : |
---|
2593 | ∀n,x,y,delta. sub_offset n x y = sub_offset n (offset_plus x delta) (offset_plus y delta). |
---|
2594 | #n #x #y #delta |
---|
2595 | whd in match (sub_offset ???) in ⊢ (??%%); |
---|
2596 | elim x #x' elim y #y' elim delta #delta' |
---|
2597 | whd in match (offset_plus ??); |
---|
2598 | whd in match (offset_plus ??); |
---|
2599 | >subtraction_delta @refl |
---|
2600 | qed. |
---|
2601 | |
---|
2602 | (* value_eq lifts to addition *) |
---|
2603 | lemma sub_value_eq : |
---|
2604 | ∀E,v1,v2,v1',v2',ty1,ty2. |
---|
2605 | value_eq E v1 v2 → |
---|
2606 | value_eq E v1' v2' → |
---|
2607 | ∀r1. (sem_sub v1 ty1 v1' ty2=Some val r1→ |
---|
2608 | ∃r2:val.sem_sub v2 ty1 v2' ty2=Some val r2∧value_eq E r1 r2). |
---|
2609 | #E #v1 #v2 #v1' #v2' #ty1 #ty2 #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2610 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2611 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2612 | [ 1: whd in match (sem_sub ????); normalize nodelta |
---|
2613 | cases (classify_sub ty1 ty2) normalize nodelta |
---|
2614 | [ 1: #sz #sg | 2: #fsz | 3: #n #ty #sz #sg | 4: #n #sz #sg #ty | 5: #ty1' #ty2' ] |
---|
2615 | #Habsurd destruct (Habsurd) |
---|
2616 | | 2: whd in match (sem_sub ????); whd in match (sem_sub ????); normalize nodelta |
---|
2617 | cases (classify_sub ty1 ty2) normalize nodelta |
---|
2618 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2619 | [ 2,3,5: #Habsurd destruct (Habsurd) ] |
---|
2620 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2621 | [ 1,6: #v' | 2,7: #sz' #i' | 3,8: #f' | 4,9: | 5,10: #p1' #p2' #Hembed' ] |
---|
2622 | [ 1,2,4,5,6,7,8,9,10: #Habsurd destruct (Habsurd) ] |
---|
2623 | @intsize_eq_elim_elim |
---|
2624 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2625 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2626 | #Heq destruct (Heq) |
---|
2627 | /3 by ex_intro, conj, vint_eq/ |
---|
2628 | ] |
---|
2629 | | 3: whd in match (sem_sub ????); whd in match (sem_sub ????); normalize nodelta |
---|
2630 | cases (classify_sub ty1 ty2) normalize nodelta |
---|
2631 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2632 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2633 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2634 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2635 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2636 | #Heq destruct (Heq) |
---|
2637 | /3 by ex_intro, conj, vfloat_eq/ |
---|
2638 | | 4: whd in match (sem_sub ????); whd in match (sem_sub ????); normalize nodelta |
---|
2639 | cases (classify_sub ty1 ty2) normalize nodelta |
---|
2640 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2641 | [ 1,2,5: #Habsurd destruct (Habsurd) ] |
---|
2642 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2643 | [ 1,6: #v' | 2,7: #sz' #i' | 3,8: #f' | 4,9: | 5,10: #p1' #p2' #Hembed' ] |
---|
2644 | [ 1,2,4,5,6,7,9,10: #Habsurd destruct (Habsurd) ] |
---|
2645 | [ 1: @eq_bv_elim [ 1: normalize nodelta #Heq1 #Heq2 destruct /3 by ex_intro, conj, vnull_eq/ |
---|
2646 | | 2: #_ normalize nodelta #Habsurd destruct (Habsurd) ] |
---|
2647 | | 2: #Heq destruct (Heq) /3 by ex_intro, conj, vnull_eq/ ] |
---|
2648 | | 5: whd in match (sem_sub ????); whd in match (sem_sub ????); normalize nodelta |
---|
2649 | cases (classify_sub ty1 ty2) normalize nodelta |
---|
2650 | [ 1: #tsz #tsg | 2: #tfsz | 3: #tn #ty #tsz #tsg | 4: #tn #tsz #tsg #ty | 5: #ty1' #ty2' ] |
---|
2651 | [ 1,2,5: #Habsurd destruct (Habsurd) ] |
---|
2652 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2653 | [ 1,6: #v' | 2,7: #sz' #i' | 3,8: #f' | 4,9: | 5,10: #p1' #p2' #Hembed' ] |
---|
2654 | [ 1,2,4,5,6,7,8,9: #Habsurd destruct (Habsurd) ] |
---|
2655 | #Heq destruct (Heq) |
---|
2656 | [ 1: %{(Vptr (neg_shift_pointer_n (bitsize_of_intsize sz') p2 (sizeof ty) i'))} @conj try @refl |
---|
2657 | @vptr_eq whd in match (pointer_translation ??) in Hembed ⊢ %; |
---|
2658 | elim p1 in Hembed; #b1 #o1 normalize nodelta |
---|
2659 | cases (E b1) |
---|
2660 | [ 1: normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) |
---|
2661 | | 2: * #block #offset normalize nodelta #Heq destruct (Heq) |
---|
2662 | whd in match (offset_plus ??) in ⊢ (??%%); |
---|
2663 | whd in match (neg_shift_pointer_n ????) in ⊢ (??%%); |
---|
2664 | whd in match (neg_shift_offset_n ????) in ⊢ (??%%); |
---|
2665 | whd in match (subtraction) in ⊢ (??%%); normalize nodelta |
---|
2666 | generalize in match (short_multiplication ???); #mult |
---|
2667 | /3 by associative_addition_n, commutative_addition_n, refl/ |
---|
2668 | ] |
---|
2669 | | 2: lapply Heq @eq_block_elim |
---|
2670 | [ 2: #_ normalize nodelta #Habsurd destruct (Habsurd) |
---|
2671 | | 1: #Hpblock1_eq normalize nodelta |
---|
2672 | elim p1 in Hpblock1_eq Hembed Hembed'; #b1 #off1 |
---|
2673 | elim p1' #b1' #off1' whd in ⊢ (% → % → ?); #Hpblock1_eq destruct (Hpblock1_eq) |
---|
2674 | whd in ⊢ ((??%?) → (??%?) → ?); |
---|
2675 | cases (E b1') normalize nodelta |
---|
2676 | [ 1: #Habsurd destruct (Habsurd) ] |
---|
2677 | * #dest_block #dest_off normalize nodelta |
---|
2678 | #Heq_ptr1 #Heq_ptr2 destruct >eq_block_identity normalize nodelta |
---|
2679 | cases (eqb (sizeof tsg) O) normalize nodelta |
---|
2680 | [ 1: #Habsurd destruct (Habsurd) |
---|
2681 | | 2: >(sub_offset_translation 32 off1 off1' dest_off) |
---|
2682 | cases (division_u 31 |
---|
2683 | (sub_offset 32 (offset_plus off1 dest_off) (offset_plus off1' dest_off)) |
---|
2684 | (repr (sizeof tsg))) |
---|
2685 | [ 1: normalize nodelta #Habsurd destruct (Habsurd) |
---|
2686 | | 2: #r1' normalize nodelta #Heq2 destruct (Heq2) |
---|
2687 | /3 by ex_intro, conj, vint_eq/ ] |
---|
2688 | ] ] ] |
---|
2689 | ] qed. |
---|
2690 | |
---|
2691 | |
---|
2692 | lemma mul_value_eq : |
---|
2693 | ∀E,v1,v2,v1',v2',ty1,ty2. |
---|
2694 | value_eq E v1 v2 → |
---|
2695 | value_eq E v1' v2' → |
---|
2696 | ∀r1. (sem_mul v1 ty1 v1' ty2=Some val r1→ |
---|
2697 | ∃r2:val.sem_mul v2 ty1 v2' ty2=Some val r2∧value_eq E r1 r2). |
---|
2698 | #E #v1 #v2 #v1' #v2' #ty1 #ty2 #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2699 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2700 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2701 | [ 1: whd in match (sem_mul ????); normalize nodelta |
---|
2702 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2703 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2704 | #Habsurd destruct (Habsurd) |
---|
2705 | | 2: whd in match (sem_mul ????); whd in match (sem_mul ????); normalize nodelta |
---|
2706 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2707 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2708 | [ 2,3: #Habsurd destruct (Habsurd) ] |
---|
2709 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2710 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2711 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2712 | @intsize_eq_elim_elim |
---|
2713 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2714 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2715 | #Heq destruct (Heq) |
---|
2716 | /3 by ex_intro, conj, vint_eq/ |
---|
2717 | ] |
---|
2718 | | 3: whd in match (sem_mul ????); whd in match (sem_mul ????); normalize nodelta |
---|
2719 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2720 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2721 | [ 1,3: #Habsurd destruct (Habsurd) ] |
---|
2722 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2723 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2724 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2725 | #Heq destruct (Heq) |
---|
2726 | /3 by ex_intro, conj, vfloat_eq/ |
---|
2727 | | 4: whd in match (sem_mul ????); whd in match (sem_mul ????); normalize nodelta |
---|
2728 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2729 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2730 | #Habsurd destruct (Habsurd) |
---|
2731 | | 5: whd in match (sem_mul ????); whd in match (sem_mul ????); normalize nodelta |
---|
2732 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2733 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2734 | #Habsurd destruct (Habsurd) |
---|
2735 | ] qed. |
---|
2736 | |
---|
2737 | lemma div_value_eq : |
---|
2738 | ∀E,v1,v2,v1',v2',ty1,ty2. |
---|
2739 | value_eq E v1 v2 → |
---|
2740 | value_eq E v1' v2' → |
---|
2741 | ∀r1. (sem_div v1 ty1 v1' ty2=Some val r1→ |
---|
2742 | ∃r2:val.sem_div v2 ty1 v2' ty2=Some val r2∧value_eq E r1 r2). |
---|
2743 | #E #v1 #v2 #v1' #v2' #ty1 #ty2 #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2744 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2745 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2746 | [ 1: whd in match (sem_div ????); normalize nodelta |
---|
2747 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2748 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2749 | #Habsurd destruct (Habsurd) |
---|
2750 | | 2: whd in match (sem_div ????); whd in match (sem_div ????); normalize nodelta |
---|
2751 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2752 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2753 | [ 2,3: #Habsurd destruct (Habsurd) ] |
---|
2754 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2755 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2756 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2757 | elim sg normalize nodelta |
---|
2758 | @intsize_eq_elim_elim |
---|
2759 | [ 1,3: #_ #Habsurd destruct (Habsurd) |
---|
2760 | | 2,4: #Heq destruct (Heq) normalize nodelta |
---|
2761 | @(match (division_s (bitsize_of_intsize sz') i i') with |
---|
2762 | [ None ⇒ ? |
---|
2763 | | Some bv' ⇒ ? ]) |
---|
2764 | [ 1: normalize #Habsurd destruct (Habsurd) |
---|
2765 | | 2: normalize #Heq destruct (Heq) |
---|
2766 | /3 by ex_intro, conj, vint_eq/ |
---|
2767 | | 3,4: elim sz' in i' i; #i' #i |
---|
2768 | normalize in match (pred_size_intsize ?); |
---|
2769 | generalize in match division_u; #division_u normalize |
---|
2770 | @(match (division_u ???) with |
---|
2771 | [ None ⇒ ? |
---|
2772 | | Some bv ⇒ ?]) normalize nodelta |
---|
2773 | #H destruct (H) |
---|
2774 | /3 by ex_intro, conj, vint_eq/ ] |
---|
2775 | ] |
---|
2776 | | 3: whd in match (sem_div ????); whd in match (sem_div ????); normalize nodelta |
---|
2777 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2778 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2779 | [ 1,3: #Habsurd destruct (Habsurd) ] |
---|
2780 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2781 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2782 | [ 1,2,4,5: #Habsurd destruct (Habsurd) ] |
---|
2783 | #Heq destruct (Heq) |
---|
2784 | /3 by ex_intro, conj, vfloat_eq/ |
---|
2785 | | 4: whd in match (sem_div ????); whd in match (sem_div ????); normalize nodelta |
---|
2786 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2787 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2788 | #Habsurd destruct (Habsurd) |
---|
2789 | | 5: whd in match (sem_div ????); whd in match (sem_div ????); normalize nodelta |
---|
2790 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2791 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2792 | #Habsurd destruct (Habsurd) |
---|
2793 | ] qed. |
---|
2794 | |
---|
2795 | lemma mod_value_eq : |
---|
2796 | ∀E,v1,v2,v1',v2',ty1,ty2. |
---|
2797 | value_eq E v1 v2 → |
---|
2798 | value_eq E v1' v2' → |
---|
2799 | ∀r1. (sem_mod v1 ty1 v1' ty2=Some val r1→ |
---|
2800 | ∃r2:val.sem_mod v2 ty1 v2' ty2=Some val r2∧value_eq E r1 r2). |
---|
2801 | #E #v1 #v2 #v1' #v2' #ty1 #ty2 #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2802 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2803 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2804 | [ 1: whd in match (sem_mod ????); normalize nodelta |
---|
2805 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2806 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2807 | #Habsurd destruct (Habsurd) |
---|
2808 | | 2: whd in match (sem_mod ????); whd in match (sem_mod ????); normalize nodelta |
---|
2809 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2810 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2811 | [ 2,3: #Habsurd destruct (Habsurd) ] |
---|
2812 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2813 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2814 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2815 | elim sg normalize nodelta |
---|
2816 | @intsize_eq_elim_elim |
---|
2817 | [ 1,3: #_ #Habsurd destruct (Habsurd) |
---|
2818 | | 2,4: #Heq destruct (Heq) normalize nodelta |
---|
2819 | @(match (modulus_s (bitsize_of_intsize sz') i i') with |
---|
2820 | [ None ⇒ ? |
---|
2821 | | Some bv' ⇒ ? ]) |
---|
2822 | [ 1: normalize #Habsurd destruct (Habsurd) |
---|
2823 | | 2: normalize #Heq destruct (Heq) |
---|
2824 | /3 by ex_intro, conj, vint_eq/ |
---|
2825 | | 3,4: elim sz' in i' i; #i' #i |
---|
2826 | generalize in match modulus_u; #modulus_u normalize |
---|
2827 | @(match (modulus_u ???) with |
---|
2828 | [ None ⇒ ? |
---|
2829 | | Some bv ⇒ ?]) normalize nodelta |
---|
2830 | #H destruct (H) |
---|
2831 | /3 by ex_intro, conj, vint_eq/ ] |
---|
2832 | ] |
---|
2833 | | 3: whd in match (sem_mod ????); whd in match (sem_mod ????); normalize nodelta |
---|
2834 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2835 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2836 | #Habsurd destruct (Habsurd) |
---|
2837 | | 4: whd in match (sem_mod ????); whd in match (sem_mod ????); normalize nodelta |
---|
2838 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2839 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2840 | #Habsurd destruct (Habsurd) |
---|
2841 | | 5: whd in match (sem_mod ????); whd in match (sem_mod ????); normalize nodelta |
---|
2842 | cases (classify_aop ty1 ty2) normalize nodelta |
---|
2843 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2844 | #Habsurd destruct (Habsurd) |
---|
2845 | ] qed. |
---|
2846 | |
---|
2847 | (* boolean ops *) |
---|
2848 | lemma and_value_eq : |
---|
2849 | ∀E,v1,v2,v1',v2'. |
---|
2850 | value_eq E v1 v2 → |
---|
2851 | value_eq E v1' v2' → |
---|
2852 | ∀r1. (sem_and v1 v1'=Some val r1→ |
---|
2853 | ∃r2:val.sem_and v2 v2'=Some val r2∧value_eq E r1 r2). |
---|
2854 | #E #v1 #v2 #v1' #v2' #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2855 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2856 | [ 2: #sz #i |
---|
2857 | @(value_eq_inversion E … Hvalue_eq2) |
---|
2858 | [ 2: #sz' #i' whd in match (sem_and ??); |
---|
2859 | @intsize_eq_elim_elim |
---|
2860 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2861 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2862 | #Heq destruct (Heq) /3 by ex_intro,conj,vint_eq/ ] |
---|
2863 | ] ] |
---|
2864 | normalize in match (sem_and ??); #arg1 destruct |
---|
2865 | normalize in match (sem_and ??); #arg2 destruct |
---|
2866 | normalize in match (sem_and ??); #arg3 destruct |
---|
2867 | normalize in match (sem_and ??); #arg4 destruct |
---|
2868 | qed. |
---|
2869 | |
---|
2870 | lemma or_value_eq : |
---|
2871 | ∀E,v1,v2,v1',v2'. |
---|
2872 | value_eq E v1 v2 → |
---|
2873 | value_eq E v1' v2' → |
---|
2874 | ∀r1. (sem_or v1 v1'=Some val r1→ |
---|
2875 | ∃r2:val.sem_or v2 v2'=Some val r2∧value_eq E r1 r2). |
---|
2876 | #E #v1 #v2 #v1' #v2' #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2877 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2878 | [ 2: #sz #i |
---|
2879 | @(value_eq_inversion E … Hvalue_eq2) |
---|
2880 | [ 2: #sz' #i' whd in match (sem_or ??); |
---|
2881 | @intsize_eq_elim_elim |
---|
2882 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2883 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2884 | #Heq destruct (Heq) /3 by ex_intro,conj,vint_eq/ ] |
---|
2885 | ] ] |
---|
2886 | normalize in match (sem_or ??); #arg1 destruct |
---|
2887 | normalize in match (sem_or ??); #arg2 destruct |
---|
2888 | normalize in match (sem_or ??); #arg3 destruct |
---|
2889 | normalize in match (sem_or ??); #arg4 destruct |
---|
2890 | qed. |
---|
2891 | |
---|
2892 | lemma xor_value_eq : |
---|
2893 | ∀E,v1,v2,v1',v2'. |
---|
2894 | value_eq E v1 v2 → |
---|
2895 | value_eq E v1' v2' → |
---|
2896 | ∀r1. (sem_xor v1 v1'=Some val r1→ |
---|
2897 | ∃r2:val.sem_xor v2 v2'=Some val r2∧value_eq E r1 r2). |
---|
2898 | #E #v1 #v2 #v1' #v2' #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2899 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2900 | [ 2: #sz #i |
---|
2901 | @(value_eq_inversion E … Hvalue_eq2) |
---|
2902 | [ 2: #sz' #i' whd in match (sem_xor ??); |
---|
2903 | @intsize_eq_elim_elim |
---|
2904 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
2905 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
2906 | #Heq destruct (Heq) /3 by ex_intro,conj,vint_eq/ ] |
---|
2907 | ] ] |
---|
2908 | normalize in match (sem_xor ??); #arg1 destruct |
---|
2909 | normalize in match (sem_xor ??); #arg2 destruct |
---|
2910 | normalize in match (sem_xor ??); #arg3 destruct |
---|
2911 | normalize in match (sem_xor ??); #arg4 destruct |
---|
2912 | qed. |
---|
2913 | |
---|
2914 | lemma shl_value_eq : |
---|
2915 | ∀E,v1,v2,v1',v2'. |
---|
2916 | value_eq E v1 v2 → |
---|
2917 | value_eq E v1' v2' → |
---|
2918 | ∀r1. (sem_shl v1 v1'=Some val r1→ |
---|
2919 | ∃r2:val.sem_shl v2 v2'=Some val r2∧value_eq E r1 r2). |
---|
2920 | #E #v1 #v2 #v1' #v2' #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2921 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2922 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2923 | [ 2: |
---|
2924 | @(value_eq_inversion E … Hvalue_eq2) |
---|
2925 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2926 | [ 2: whd in match (sem_shl ??); |
---|
2927 | cases (lt_u ???) normalize nodelta |
---|
2928 | [ 1: #Heq destruct (Heq) /3 by ex_intro,conj,vint_eq/ |
---|
2929 | | 2: #Habsurd destruct (Habsurd) |
---|
2930 | ] |
---|
2931 | | *: whd in match (sem_shl ??); #Habsurd destruct (Habsurd) ] |
---|
2932 | | *: whd in match (sem_shl ??); #Habsurd destruct (Habsurd) ] |
---|
2933 | qed. |
---|
2934 | |
---|
2935 | lemma shr_value_eq : |
---|
2936 | ∀E,v1,v2,v1',v2',ty,ty'. |
---|
2937 | value_eq E v1 v2 → |
---|
2938 | value_eq E v1' v2' → |
---|
2939 | ∀r1. (sem_shr v1 ty v1' ty'=Some val r1→ |
---|
2940 | ∃r2:val.sem_shr v2 ty v2' ty'=Some val r2∧value_eq E r1 r2). |
---|
2941 | #E #v1 #v2 #v1' #v2' #ty #ty' #Hvalue_eq1 #Hvalue_eq2 #r1 |
---|
2942 | @(value_eq_inversion E … Hvalue_eq1) |
---|
2943 | [ 1: #v | 2: #sz #i | 3: #f | 4: | 5: #p1 #p2 #Hembed ] |
---|
2944 | whd in match (sem_shr ????); whd in match (sem_shr ????); |
---|
2945 | [ 1: cases (classify_aop ty ty') normalize nodelta |
---|
2946 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2947 | #Habsurd destruct (Habsurd) |
---|
2948 | | 2: cases (classify_aop ty ty') normalize nodelta |
---|
2949 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2950 | [ 2,3: #Habsurd destruct (Habsurd) ] |
---|
2951 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
2952 | [ 1: #v' | 2: #sz' #i' | 3: #f' | 4: | 5: #p1' #p2' #Hembed' ] |
---|
2953 | [ 1,3,4,5: #Habsurd destruct (Habsurd) ] |
---|
2954 | elim sg normalize nodelta |
---|
2955 | cases (lt_u ???) normalize nodelta #Heq destruct (Heq) |
---|
2956 | /3 by ex_intro, conj, refl, vint_eq/ |
---|
2957 | | 3: cases (classify_aop ty ty') normalize nodelta |
---|
2958 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2959 | #Habsurd destruct (Habsurd) |
---|
2960 | | 4: cases (classify_aop ty ty') normalize nodelta |
---|
2961 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2962 | #Habsurd destruct (Habsurd) |
---|
2963 | | 5: cases (classify_aop ty ty') normalize nodelta |
---|
2964 | [ 1: #sz #sg | 2: #fsz | 3: #ty1' #ty2' ] |
---|
2965 | #Habsurd destruct (Habsurd) |
---|
2966 | ] qed. |
---|
2967 | |
---|
2968 | lemma monotonic_Zlt_Zsucc: monotonic Z Zlt Zsucc. |
---|
2969 | whd #x #y #Hlt lapply (Zlt_to_Zle … Hlt) #Hle lapply (Zle_to_Zlt … Hle) |
---|
2970 | /3 by monotonic_Zle_Zplus_r, Zle_to_Zlt/ qed. |
---|
2971 | |
---|
2972 | lemma monotonic_Zlt_Zpred: monotonic Z Zlt Zpred. |
---|
2973 | whd #x #y #Hlt lapply (Zlt_to_Zle … Hlt) #Hle lapply (Zle_to_Zlt … Hle) |
---|
2974 | /3 by monotonic_Zle_Zpred, Zle_to_Zlt/ qed. |
---|
2975 | |
---|
2976 | lemma antimonotonic_Zle_Zsucc: ∀x,y. Zsucc x ≤ Zsucc y → x ≤ y. |
---|
2977 | #x #y #H lapply (monotonic_Zle_Zpred … H) >Zpred_Zsucc >Zpred_Zsucc #H @H |
---|
2978 | qed. |
---|
2979 | |
---|
2980 | (* |
---|
2981 | lemma antimonotonic_Zle_Zpred: ∀x,y. Zpred x ≤ Zpred y → x ≤ y. |
---|
2982 | #x #y #H lapply (monotonic_Zle_Zsucc … H) >Zsucc_Zpred >Zsucc_Zpred #H @H |
---|
2983 | qed. *) |
---|
2984 | |
---|
2985 | lemma antimonotonic_Zlt_Zsucc: ∀x,y. Zsucc x < Zsucc y → x < y. |
---|
2986 | #x #y #Hlt lapply (Zle_to_Zlt … (antimonotonic_Zle_Zsucc … (Zlt_to_Zle … Hlt))) |
---|
2987 | >Zpred_Zsucc #H @H |
---|
2988 | qed. |
---|
2989 | |
---|
2990 | lemma antimonotonic_Zlt_Zpred: ∀x,y. Zpred x < Zpred y → x < y. |
---|
2991 | #x #y #Hlt lapply (monotonic_Zlt_Zsucc … Hlt) >Zsucc_Zpred >Zsucc_Zpred #H @H |
---|
2992 | qed. |
---|
2993 | |
---|
2994 | lemma not_Zlt_to_Zltb_false : ∀n,m. n ≮ m → Zltb n m = false. |
---|
2995 | #n #m #Hnlt |
---|
2996 | @Zltb_elim_Type0 |
---|
2997 | [ 1: elim Hnlt #H0 #H1 @(False_ind … (H0 H1)) |
---|
2998 | | 2: #_ @refl ] qed. |
---|
2999 | |
---|
3000 | lemma Zplus_eq_eq : ∀x,y,delta:Z. eqZb x y = eqZb (x + delta) (y + delta). |
---|
3001 | #x #y #delta |
---|
3002 | @eqZb_elim |
---|
3003 | [ 1: #Heq >Heq >eqZb_z_z @refl |
---|
3004 | | 2: * #Hneq cut (x+delta ≠ y + delta) |
---|
3005 | [ 1: % #H cut (x = y) [ 1: @(injective_Zplus_l delta) @H ] #H' @Hneq @H' ] |
---|
3006 | #H @sym_eq @eqZb_false @H ] qed. |
---|
3007 | |
---|
3008 | lemma Zltb_Zsucc : ∀x,y. Zltb x y = Zltb (Zsucc x) (Zsucc y). |
---|
3009 | #x #y |
---|
3010 | @(Zltb_elim_Type0 … x y) |
---|
3011 | [ 1: #Hlt @sym_eq lapply (monotonic_Zlt_Zsucc … Hlt) #Hlt' @(Zlt_to_Zltb_true … Hlt') |
---|
3012 | | 2: #Hnlt @sym_eq @not_Zlt_to_Zltb_false % #Hltsucc |
---|
3013 | lapply (antimonotonic_Zlt_Zsucc … Hltsucc) #Hlt |
---|
3014 | @(absurd … Hlt Hnlt) |
---|
3015 | ] qed. |
---|
3016 | |
---|
3017 | lemma Zltb_Zpred : ∀x,y. Zltb x y = Zltb (Zpred x) (Zpred y). |
---|
3018 | #x #y |
---|
3019 | @(Zltb_elim_Type0 … x y) |
---|
3020 | [ 1: #Hlt @sym_eq |
---|
3021 | lapply (monotonic_Zlt_Zpred … Hlt) #Hlt' @(Zlt_to_Zltb_true … Hlt') |
---|
3022 | | 2: #Hnlt @sym_eq @not_Zlt_to_Zltb_false % #Hltsucc |
---|
3023 | lapply (antimonotonic_Zlt_Zpred … Hltsucc) #Hlt |
---|
3024 | @(absurd … Hlt Hnlt) |
---|
3025 | ] qed. |
---|
3026 | |
---|
3027 | lemma Zplus_pos_lt_lt : ∀x,y.∀delta. Zltb x y = Zltb (x + (pos delta)) (y + (pos delta)). |
---|
3028 | #x #y #delta @(pos_elim … delta) |
---|
3029 | [ 1: >(sym_Zplus x) >(sym_Zplus y) <Zsucc_Zplus_pos_O <Zsucc_Zplus_pos_O |
---|
3030 | >Zltb_Zsucc @refl |
---|
3031 | | 2: #n #Hind >Hind >Zltb_Zsucc |
---|
3032 | >(sym_Zplus x) >(sym_Zplus y) |
---|
3033 | <Zplus_Zsucc <Zplus_Zsucc |
---|
3034 | >(sym_Zplus ? x) >(sym_Zplus ? y) |
---|
3035 | normalize in match (Zsucc ?); @refl |
---|
3036 | ] qed. |
---|
3037 | |
---|
3038 | lemma Zplus_neg_lt_lt : ∀x,y.∀delta. Zltb x y = Zltb (x + (neg delta)) (y + (neg delta)). |
---|
3039 | #x #y #delta @(pos_elim … delta) |
---|
3040 | [ 1: >(sym_Zplus x) >(sym_Zplus y) <Zpred_Zplus_neg_O <Zpred_Zplus_neg_O |
---|
3041 | >Zltb_Zpred @refl |
---|
3042 | | 2: #n #Hind >Hind >Zltb_Zpred |
---|
3043 | >(sym_Zplus x) >(sym_Zplus y) |
---|
3044 | <Zplus_Zpred <Zplus_Zpred |
---|
3045 | >(sym_Zplus ? x) >(sym_Zplus ? y) |
---|
3046 | normalize in match (Zpred ?); @refl |
---|
3047 | ] qed. |
---|
3048 | |
---|
3049 | (* I would not be surprised for a simpler proof that mine to exist. *) |
---|
3050 | lemma Zplus_lt_lt : ∀x,y,delta:Z. Zltb x y = Zltb (x + delta) (y + delta). |
---|
3051 | #x #y #delta |
---|
3052 | cases delta |
---|
3053 | [ 1: >Zplus_z_OZ >Zplus_z_OZ @refl |
---|
3054 | | 2: #p @Zplus_pos_lt_lt |
---|
3055 | | 3: #p @Zplus_neg_lt_lt |
---|
3056 | ] qed. |
---|
3057 | |
---|
3058 | (* offset equality is invariant by translation *) |
---|
3059 | lemma eq_offset_translation : ∀delta,x,y. cmp_offset Ceq (offset_plus x delta) (offset_plus y delta) = cmp_offset Ceq x y. |
---|
3060 | #delta #x #y normalize |
---|
3061 | elim delta #zdelta @sym_eq @Zplus_eq_eq qed. |
---|
3062 | |
---|
3063 | lemma neq_offset_translation : ∀delta,x,y. cmp_offset Cne (offset_plus x delta) (offset_plus y delta) = cmp_offset Cne x y. |
---|
3064 | #delta #x #y normalize |
---|
3065 | elim delta #zdelta @sym_eq <Zplus_eq_eq @refl qed. |
---|
3066 | |
---|
3067 | lemma cmp_offset_translation : ∀op,delta,x,y. |
---|
3068 | cmp_offset op x y = cmp_offset op (offset_plus x delta) (offset_plus y delta). |
---|
3069 | * #delta #x #y normalize |
---|
3070 | elim delta #zdelta |
---|
3071 | [ 1: @Zplus_eq_eq |
---|
3072 | | 2: <Zplus_eq_eq @refl |
---|
3073 | | 3: @Zplus_lt_lt |
---|
3074 | | 4: <Zplus_lt_lt @refl |
---|
3075 | | 5: @Zplus_lt_lt |
---|
3076 | | 6: <Zplus_lt_lt @refl |
---|
3077 | qed. |
---|
3078 | |
---|
3079 | lemma cmp_value_eq : |
---|
3080 | ∀E,v1,v2,v1',v2',ty,ty',m1,m2. |
---|
3081 | value_eq E v1 v2 → |
---|
3082 | value_eq E v1' v2' → |
---|
3083 | memory_inj E m1 m2 → |
---|
3084 | ∀op,r1. (sem_cmp op v1 ty v1' ty' m1 = Some val r1→ |
---|
3085 | ∃r2:val.sem_cmp op v2 ty v2' ty' m2 = Some val r2∧value_eq E r1 r2). |
---|
3086 | #E #v1 #v2 #v1' #v2' #ty #ty' #m1 #m2 #Hvalue_eq1 #Hvalue_eq2 #Hinj #op #r1 |
---|
3087 | elim m1 in Hinj; #contmap1 #nextblock1 #Hnextblock1 elim m2 #contmap2 #nextblock2 #Hnextblock2 #Hinj |
---|
3088 | whd in match (sem_cmp ??????) in ⊢ ((??%?) → %); |
---|
3089 | cases (classify_cmp ty ty') normalize nodelta |
---|
3090 | [ 1: #tsz #tsg |
---|
3091 | @(value_eq_inversion E … Hvalue_eq1) normalize nodelta |
---|
3092 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
3093 | | 3: #f #Habsurd destruct (Habsurd) |
---|
3094 | | 4: #Habsurd destruct (Habsurd) |
---|
3095 | | 5: #p1 #p2 #Hembed #Habsurd destruct (Habsurd) ] |
---|
3096 | #sz #i |
---|
3097 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
3098 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
3099 | | 3: #f #Habsurd destruct (Habsurd) |
---|
3100 | | 4: #Habsurd destruct (Habsurd) |
---|
3101 | | 5: #p1 #p2 #Hembed #Habsurd destruct (Habsurd) ] |
---|
3102 | #sz' #i' cases tsg normalize nodelta |
---|
3103 | @intsize_eq_elim_elim |
---|
3104 | [ 1,3: #Hneq #Habsurd destruct (Habsurd) |
---|
3105 | | 2,4: #Heq destruct (Heq) normalize nodelta |
---|
3106 | #Heq destruct (Heq) |
---|
3107 | [ 1: cases (cmp_int ????) whd in match (of_bool ?); |
---|
3108 | | 2: cases (cmpu_int ????) whd in match (of_bool ?); ] |
---|
3109 | /3 by ex_intro, conj, vint_eq/ ] |
---|
3110 | | 3: #fsz |
---|
3111 | @(value_eq_inversion E … Hvalue_eq1) normalize nodelta |
---|
3112 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
3113 | | 2: #sz #i #Habsurd destruct (Habsurd) |
---|
3114 | | 4: #Habsurd destruct (Habsurd) |
---|
3115 | | 5: #p1 #p2 #Hembed #Habsurd destruct (Habsurd) ] |
---|
3116 | #f |
---|
3117 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
3118 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
3119 | | 2: #sz #i #Habsurd destruct (Habsurd) |
---|
3120 | | 4: #Habsurd destruct (Habsurd) |
---|
3121 | | 5: #p1 #p2 #Hembed #Habsurd destruct (Habsurd) ] |
---|
3122 | #f' |
---|
3123 | #Heq destruct (Heq) cases (Fcmp op f f') |
---|
3124 | /3 by ex_intro, conj, vint_eq/ |
---|
3125 | | 4: #ty1 #ty2 #Habsurd destruct (Habsurd) |
---|
3126 | | 2: #optn #typ |
---|
3127 | @(value_eq_inversion E … Hvalue_eq1) normalize nodelta |
---|
3128 | [ 1: #v #Habsurd destruct (Habsurd) |
---|
3129 | | 2: #sz #i #Habsurd destruct (Habsurd) |
---|
3130 | | 3: #f #Habsurd destruct (Habsurd) |
---|
3131 | | 5: #p1 #p2 #Hembed ] |
---|
3132 | @(value_eq_inversion E … Hvalue_eq2) normalize nodelta |
---|
3133 | [ 1,6: #v #Habsurd destruct (Habsurd) |
---|
3134 | | 2,7: #sz #i #Habsurd destruct (Habsurd) |
---|
3135 | | 3,8: #f #Habsurd destruct (Habsurd) |
---|
3136 | | 5,10: #p1' #p2' #Hembed' ] |
---|
3137 | [ 2,3: cases op whd in match (sem_cmp_mismatch ?); |
---|
3138 | #Heq destruct (Heq) |
---|
3139 | [ 1,3: %{Vfalse} @conj try @refl @vint_eq |
---|
3140 | | 2,4: %{Vtrue} @conj try @refl @vint_eq ] |
---|
3141 | | 4: cases op whd in match (sem_cmp_match ?); |
---|
3142 | #Heq destruct (Heq) |
---|
3143 | [ 2,4: %{Vfalse} @conj try @refl @vint_eq |
---|
3144 | | 1,3: %{Vtrue} @conj try @refl @vint_eq ] ] |
---|
3145 | lapply (mi_valid_pointers … Hinj p1' p2') |
---|
3146 | lapply (mi_valid_pointers … Hinj p1 p2) |
---|
3147 | cases (valid_pointer (mk_mem ???) p1') |
---|
3148 | [ 2: #_ #_ >commutative_andb normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) ] |
---|
3149 | cases (valid_pointer (mk_mem ???) p1) |
---|
3150 | [ 2: #_ #_ normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) ] |
---|
3151 | #H1 #H2 lapply (H1 (refl ??) Hembed) #Hvalid1 lapply (H2 (refl ??) Hembed') #Hvalid2 |
---|
3152 | >Hvalid1 >Hvalid2 normalize nodelta -H1 -H2 |
---|
3153 | elim p1 in Hembed; #b1 #o1 |
---|
3154 | elim p1' in Hembed'; #b1' #o1' |
---|
3155 | whd in match (pointer_translation ??); |
---|
3156 | whd in match (pointer_translation ??); |
---|
3157 | @(eq_block_elim … b1 b1') |
---|
3158 | [ 1: #Heq destruct (Heq) |
---|
3159 | cases (E b1') normalize nodelta |
---|
3160 | [ 1: #Habsurd destruct (Habsurd) ] |
---|
3161 | * #eb1' #eo1' normalize nodelta |
---|
3162 | #Heq1 #Heq2 #Heq3 destruct |
---|
3163 | >eq_block_identity normalize nodelta |
---|
3164 | <cmp_offset_translation |
---|
3165 | cases (cmp_offset ???) normalize nodelta |
---|
3166 | /3 by ex_intro, conj, vint_eq/ |
---|
3167 | | 2: #Hneq lapply (mi_disjoint … Hinj b1 b1') |
---|
3168 | cases (E b1') [ 1: #_ normalize nodelta #Habsurd destruct (Habsurd) ] |
---|
3169 | * #eb1 #eo1 |
---|
3170 | cases (E b1) [ 1: #_ normalize nodelta #_ #Habsurd destruct (Habsurd) ] |
---|
3171 | * #eb1' #eo1' normalize nodelta #H #Heq1 #Heq2 destruct |
---|
3172 | lapply (H ???? Hneq (refl ??) (refl ??)) |
---|
3173 | #Hneq_block >(neq_block_eq_block_false … Hneq_block) normalize nodelta |
---|
3174 | elim op whd in match (sem_cmp_mismatch ?); #Heq destruct (Heq) |
---|
3175 | /3 by ex_intro, conj, vint_eq/ |
---|
3176 | ] |
---|
3177 | ] qed. |
---|
3178 | |
---|
3179 | (* Commutation result for binary operators. *) |
---|
3180 | lemma binary_operation_value_eq : |
---|
3181 | ∀E,op,v1,v2,v1',v2',ty1,ty2,m1,m2. |
---|
3182 | value_eq E v1 v2 → |
---|
3183 | value_eq E v1' v2' → |
---|
3184 | memory_inj E m1 m2 → |
---|
3185 | ∀r1. |
---|
3186 | sem_binary_operation op v1 ty1 v1' ty2 m1 = Some ? r1 → |
---|
3187 | ∃r2.sem_binary_operation op v2 ty1 v2' ty2 m2 = Some ? r2 ∧ value_eq E r1 r2. |
---|
3188 | #E #op #v1 #v2 #v1' #v2' #ty1 #ty2 #m1 #m2 #Hvalue_eq1 #Hvalue_eq2 #Hinj #r1 |
---|
3189 | cases op |
---|
3190 | whd in match (sem_binary_operation ??????); |
---|
3191 | whd in match (sem_binary_operation ??????); |
---|
3192 | [ 1: @add_value_eq try assumption |
---|
3193 | | 2: @sub_value_eq try assumption |
---|
3194 | | 3: @mul_value_eq try assumption |
---|
3195 | | 4: @div_value_eq try assumption |
---|
3196 | | 5: @mod_value_eq try assumption |
---|
3197 | | 6: @and_value_eq try assumption |
---|
3198 | | 7: @or_value_eq try assumption |
---|
3199 | | 8: @xor_value_eq try assumption |
---|
3200 | | 9: @shl_value_eq try assumption |
---|
3201 | | 10: @shr_value_eq try assumption |
---|
3202 | | *: @cmp_value_eq try assumption |
---|
3203 | ] qed. |
---|
3204 | |
---|
3205 | lemma cast_value_eq : |
---|
3206 | ∀E,m1,m2,v1,v2. (* memory_inj E m1 m2 → *) value_eq E v1 v2 → |
---|
3207 | ∀ty,cast_ty,res. exec_cast m1 v1 ty cast_ty = OK ? res → |
---|
3208 | ∃res'. exec_cast m2 v2 ty cast_ty = OK ? res' ∧ value_eq E res res'. |
---|
3209 | #E #m1 #m2 #v1 #v2 (* #Hmemory_inj *) #Hvalue_eq #ty #cast_ty #res |
---|
3210 | @(value_eq_inversion … Hvalue_eq) |
---|
3211 | [ 1: #v normalize #Habsurd destruct (Habsurd) |
---|
3212 | | 2: #vsz #vi whd in match (exec_cast ????); |
---|
3213 | cases ty |
---|
3214 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ptrty | 5: #arrayty #n | 6: #tl #retty | 7: #id #fl | 8: #id #fl | 9: #comptrty ] |
---|
3215 | normalize nodelta |
---|
3216 | [ 1,3,7,8,9: #Habsurd destruct (Habsurd) |
---|
3217 | | 2: @intsize_eq_elim_elim |
---|
3218 | [ 1: #Hneq #Habsurd destruct (Habsurd) |
---|
3219 | | 2: #Heq destruct (Heq) normalize nodelta |
---|
3220 | cases cast_ty |
---|
3221 | [ 1: | 2: #csz #csg | 3: #cfl | 4: #cptrty | 5: #carrayty #cn |
---|
3222 | | 6: #ctl #cretty | 7: #cid #cfl | 8: #cid #cfl | 9: #ccomptrty ] |
---|
3223 | normalize nodelta |
---|
3224 | [ 1,7,8,9: #Habsurd destruct (Habsurd) |
---|
3225 | | 2: #Heq destruct (Heq) /3 by ex_intro, conj, vint_eq/ |
---|
3226 | | 3: #Heq destruct (Heq) /3 by ex_intro, conj, vfloat_eq/ |
---|
3227 | | 4,5,6: whd in match (try_cast_null ?????); normalize nodelta |
---|
3228 | @eq_bv_elim |
---|
3229 | [ 1,3,5: #Heq destruct (Heq) >eq_intsize_identity normalize nodelta |
---|
3230 | whd in match (m_bind ?????); |
---|
3231 | #Heq destruct (Heq) /3 by ex_intro, conj, vnull_eq/ |
---|
3232 | | 2,4,6: #Hneq >eq_intsize_identity normalize nodelta |
---|
3233 | whd in match (m_bind ?????); |
---|
3234 | #Habsurd destruct (Habsurd) ] ] |
---|
3235 | ] |
---|
3236 | | 4,5,6: whd in match (try_cast_null ?????); normalize nodelta |
---|
3237 | @eq_bv_elim |
---|
3238 | [ 1,3,5: #Heq destruct (Heq) normalize nodelta |
---|
3239 | whd in match (m_bind ?????); #Habsurd destruct (Habsurd) |
---|
3240 | | 2,4,6: #Hneq normalize nodelta |
---|
3241 | whd in match (m_bind ?????); #Habsurd destruct (Habsurd) ] |
---|
3242 | ] |
---|
3243 | | 3: #f whd in match (exec_cast ????); |
---|
3244 | cases ty |
---|
3245 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ptrty | 5: #arrayty #n |
---|
3246 | | 6: #tl #retty | 7: #id #fl | 8: #id #fl | 9: #comptrty ] |
---|
3247 | normalize nodelta |
---|
3248 | [ 1,2,4,5,6,7,8,9: #Habsurd destruct (Habsurd) ] |
---|
3249 | cases cast_ty |
---|
3250 | [ 1: | 2: #csz #csg | 3: #cfl | 4: #cptrty | 5: #carrayty #cn |
---|
3251 | | 6: #ctl #cretty | 7: #cid #cfl | 8: #cid #cfl | 9: #ccomptrty ] |
---|
3252 | normalize nodelta |
---|
3253 | [ 1,4,5,6,7,8,9: #Habsurd destruct (Habsurd) ] |
---|
3254 | #Heq destruct (Heq) |
---|
3255 | [ 1: /3 by ex_intro, conj, vint_eq/ |
---|
3256 | | 2: /3 by ex_intro, conj, vfloat_eq/ ] |
---|
3257 | | 4: whd in match (exec_cast ????); |
---|
3258 | cases ty |
---|
3259 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ptrty | 5: #arrayty #n |
---|
3260 | | 6: #tl #retty | 7: #id #fl | 8: #id #fl | 9: #comptrty ] |
---|
3261 | normalize |
---|
3262 | [ 1,2,3,7,8,9: #Habsurd destruct (Habsurd) ] |
---|
3263 | cases cast_ty normalize nodelta |
---|
3264 | [ 1,10,19: #Habsurd destruct (Habsurd) |
---|
3265 | | 2,11,20: #csz #csg #Habsurd destruct (Habsurd) |
---|
3266 | | 3,12,21: #cfl #Habsurd destruct (Habsurd) |
---|
3267 | | 4,13,22: #cptrty #Heq destruct (Heq) /3 by ex_intro, conj, vnull_eq/ |
---|
3268 | | 5,14,23: #carrayty #cn #Heq destruct (Heq) /3 by ex_intro, conj, vnull_eq/ |
---|
3269 | | 6,15,24: #ctl #cretty #Heq destruct (Heq) /3 by ex_intro, conj, vnull_eq/ |
---|
3270 | | 7,16,25: #cid #cfl #Habsurd destruct (Habsurd) |
---|
3271 | | 8,17,26: #cid #cfl #Habsurd destruct (Habsurd) |
---|
3272 | | 9,18,27: #ccomptrty #Habsurd destruct (Habsurd) ] |
---|
3273 | | 5: #p1 #p2 #Hembed whd in match (exec_cast ????); |
---|
3274 | cases ty |
---|
3275 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ptrty | 5: #arrayty #n |
---|
3276 | | 6: #tl #retty | 7: #id #fl | 8: #id #fl | 9: #comptrty ] |
---|
3277 | normalize |
---|
3278 | [ 1,2,3,7,8,9: #Habsurd destruct (Habsurd) ] |
---|
3279 | cases cast_ty normalize nodelta |
---|
3280 | [ 1,10,19: #Habsurd destruct (Habsurd) |
---|
3281 | | 2,11,20: #csz #csg #Habsurd destruct (Habsurd) |
---|
3282 | | 3,12,21: #cfl #Habsurd destruct (Habsurd) |
---|
3283 | | 4,13,22: #cptrty #Heq destruct (Heq) %{(Vptr p2)} @conj try @refl @vptr_eq assumption |
---|
3284 | | 5,14,23: #carrayty #cn #Heq destruct (Heq) |
---|
3285 | %{(Vptr p2)} @conj try @refl @vptr_eq assumption |
---|
3286 | | 6,15,24: #ctl #cretty #Heq destruct (Heq) |
---|
3287 | %{(Vptr p2)} @conj try @refl @vptr_eq assumption |
---|
3288 | | 7,16,25: #cid #cfl #Habsurd destruct (Habsurd) |
---|
3289 | | 8,17,26: #cid #cfl #Habsurd destruct (Habsurd) |
---|
3290 | | 9,18,27: #ccomptrty #Habsurd destruct (Habsurd) ] |
---|
3291 | qed. |
---|
3292 | |
---|
3293 | lemma bool_of_val_value_eq : |
---|
3294 | ∀E,v1,v2. value_eq E v1 v2 → |
---|
3295 | ∀ty,b.exec_bool_of_val v1 ty = OK ? b → exec_bool_of_val v2 ty = OK ? b. |
---|
3296 | #E #v1 #v2 #Hvalue_eq #ty #b |
---|
3297 | @(value_eq_inversion … Hvalue_eq) // |
---|
3298 | [ 1: #v #H normalize in H; destruct (H) |
---|
3299 | | 2: #p1 #p2 #Hembed #H @H ] qed. |
---|
3300 | |
---|
3301 | (* Simulation relation on expressions *) |
---|
3302 | lemma sim_related_globals : ∀ge,ge',en1,m1,en2,m2,ext. |
---|
3303 | ∀E:embedding. |
---|
3304 | ∀Hext:memory_ext E m1 m2. |
---|
3305 | switch_removal_globals E ? fundef_switch_removal ge ge' → |
---|
3306 | disjoint_extension en1 m1 en2 m2 ext E Hext → |
---|
3307 | ext_fresh_for_genv ext ge → |
---|
3308 | (∀e. exec_expr_sim E (exec_expr ge en1 m1 e) (exec_expr ge' en2 m2 e)) ∧ |
---|
3309 | (∀ed, ty. exec_lvalue_sim E (exec_lvalue' ge en1 m1 ed ty) (exec_lvalue' ge' en2 m2 ed ty)). |
---|
3310 | #ge #ge' #en1 #m1 #en2 #m2 #ext #E #Hext #Hrelated #Hdisjoint #Hext_fresh_for_genv |
---|
3311 | @expr_lvalue_ind_combined |
---|
3312 | [ 1: #csz #cty #i #a1 |
---|
3313 | whd in match (exec_expr ????); elim cty |
---|
3314 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
3315 | normalize nodelta |
---|
3316 | [ 2: cases (eq_intsize csz sz) normalize nodelta |
---|
3317 | [ 1: #H destruct (H) /4 by ex_intro, conj, vint_eq/ |
---|
3318 | | 2: #Habsurd destruct (Habsurd) ] |
---|
3319 | | 4,5,6: #_ #H destruct (H) |
---|
3320 | | *: #H destruct (H) ] |
---|
3321 | | 2: #ty #fl #a1 |
---|
3322 | whd in match (exec_expr ????); #H1 destruct (H1) /4 by ex_intro, conj, vint_eq/ |
---|
3323 | | 3: * |
---|
3324 | [ 1: #sz #i | 2: #fl | 3: #var_id | 4: #e1 | 5: #e1 | 6: #op #e1 | 7: #op #e1 #e2 | 8: #cast_ty #e1 |
---|
3325 | | 9: #cond #iftrue #iffalse | 10: #e1 #e2 | 11: #e1 #e2 | 12: #sizeofty | 13: #e1 #field | 14: #cost #e1 ] |
---|
3326 | #ty whd in ⊢ (% → ?); #Hind try @I |
---|
3327 | whd in match (Plvalue ???); |
---|
3328 | [ 1,2,3: whd in match (exec_expr ????); whd in match (exec_expr ????); #a1 |
---|
3329 | cases (exec_lvalue' ge en1 m1 ? ty) in Hind; |
---|
3330 | [ 2,4,6: #error #_ normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) |
---|
3331 | | 1,3,5: #b1 #H elim (H b1 (refl ??)) #b2 * |
---|
3332 | elim b1 * #bl1 #o1 #tr1 elim b2 * #bl2 #o2 #tr2 |
---|
3333 | #Heq >Heq normalize nodelta * #Hvalue_eq #Htrace_eq |
---|
3334 | whd in match (load_value_of_type' ???); |
---|
3335 | whd in match (load_value_of_type' ???); |
---|
3336 | lapply (load_value_of_type_inj E … (\fst a1) … ty (me_inj … Hext) Hvalue_eq) |
---|
3337 | cases (load_value_of_type ty m1 bl1 o1) |
---|
3338 | [ 1,3,5: #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
3339 | | 2,4,6: #v #Hyp normalize in ⊢ (% → ?); #Heq destruct (Heq) |
---|
3340 | elim (Hyp (refl ??)) #v2 * #Hload #Hvalue_eq >Hload |
---|
3341 | normalize /4 by ex_intro, conj/ |
---|
3342 | ] ] ] |
---|
3343 | | 4: #v #ty whd * * #b1 #o1 #tr1 |
---|
3344 | whd in match (exec_lvalue' ?????); |
---|
3345 | whd in match (exec_lvalue' ?????); |
---|
3346 | lapply (Hdisjoint v) |
---|
3347 | lapply (Hext_fresh_for_genv v) |
---|
3348 | cases (mem_assoc_env v ext) #Hglobal |
---|
3349 | [ 1: * #vblock * * #Hlookup_en2 #Hwriteable #Hnot_in_en1 |
---|
3350 | >Hnot_in_en1 normalize in Hglobal ⊢ (% → ?); |
---|
3351 | >(Hglobal (refl ??)) normalize |
---|
3352 | #Habsurd destruct (Habsurd) |
---|
3353 | | 2: normalize nodelta |
---|
3354 | cases (lookup ?? en1 v) normalize nodelta |
---|
3355 | [ 1: #Hlookup2 >Hlookup2 normalize nodelta |
---|
3356 | lapply (rg_find_symbol … Hrelated v) |
---|
3357 | cases (find_symbol ???) normalize |
---|
3358 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
3359 | | 2: #block cases (lookup ?? (symbols clight_fundef ge') v) |
---|
3360 | [ 1: normalize nodelta #Hfalse @(False_ind … Hfalse) |
---|
3361 | | 2: #block' normalize #Hvalue_eq #Heq destruct (Heq) |
---|
3362 | %{〈block',mk_offset OZ,[]〉} @conj try @refl |
---|
3363 | normalize /2/ |
---|
3364 | ] ] |
---|
3365 | | 2: #block |
---|
3366 | cases (lookup ?? en2 v) normalize nodelta |
---|
3367 | [ 1: #Hfalse @(False_ind … Hfalse) |
---|
3368 | | 2: #b * #Hvalid_block #Hvalue_eq #Heq destruct (Heq) |
---|
3369 | %{〈b, zero_offset, E0〉} @conj try @refl |
---|
3370 | normalize /2/ |
---|
3371 | ] ] ] |
---|
3372 | | 5: #e #ty whd in ⊢ (% → %); |
---|
3373 | whd in match (exec_lvalue' ?????); |
---|
3374 | whd in match (exec_lvalue' ?????); |
---|
3375 | cases (exec_expr ge en1 m1 e) |
---|
3376 | [ 1: * #v1 #tr1 #H elim (H 〈v1,tr1〉 (refl ??)) * #v1' #tr1' * #Heq >Heq normalize nodelta |
---|
3377 | * elim v1 normalize nodelta |
---|
3378 | [ 1: #_ #_ #a1 #Habsurd destruct (Habsurd) |
---|
3379 | | 2: #sz #i #_ #_ #a1 #Habsurd destruct (Habsurd) |
---|
3380 | | 3: #fl #_ #_ #a1 #Habsurd destruct (Habsurd) |
---|
3381 | | 4: #_ #_ #a1 #Habsurd destruct (Habsurd) |
---|
3382 | | 5: #ptr #Hvalue_eq lapply (value_eq_ptr_inversion … Hvalue_eq) * #p2 * #Hp2_eq |
---|
3383 | >Hp2_eq in Hvalue_eq; elim ptr #b1 #o1 elim p2 #b2 #o2 |
---|
3384 | #Hvalue_eq normalize |
---|
3385 | cases (E b1) [ 1: normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) ] |
---|
3386 | * #b2' #o2' normalize #Heq destruct (Heq) #Htrace destruct (Htrace) |
---|
3387 | * * #b1' #o1' #tr1'' #Heq2 destruct (Heq2) normalize |
---|
3388 | %{〈b2,mk_offset (offv o1'+offv o2'),tr1''〉} @conj try @refl |
---|
3389 | normalize @conj // ] |
---|
3390 | | 2: #error #_ normalize #a1 #Habsurd destruct (Habsurd) ] |
---|
3391 | | 6: #ty #e #ty' |
---|
3392 | #Hsim @(exec_lvalue_expr_elim … Hsim) |
---|
3393 | cases ty |
---|
3394 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
3395 | * #b1 #o1 * #b2 #o2 normalize nodelta try /2 by I/ |
---|
3396 | #tr #H @conj try @refl try assumption |
---|
3397 | | 7: #ty #op #e |
---|
3398 | #Hsim @(exec_expr_expr_elim … Hsim) #v1 #v2 #trace #Hvalue_eq |
---|
3399 | lapply (unary_operation_value_eq E op v1 v2 (typeof e) Hvalue_eq) |
---|
3400 | cases (sem_unary_operation op v1 (typeof e)) normalize nodelta |
---|
3401 | [ 1: #_ @I |
---|
3402 | | 2: #r1 #H elim (H r1 (refl ??)) #r1' * #Heq >Heq |
---|
3403 | normalize /2/ ] |
---|
3404 | | 8: #ty #op #e1 #e2 #Hsim1 #Hsim2 |
---|
3405 | @(exec_expr_expr_elim … Hsim1) #v1 #v2 #trace #Hvalue_eq |
---|
3406 | cases (exec_expr ge en1 m1 e2) in Hsim2; |
---|
3407 | [ 2: #error // ] |
---|
3408 | * #val #trace normalize in ⊢ (% → ?); #Hsim2 |
---|
3409 | elim (Hsim2 ? (refl ??)) * #val2 #trace2 * #Hexec2 * #Hvalue_eq2 #Htrace >Hexec2 |
---|
3410 | whd in match (m_bind ?????); whd in match (m_bind ?????); |
---|
3411 | lapply (binary_operation_value_eq E op … (typeof e1) (typeof e2) ?? Hvalue_eq Hvalue_eq2 (me_inj … Hext)) |
---|
3412 | cases (sem_binary_operation op v1 (typeof e1) val (typeof e2) m1) |
---|
3413 | [ 1: #_ // ] |
---|
3414 | #opval #Hop elim (Hop ? (refl ??)) #opval' * #Hopval_eq #Hvalue_eq_opval |
---|
3415 | >Hopval_eq normalize destruct /2 by conj/ |
---|
3416 | | 9: #ty #cast_ty #e #Hsim @(exec_expr_expr_elim … Hsim) |
---|
3417 | #v1 #v2 #trace #Hvalue_eq lapply (cast_value_eq E m1 m2 … Hvalue_eq (typeof e) cast_ty) |
---|
3418 | cases (exec_cast m1 v1 (typeof e) cast_ty) |
---|
3419 | [ 2: #error #_ normalize @I |
---|
3420 | | 1: #res #H lapply (H res (refl ??)) whd in match (m_bind ?????); |
---|
3421 | * #res' * #Hexec_cast >Hexec_cast #Hvalue_eq normalize nodelta |
---|
3422 | @conj // ] |
---|
3423 | | 10: #ty #e1 #e2 #e3 #Hsim1 #Hsim2 #Hsim3 |
---|
3424 | @(exec_expr_expr_elim … Hsim1) #v1 #v2 #trace #Hvalue_eq |
---|
3425 | lapply (bool_of_val_value_eq E v1 v2 Hvalue_eq (typeof e1)) |
---|
3426 | cases (exec_bool_of_val ? (typeof e1)) #b |
---|
3427 | [ 2: #_ normalize @I ] |
---|
3428 | #H lapply (H ? (refl ??)) #Hexec >Hexec normalize |
---|
3429 | cases b normalize nodelta |
---|
3430 | [ 1: (* true branch *) |
---|
3431 | cases (exec_expr ge en1 m1 e2) in Hsim2; |
---|
3432 | [ 2: #error normalize #_ @I |
---|
3433 | | 1: * #e2v #e2tr normalize #H elim (H ? (refl ??)) |
---|
3434 | * #e2v' #e2tr' * #Hexec2 >Hexec2 * #Hvalue_eq2 #Htrace_eq2 normalize |
---|
3435 | destruct @conj try // ] |
---|
3436 | | 2: (* false branch *) |
---|
3437 | cases (exec_expr ge en1 m1 e3) in Hsim3; |
---|
3438 | [ 2: #error normalize #_ @I |
---|
3439 | | 1: * #e3v #e3tr normalize #H elim (H ? (refl ??)) |
---|
3440 | * #e3v' #e3tr' * #Hexec3 >Hexec3 * #Hvalue_eq3 #Htrace_eq3 normalize |
---|
3441 | destruct @conj // ] ] |
---|
3442 | | 11,12: #ty #e1 #e2 #Hsim1 #Hsim2 |
---|
3443 | @(exec_expr_expr_elim … Hsim1) #v1 #v1' #trace #Hvalue_eq |
---|
3444 | lapply (bool_of_val_value_eq E v1 v1' Hvalue_eq (typeof e1)) |
---|
3445 | cases (exec_bool_of_val v1 (typeof e1)) |
---|
3446 | [ 2,4: #error #_ normalize @I ] |
---|
3447 | #b cases b #H lapply (H ? (refl ??)) #Heq >Heq |
---|
3448 | whd in match (m_bind ?????); |
---|
3449 | whd in match (m_bind ?????); |
---|
3450 | [ 2,3: normalize @conj try @refl try @vint_eq ] |
---|
3451 | cases (exec_expr ge en1 m1 e2) in Hsim2; |
---|
3452 | [ 2,4: #error #_ normalize @I ] |
---|
3453 | * #v2 #tr2 whd in ⊢ (% → %); #H2 normalize nodelta elim (H2 ? (refl ??)) |
---|
3454 | * #v2' #tr2' * #Heq2 * #Hvalue_eq2 #Htrace2 >Heq2 normalize nodelta |
---|
3455 | lapply (bool_of_val_value_eq E v2 v2' Hvalue_eq2 (typeof e2)) |
---|
3456 | cases (exec_bool_of_val v2 (typeof e2)) |
---|
3457 | [ 2,4: #error #_ normalize @I ] |
---|
3458 | #b2 #H3 lapply (H3 ? (refl ??)) #Heq3 >Heq3 normalize nodelta |
---|
3459 | destruct @conj try @conj // |
---|
3460 | cases b2 whd in match (of_bool ?); @vint_eq |
---|
3461 | | 13: #ty #ty' cases ty |
---|
3462 | [ 1: | 2: #sz #sg | 3: #fl | 4: #ty | 5: #ty #n |
---|
3463 | | 6: #tl #ty | 7: #id #fl | 8: #id #fl | 9: #ty ] |
---|
3464 | whd in match (exec_expr ????); whd |
---|
3465 | * #v #trace #Heq destruct %{〈Vint sz (repr sz (sizeof ty')), E0〉} |
---|
3466 | @conj try @refl @conj // |
---|
3467 | | 14: #ty #ed #aggregty #i #Hsim whd * * #b #o #tr normalize nodelta |
---|
3468 | whd in match (exec_lvalue' ?????); |
---|
3469 | whd in match (exec_lvalue' ge' en2 m2 (Efield (Expr ed aggregty) i) ty); |
---|
3470 | whd in match (typeof ?); |
---|
3471 | cases aggregty in Hsim; |
---|
3472 | [ 1: | 2: #sz' #sg' | 3: #fl' | 4: #ty' | 5: #ty' #n' |
---|
3473 | | 6: #tl' #ty' | 7: #id' #fl' | 8: #id' #fl' | 9: #ty' ] |
---|
3474 | normalize nodelta #Hsim |
---|
3475 | [ 1,2,3,4,5,6,9: #Habsurd destruct (Habsurd) ] |
---|
3476 | whd in match (m_bind ?????); |
---|
3477 | whd in match (m_bind ?????); |
---|
3478 | whd in match (exec_lvalue ge en1 m1 (Expr ed ?)); |
---|
3479 | cases (exec_lvalue' ge en1 m1 ed ?) in Hsim; |
---|
3480 | [ 2,4: #error #_ normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) ] |
---|
3481 | * * #b1 #o1 #tr1 whd in ⊢ (% → ?); #H elim (H ? (refl ??)) |
---|
3482 | * * #b1' #o1' #tr1' * #Hexec normalize nodelta * #Hvalue_eq #Htrace_eq |
---|
3483 | whd in match (exec_lvalue ????); >Hexec normalize nodelta |
---|
3484 | [ 2: #Heq destruct (Heq) %{〈 b1',o1',tr1'〉} @conj // |
---|
3485 | normalize @conj // ] |
---|
3486 | cases (field_offset i fl') |
---|
3487 | [ 2: #error normalize #Habsurd destruct (Habsurd) ] |
---|
3488 | #offset whd in match (m_bind ?????); #Heq destruct (Heq) |
---|
3489 | whd in match (m_bind ?????); |
---|
3490 | %{〈b1',shift_offset (bitsize_of_intsize I32) o1' (repr I32 offset),tr1'〉} @conj |
---|
3491 | destruct // normalize nodelta @conj try @refl @vptr_eq |
---|
3492 | -H lapply (value_eq_ptr_inversion … Hvalue_eq) * #p2 * #Hptr_eq |
---|
3493 | whd in match (pointer_translation ??); |
---|
3494 | whd in match (pointer_translation ??); |
---|
3495 | cases (E b) |
---|
3496 | [ 1: normalize nodelta #Habsurd destruct (Habsurd) ] |
---|
3497 | * #b' #o' normalize nodelta #Heq destruct (Heq) destruct (Hptr_eq) |
---|
3498 | cut (offset_plus (mk_offset (offv o1+Z_of_signed_bitvector (bitsize_of_intsize I32) (repr I32 offset))) o' |
---|
3499 | = (shift_offset (bitsize_of_intsize I32) (offset_plus o1 o') (repr I32 offset))) |
---|
3500 | [ normalize >associative_Zplus >(sym_Zplus ? (offv o')) in ⊢ (??%?); <associative_Zplus @refl ] |
---|
3501 | #Heq >Heq @refl |
---|
3502 | | 15: #ty #l #e #Hsim |
---|
3503 | @(exec_expr_expr_elim … Hsim) #v1 #v2 #trace #Hvalue_eq normalize nodelta @conj // |
---|
3504 | | 16: * |
---|
3505 | [ 1: #sz #i | 2: #fl | 3: #var_id | 4: #e1 | 5: #e1 | 6: #op #e1 | 7: #op #e1 #e2 | 8: #cast_ty #e1 |
---|
3506 | | 9: #cond #iftrue #iffalse | 10: #e1 #e2 | 11: #e1 #e2 | 12: #sizeofty | 13: #e1 #field | 14: #cost #e1 ] |
---|
3507 | #ty normalize in ⊢ (% → ?); |
---|
3508 | [ 3,4,13: @False_ind |
---|
3509 | | *: #_ normalize #a1 #Habsurd destruct (Habsurd) ] |
---|
3510 | ] qed. |
---|
3511 | |
---|
3512 | |
---|
3513 | (* |
---|
3514 | lemma related_globals_exprlist_simulation : ∀ge,ge',en,m. |
---|
3515 | related_globals ? fundef_switch_removal ge ge' → |
---|
3516 | ∀args. res_sim ? (exec_exprlist ge en m args ) (exec_exprlist ge' en m args). |
---|
3517 | #ge #ge' #en #m #Hrelated #args |
---|
3518 | elim args |
---|
3519 | [ 1: /3/ |
---|
3520 | | 2: #hd #tl #Hind normalize |
---|
3521 | elim (sim_related_globals ge ge' en m Hrelated) |
---|
3522 | #Hexec_sim #Hlvalue_sim lapply (Hexec_sim hd) |
---|
3523 | cases (exec_expr ge en m hd) |
---|
3524 | [ 2: #error #_ @SimFail /2 by refl, ex_intro/ |
---|
3525 | | 1: * #val_hd #trace_hd normalize nodelta |
---|
3526 | cases Hind |
---|
3527 | [ 2: * #error #Heq >Heq #_ @SimFail /2 by ex_intro/ |
---|
3528 | | 1: cases (exec_exprlist ge en m tl) |
---|
3529 | [ 2: #error #_ #Hexec_hd @SimFail /2 by ex_intro/ |
---|
3530 | | 1: * #values #trace #H >(H 〈values, trace〉 (refl ??)) |
---|
3531 | normalize nodelta #Hexec_hd @SimOk * #values2 #trace2 #H2 |
---|
3532 | cases Hexec_hd |
---|
3533 | [ 2: * #error #Habsurd destruct (Habsurd) |
---|
3534 | | 1: #H >(H 〈val_hd, trace_hd〉 (refl ??)) normalize destruct // ] |
---|
3535 | ] ] ] ] qed. |
---|
3536 | *) |
---|
3537 | |
---|
3538 | (* The return type of any function is invariant under switch removal *) |
---|
3539 | lemma fn_return_simplify : ∀f. fn_return (\fst (function_switch_removal f)) = fn_return f. |
---|
3540 | #f elim f #r #args #vars #body whd in match (function_switch_removal ?); @refl |
---|
3541 | qed. |
---|
3542 | |
---|
3543 | (* Similar stuff for fundefs *) |
---|
3544 | lemma fundef_type_simplify : ∀clfd. type_of_fundef clfd = type_of_fundef (fundef_switch_removal clfd). |
---|
3545 | * // qed. |
---|
3546 | |
---|
3547 | (* |
---|
3548 | lemma expr_fresh_lift : |
---|
3549 | ∀e,u,id. |
---|
3550 | fresh_for_expression e u → |
---|
3551 | fresh_for_univ SymbolTag id u → |
---|
3552 | fresh_for_univ SymbolTag (max_of_expr e id) u. |
---|
3553 | #e #u #id |
---|
3554 | normalize in match (fresh_for_expression e u); |
---|
3555 | #H1 #H2 |
---|
3556 | >max_of_expr_rewrite |
---|
3557 | normalize in match (fresh_for_univ ???); |
---|
3558 | cases (max_of_expr e ?) in H1; #p #H1 |
---|
3559 | cases id in H2; #p' #H2 |
---|
3560 | normalize nodelta |
---|
3561 | cases (leb p p') normalize nodelta |
---|
3562 | [ 1: @H2 | 2: @H1 ] |
---|
3563 | qed. *) |
---|
3564 | |
---|
3565 | lemma while_fresh_lift : ∀e,s,u. |
---|
3566 | fresh_for_expression e u → fresh_for_statement s u → fresh_for_statement (Swhile e s) u. |
---|
3567 | #e #s * #u whd in ⊢ (% → % → %); whd in match (max_of_statement (Swhile ??)); |
---|
3568 | cases (max_of_expr e) #e cases (max_of_statement s) #s normalize |
---|
3569 | cases (leb e s) try /2/ |
---|
3570 | qed. |
---|
3571 | |
---|
3572 | (* |
---|
3573 | lemma while_commute : ∀e0, s0, us0. Swhile e0 (switch_removal s0 us0) = (sw_rem (Swhile e0 s0) us0). |
---|
3574 | #e0 #s0 #us0 normalize |
---|
3575 | cases (switch_removal s0 us0) * #body #newvars #u' normalize // |
---|
3576 | qed.*) |
---|
3577 | |
---|
3578 | lemma dowhile_fresh_lift : ∀e,s,u. |
---|
3579 | fresh_for_expression e u → fresh_for_statement s u → fresh_for_statement (Sdowhile e s) u. |
---|
3580 | #e #s * #u whd in ⊢ (% → % → %); whd in match (max_of_statement (Sdowhile ??)); |
---|
3581 | cases (max_of_expr e) #e cases (max_of_statement s) #s normalize |
---|
3582 | cases (leb e s) try /2/ |
---|
3583 | qed. |
---|
3584 | (* |
---|
3585 | lemma dowhile_commute : ∀e0, s0, us0. Sdowhile e0 (sw_rem s0 us0) = (sw_rem (Sdowhile e0 s0) us0). |
---|
3586 | #e0 #s0 #us0 normalize |
---|
3587 | cases (switch_removal s0 us0) * #body #newvars #u' normalize // |
---|
3588 | qed.*) |
---|
3589 | |
---|
3590 | lemma for_fresh_lift : ∀cond,step,body,u. |
---|
3591 | fresh_for_statement step u → |
---|
3592 | fresh_for_statement body u → |
---|
3593 | fresh_for_expression cond u → |
---|
3594 | fresh_for_statement (Sfor Sskip cond step body) u. |
---|
3595 | #cond #step #body #u |
---|
3596 | whd in ⊢ (% → % → % → %); whd in match (max_of_statement (Sfor ????)); |
---|
3597 | cases (max_of_statement step) #s |
---|
3598 | cases (max_of_statement body) #b |
---|
3599 | cases (max_of_expr cond) #c |
---|
3600 | whd in match (max_of_statement Sskip); |
---|
3601 | >(max_id_commutative least_identifier) |
---|
3602 | >max_id_one_neutral normalize nodelta |
---|
3603 | normalize elim u #u |
---|
3604 | cases (leb s b) cases (leb c b) cases (leb c s) try /2/ |
---|
3605 | qed. |
---|
3606 | |
---|
3607 | (* |
---|
3608 | lemma for_commute : ∀e,stm1,stm2,u,uA. |
---|
3609 | (uA=\snd (switch_removal stm1 u)) → |
---|
3610 | sw_rem (Sfor Sskip e stm1 stm2) u = (Sfor Sskip e (sw_rem stm1 u) (sw_rem stm2 uA)). |
---|
3611 | #e #stm1 #stm2 #u #uA #HuA |
---|
3612 | whd in match (sw_rem (Sfor ????) u); |
---|
3613 | whd in match (switch_removal ??); |
---|
3614 | destruct |
---|
3615 | normalize in match (\snd (switch_removal Sskip u)); |
---|
3616 | whd in match (sw_rem stm1 u); |
---|
3617 | cases (switch_removal stm1 u) |
---|
3618 | * #stm1' #fresh_vars #uA normalize nodelta |
---|
3619 | whd in match (sw_rem stm2 uA); |
---|
3620 | cases (switch_removal stm2 uA) |
---|
3621 | * #stm2' #fresh_vars2 #uB normalize nodelta |
---|
3622 | // |
---|
3623 | qed.*) |
---|
3624 | |
---|
3625 | (* |
---|
3626 | lemma simplify_is_not_skip: ∀s,u.s ≠ Sskip → ∃pf. is_Sskip (sw_rem s u) = inr … pf. |
---|
3627 | * |
---|
3628 | [ 1: #u * #Habsurd elim (Habsurd (refl ? Sskip)) |
---|
3629 | | 2: #e1 #e2 #u #_ |
---|
3630 | whd in match (sw_rem ??); |
---|
3631 | whd in match (is_Sskip ?); |
---|
3632 | try /2 by refl, ex_intro/ |
---|
3633 | | 3: #ret #f #args #u |
---|
3634 | whd in match (sw_rem ??); |
---|
3635 | whd in match (is_Sskip ?); |
---|
3636 | try /2 by refl, ex_intro/ |
---|
3637 | | 4: #s1 #s2 #u |
---|
3638 | whd in match (sw_rem ??); |
---|
3639 | whd in match (switch_removal ??); |
---|
3640 | cases (switch_removal ? ?) * #a #b #c #d normalize nodelta |
---|
3641 | cases (switch_removal ? ?) * #e #f #g normalize nodelta |
---|
3642 | whd in match (is_Sskip ?); |
---|
3643 | try /2 by refl, ex_intro/ |
---|
3644 | | 5: #e #s1 #s2 #u #_ |
---|
3645 | whd in match (sw_rem ??); |
---|
3646 | whd in match (switch_removal ??); |
---|
3647 | cases (switch_removal ? ?) * #a #b #c normalize nodelta |
---|
3648 | cases (switch_removal ? ?) * #e #f #h normalize nodelta |
---|
3649 | whd in match (is_Sskip ?); |
---|
3650 | try /2 by refl, ex_intro/ |
---|
3651 | | 6,7: #e #s #u #_ |
---|
3652 | whd in match (sw_rem ??); |
---|
3653 | whd in match (switch_removal ??); |
---|
3654 | cases (switch_removal ? ?) * #a #b #c normalize nodelta |
---|
3655 | whd in match (is_Sskip ?); |
---|
3656 | try /2 by refl, ex_intro/ |
---|
3657 | | 8: #s1 #e #s2 #s3 #u #_ |
---|
3658 | whd in match (sw_rem ??); |
---|
3659 | whd in match (switch_removal ??); |
---|
3660 | cases (switch_removal ? ?) * #a #b #c normalize nodelta |
---|
3661 | cases (switch_removal ? ?) * #e #f #g normalize nodelta |
---|
3662 | cases (switch_removal ? ?) * #i #j #k normalize nodelta |
---|
3663 | whd in match (is_Sskip ?); |
---|
3664 | try /2 by refl, ex_intro/ |
---|
3665 | | 9,10: #u #_ |
---|
3666 | whd in match (is_Sskip ?); |
---|
3667 | try /2 by refl, ex_intro/ |
---|
3668 | | 11: #e #u #_ |
---|
3669 | whd in match (is_Sskip ?); |
---|
3670 | try /2 by refl, ex_intro/ |
---|
3671 | | 12: #e #ls #u #_ |
---|
3672 | whd in match (sw_rem ??); |
---|
3673 | whd in match (switch_removal ??); |
---|
3674 | cases (switch_removal_branches ? ?) * #a #b #c normalize nodelta |
---|
3675 | cases (fresh ??) #e #f normalize nodelta |
---|
3676 | normalize in match (simplify_switch ???); |
---|
3677 | cases (fresh ? f) #g #h normalize nodelta |
---|
3678 | cases (produce_cond ????) * #k #l #m normalize nodelta |
---|
3679 | whd in match (is_Sskip ?); |
---|
3680 | try /2 by refl, ex_intro/ |
---|
3681 | | 13,15: #lab #st #u #_ |
---|
3682 | whd in match (sw_rem ??); |
---|
3683 | whd in match (switch_removal ??); |
---|
3684 | cases (switch_removal ? ?) * #a #b #c normalize nodelta |
---|
3685 | whd in match (is_Sskip ?); |
---|
3686 | try /2 by refl, ex_intro/ |
---|
3687 | | 14: #lab #u |
---|
3688 | whd in match (is_Sskip ?); |
---|
3689 | try /2 by refl, ex_intro/ ] |
---|
3690 | qed. |
---|
3691 | *) |
---|
3692 | |
---|
3693 | (* |
---|
3694 | lemma sw_rem_commute : ∀stm,u. |
---|
3695 | (\fst (\fst (switch_removal stm u))) = sw_rem stm u. |
---|
3696 | #stm #u whd in match (sw_rem stm u); // qed. |
---|
3697 | *) |
---|
3698 | |
---|
3699 | lemma fresh_for_statement_inv : |
---|
3700 | ∀u,s. fresh_for_statement s u → |
---|
3701 | match u with |
---|
3702 | [ mk_universe p ⇒ le (p0 one) p ]. |
---|
3703 | * #p #s whd in match (fresh_for_statement ??); |
---|
3704 | cases (max_of_statement s) #s |
---|
3705 | normalize /2/ qed. |
---|
3706 | |
---|
3707 | lemma fresh_for_Sskip : |
---|
3708 | ∀u,s. fresh_for_statement s u → fresh_for_statement Sskip u. |
---|
3709 | #u #s #H lapply (fresh_for_statement_inv … H) elim u /2/ qed. |
---|
3710 | |
---|
3711 | lemma fresh_for_Sbreak : |
---|
3712 | ∀u,s. fresh_for_statement s u → fresh_for_statement Sbreak u. |
---|
3713 | #u #s #H lapply (fresh_for_statement_inv … H) elim u /2/ qed. |
---|
3714 | |
---|
3715 | lemma fresh_for_Scontinue : |
---|
3716 | ∀u,s. fresh_for_statement s u → fresh_for_statement Scontinue u. |
---|
3717 | #u #s #H lapply (fresh_for_statement_inv … H) elim u /2/ qed. |
---|
3718 | |
---|
3719 | (* |
---|
3720 | lemma switch_removal_eq : ∀s,u. ∃res,fvs,u'. switch_removal s u = 〈res, fvs, u'〉. |
---|
3721 | #s #u elim (switch_removal s u) * #res #fvs #u' |
---|
3722 | %{res} %{fvs} %{u'} // |
---|
3723 | qed. |
---|
3724 | |
---|
3725 | lemma switch_removal_branches_eq : ∀switchcases, u. ∃res,fvs,u'. switch_removal_branches switchcases u = 〈res, fvs, u'〉. |
---|
3726 | #switchcases #u elim (switch_removal_branches switchcases u) * #res #fvs #u' |
---|
3727 | %{res} %{fvs} %{u'} // |
---|
3728 | qed. |
---|
3729 | *) |
---|
3730 | |
---|
3731 | lemma produce_cond_eq : ∀e,ls,u,exit_label. ∃s,lab,u'. produce_cond e ls u exit_label = 〈s,lab,u'〉. |
---|
3732 | #e #ls #u #exit_label cases (produce_cond e ls u exit_label) * |
---|
3733 | #s #lab #u' %{s} %{lab} %{u'} // |
---|
3734 | qed. |
---|
3735 | |
---|
3736 | (* TODO: this lemma ought to be in a more central place, along with its kin of SimplifiCasts.ma ... *) |
---|
3737 | lemma neq_intsize : ∀s1,s2. s1 ≠ s2 → eq_intsize s1 s2 = false. |
---|
3738 | * * * |
---|
3739 | [ 1,5,9: #H @(False_ind … (H (refl ??))) |
---|
3740 | | *: #_ normalize @refl ] |
---|
3741 | qed. |
---|
3742 | |
---|
3743 | lemma exec_expr_int : ∀ge,e,m,expr. |
---|
3744 | (∃sz,n,tr. exec_expr ge e m expr = (OK ? 〈Vint sz n, tr〉)) ∨ (∀sz,n,tr. exec_expr ge e m expr ≠ (OK ? 〈Vint sz n, tr〉)). |
---|
3745 | #ge #e #m #expr cases (exec_expr ge e m expr) |
---|
3746 | [ 2: #error %2 #sz #n #tr % #H destruct (H) |
---|
3747 | | 1: * #val #trace cases val |
---|
3748 | [ 2: #sz #n %1 %{sz} %{n} %{trace} @refl |
---|
3749 | | 3: #fl | 4: | 5: #ptr ] |
---|
3750 | %2 #sz #n #tr % #H destruct (H) |
---|
3751 | ] qed. |
---|
3752 | |
---|
3753 | (* |
---|
3754 | lemma exec_expr_related : ∀ge,ge',e,m,cond,v,tr. |
---|
3755 | exec_expr ge e m cond = OK ? 〈v,tr〉 → |
---|
3756 | (res_sim ? (exec_expr ge e m cond) (exec_expr ge' e m cond)) → |
---|
3757 | exec_expr ge' e m cond = OK ? 〈v,tr〉. |
---|
3758 | #ge #ge' #e #m #cond #v #tr #H * |
---|
3759 | [ 1: #Hsim >(Hsim ? H) // |
---|
3760 | | 2: * #error >H #Habsurd destruct (Habsurd) ] |
---|
3761 | qed. *) |
---|
3762 | |
---|
3763 | (* |
---|
3764 | lemma switch_simulation : |
---|
3765 | ∀ge,ge',e,m,cond,f,condsz,condval,switchcases,k,k',condtr,u. |
---|
3766 | switch_cont_sim k k' → |
---|
3767 | (exec_expr ge e m cond=OK (val×trace) 〈Vint condsz condval,condtr〉) → |
---|
3768 | fresh_for_statement (Sswitch cond switchcases) u → |
---|
3769 | ∃tr'. |
---|
3770 | (eventually ge' |
---|
3771 | (λs2':state |
---|
3772 | .switch_state_sim |
---|
3773 | (State f |
---|
3774 | (seq_of_labeled_statement (select_switch condsz condval switchcases)) |
---|
3775 | (Kswitch k) e m) s2') |
---|
3776 | (State (function_switch_removal f) (sw_rem (Sswitch cond switchcases) u) k' e m) |
---|
3777 | tr'). |
---|
3778 | #ge #ge' #e #m #cond #f #condsz #condval #switchcases #k #k' #tr #u #Hsim_cont #Hexec_cond #Hfresh |
---|
3779 | whd in match (sw_rem (Sswitch cond switchcases) u); |
---|
3780 | whd in match (switch_removal (Sswitch cond switchcases) u); |
---|
3781 | cases switchcases in Hfresh; |
---|
3782 | [ 1: #default_statement #Hfresh_for_default |
---|
3783 | whd in match (switch_removal_branches ??); |
---|
3784 | whd in match (select_switch ???); whd in match (seq_of_labeled_statement ?); |
---|
3785 | elim (switch_removal_eq default_statement u) |
---|
3786 | #default_statement' * #Hdefault_statement_sf * #Hnew_vars * #u' #Hdefault_statement_eq >Hdefault_statement_eq |
---|
3787 | normalize nodelta |
---|
3788 | cut (u' = (\snd (switch_removal default_statement u))) |
---|
3789 | [ 1: >Hdefault_statement_eq // ] #Heq_u' |
---|
3790 | cut (fresh_for_statement (Sswitch cond (LSdefault default_statement)) u') |
---|
3791 | [ 1: >Heq_u' @switch_removal_fresh @Hfresh_for_default ] -Heq_u' #Heq_u' |
---|
3792 | lapply (fresh_for_univ_still_fresh u' ? Heq_u') cases (fresh ? u') |
---|
3793 | #switch_tmp #uv2 #Hfreshness lapply (Hfreshness ?? (refl ? 〈switch_tmp, uv2〉)) |
---|
3794 | -Hfreshness #Heq_uv2 (* We might need to produce some lookup hypotheses here *) |
---|
3795 | normalize nodelta |
---|
3796 | whd in match (simplify_switch (Expr ??) ?? uv2); |
---|
3797 | lapply (fresh_for_univ_still_fresh uv2 ? Heq_uv2) cases (fresh ? uv2) |
---|
3798 | #exit_label #uv3 #Hfreshness lapply (Hfreshness ?? (refl ? 〈exit_label, uv3〉)) |
---|
3799 | -Hfreshness #Heq_uv3 |
---|
3800 | normalize nodelta whd in match (add_starting_lbl_list ????); |
---|
3801 | lapply (fresh_for_univ_still_fresh uv3 ? Heq_uv3) cases (fresh ? uv3) |
---|
3802 | #default_lab #uv4 #Hfreshness lapply (Hfreshness ?? (refl ? 〈default_lab, uv4〉)) |
---|
3803 | -Hfreshness #Heq_uv4 |
---|
3804 | normalize nodelta |
---|
3805 | @(eventually_later ge' ?? E0) |
---|
3806 | whd in match (exec_step ??); |
---|
3807 | %{(State (function_switch_removal f) |
---|
3808 | (Sassign (Expr (Evar switch_tmp) (typeof cond)) cond) |
---|
3809 | (Kseq |
---|
3810 | (Ssequence |
---|
3811 | (Slabel default_lab (convert_break_to_goto default_statement' exit_label)) |
---|
3812 | (Slabel exit_label Sskip)) |
---|
3813 | k') e m)} @conj try // |
---|
3814 | @(eventually_later ge' ?? E0) |
---|
3815 | whd in match (exec_step ??); |
---|
3816 | |
---|
3817 | @chthulhu | @chthulhu |
---|
3818 | qed. *) |
---|
3819 | |
---|
3820 | |
---|
3821 | |
---|
3822 | (* Main theorem. To be ported and completed to memory injections. TODO *) |
---|
3823 | (* |
---|
3824 | theorem switch_removal_correction : ∀ge, ge'. |
---|
3825 | related_globals ? fundef_switch_removal ge ge' → |
---|
3826 | ∀s1, s1', tr, s2. |
---|
3827 | switch_state_sim s1 s1' → |
---|
3828 | exec_step ge s1 = Value … 〈tr,s2〉 → |
---|
3829 | eventually ge' (λs2'. switch_state_sim s2 s2') s1' tr. |
---|
3830 | #ge #ge' #Hrelated #s1 #s1' #tr #s2 #Hsim_state #Hexec_step |
---|
3831 | inversion Hsim_state |
---|
3832 | [ 1: (* regular state *) |
---|
3833 | #u #f #s #k #k' #m #m' #result #en #en' #f' #vars |
---|
3834 | #Hu_fresh #Hen_eq #Hf_eq #Hen_eq' #Hswitch_removal #Hsim_cont #Hs1_eq #Hs1_eq' #_ |
---|
3835 | |
---|
3836 | lapply (sim_related_globals ge ge' e m Hrelated) * |
---|
3837 | #Hexpr_related #Hlvalue_related |
---|
3838 | >Hs1_eq in Hexec_step; whd in ⊢ ((??%?) → ?); |
---|
3839 | cases s in Hu_fresh Heq_env; |
---|
3840 | |
---|
3841 | |
---|
3842 | theorem switch_removal_correction : ∀ge, ge'. |
---|
3843 | related_globals ? fundef_switch_removal ge ge' → |
---|
3844 | ∀s1, s1', tr, s2. |
---|
3845 | switch_state_sim s1 s1' → |
---|
3846 | exec_step ge s1 = Value … 〈tr,s2〉 → |
---|
3847 | eventually ge' (λs2'. switch_state_sim s2 s2') s1' tr. |
---|
3848 | #ge #ge' #Hrelated #s1 #s1' #tr #s2 #Hsim_state #Hexec_step |
---|
3849 | inversion Hsim_state |
---|
3850 | [ 1: (* regular state *) |
---|
3851 | #u #f #s #k #k' #e #e' #m #m' #Hu_fresh #Heq_env #Hsim_cont #Hs1_eq #Hs1_eq' #_ |
---|
3852 | lapply (sim_related_globals ge ge' e m Hrelated) * |
---|
3853 | #Hexpr_related #Hlvalue_related |
---|
3854 | >Hs1_eq in Hexec_step; whd in ⊢ ((??%?) → ?); |
---|
3855 | cases s in Hu_fresh Heq_env; |
---|
3856 | (* Perform the intros for the statements*) |
---|
3857 | [ 1: | 2: #lhs #rhs | 3: #retv #func #args | 4: #stm1 #stm2 | 5: #cond #iftrue #iffalse | 6: #cond #body |
---|
3858 | | 7: #cond #body | 8: #init #cond #step #body | 9,10: | 11: #retval | 12: #cond #switchcases | 13: #lab #body |
---|
3859 | | 14: #lab | 15: #cost #body ] |
---|
3860 | #Hu_fresh #Heq_env |
---|
3861 | [ 1: (* Skip *) |
---|
3862 | whd in match (sw_rem ??); |
---|
3863 | inversion Hsim_cont normalize nodelta |
---|
3864 | [ 1: #Hk #Hk' #_ #Hexec_step |
---|
3865 | @(eventually_now ????) whd in match (exec_step ??); >fn_return_simplify |
---|
3866 | cases (fn_return f) in Hexec_step; |
---|
3867 | [ 1,10: | 2,11: #sz #sg | 3,12: #fsz | 4,13: #rg #ptr_ty | 5,14: #rg #array_ty #array_sz | 6,15: #domain #codomain |
---|
3868 | | 7,16: #structname #fieldspec | 8,17: #unionname #fieldspec | 9,18: #rg #id ] |
---|
3869 | normalize nodelta |
---|
3870 | [ 1,2: #H whd in match (ret ??) in H ⊢ %; destruct (H) |
---|
3871 | %{(Returnstate Vundef Kstop (free_list m' (blocks_of_env e')))} @conj try // |
---|
3872 | normalize in Heq_env; destruct (Heq_env) |
---|
3873 | %3 // |
---|
3874 | (* cut (blocks_of_env e = blocks_of_env e') |
---|
3875 | [ normalize in match (\snd (\fst (switch_removal ??))) in Henv_incl; |
---|
3876 | lapply (environment_extension_nil … Henv_incl) #Himap_eq @(blocks_of_env_eq … Himap_eq) ] |
---|
3877 | #Heq >Heq %3 // *) |
---|
3878 | | *: #H destruct (H) ] |
---|
3879 | | 2: #s0 #k0 #k0' #us #Hus_fresh #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3880 | whd in match (ret ??) in Heq; destruct (Heq) |
---|
3881 | @(eventually_now ????) whd in match (exec_step ??); |
---|
3882 | %{(State (\fst (function_switch_removal f)) (sw_rem s0 us) k0' e' m')} @conj try // |
---|
3883 | %1 try // |
---|
3884 | | 3: #e0 #s0 #k0 #k0' #us #Hus_fresh #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3885 | @(eventually_now ????) whd in match (exec_step ??); |
---|
3886 | whd in match (ret ??) in Heq; destruct (Heq) |
---|
3887 | %{(State (function_switch_removal f) (Swhile e0 (sw_rem s0 us)) k0' e m)} @conj try // |
---|
3888 | >while_commute %1 try // |
---|
3889 | | 4: #e0 #s0 #k0 #k0' #us #Hus_fresh #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3890 | @(eventually_now ????) whd in match (exec_step ??); |
---|
3891 | lapply (Hexpr_related e0) |
---|
3892 | cases (exec_expr ge e m e0) in Heq; |
---|
3893 | [ 2: #error normalize in ⊢ (% → ?); #Habsurd destruct (Habsurd) |
---|
3894 | | 1: * #b #tr whd in match (m_bind ?????); #Heq |
---|
3895 | * |
---|
3896 | [ 2: * #error #Habsurd destruct (Habsurd) |
---|
3897 | | 1: #Hrelated >(Hrelated 〈b,tr〉 (refl ? (OK ? 〈b,tr〉))) |
---|
3898 | whd in match (bindIO ??????); |
---|
3899 | cases (exec_bool_of_val b (typeof e0)) in Heq; |
---|
3900 | [ 2: #error whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
3901 | | 1: * whd in match (bindIO ??????); #Heq destruct (Heq) |
---|
3902 | whd in match (bindIO ??????); |
---|
3903 | [ 1: %{(State (function_switch_removal f) (Sdowhile e0 (sw_rem s0 us)) k0' e m)} |
---|
3904 | @conj // >dowhile_commute %1 try // |
---|
3905 | | 2: %{(State (function_switch_removal f) Sskip k0' e m)} |
---|
3906 | @conj // %1{us} try // |
---|
3907 | @(fresh_for_Sskip … Hus_fresh) |
---|
3908 | ] ] ] ] |
---|
3909 | | 5: #e0 #stm1 #stm2 #k0 #k0' #u #Hu_fresh #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3910 | @(eventually_now ????) whd in match (exec_step ??); |
---|
3911 | whd in match (ret ??) in Heq; destruct |
---|
3912 | %{(State (function_switch_removal f) (sw_rem (Sfor Sskip e0 stm1 stm2) u) k0' e m)} |
---|
3913 | @conj try // %1{u} try // |
---|
3914 | | 6: #e0 #stm1 #stm2 #k0 #k0' #us #uA #Hfresh #HeqA #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3915 | @(eventually_now ????) whd in match (exec_step ??); whd in match (ret ??) in Heq; |
---|
3916 | destruct (Heq) |
---|
3917 | %{(State (function_switch_removal f) (sw_rem stm1 us) (Kfor3 e0 (sw_rem stm1 us) (sw_rem stm2 uA) k0') e m)} |
---|
3918 | @conj try // %1 |
---|
3919 | [ 2: @swc_for3 // |
---|
3920 | | 1: elim (substatement_fresh (Sfor Sskip e0 stm1 stm2) us Hfresh) * // ] |
---|
3921 | | 7: #e0 #stm1 #stm2 #k0 #k0' #u #uA #Hfresh #HeqA #Hsim_cont #_ #Hk #Hk' #_ #Heq |
---|
3922 | @(eventually_now ????) whd in match (exec_step ??); whd in match (ret ??) in Heq; |
---|
3923 | destruct (Heq) |
---|
3924 | %{(State (function_switch_removal f) (Sfor Sskip e0 (sw_rem stm1 u) (sw_rem stm2 uA)) k0' e m)} |
---|
3925 | @conj try // <(for_commute ??? u uA) try // %1 |
---|
3926 | [ 2: assumption |
---|
3927 | | 1: >HeqA elim (substatement_fresh (Sfor Sskip e0 stm1 stm2) u Hfresh) * // ] |
---|
3928 | | 8: #k0 #k0' #Hsim_cont #_ #Hk #Hk' #_ whd in match (ret ??) in ⊢ (% → ?); |
---|
3929 | #Heq @(eventually_now ????) whd in match (exec_step ??); |
---|
3930 | destruct (Heq) |
---|
3931 | %{(State (function_switch_removal f) Sskip k0' e m)} @conj // |
---|
3932 | %1{u} // |
---|
3933 | | 9: #r #f' #en #k0 #k0' #sim_cont #_ #Hk #Hk' #_ #Heq |
---|
3934 | @(eventually_now ????) whd in match (exec_step ??); |
---|
3935 | >fn_return_simplify cases (fn_return f) in Heq; |
---|
3936 | [ 1: | 2: #sz #sg | 3: #fsz | 4: #rg #ptr_ty | 5: #rg #array_ty #array_sz | 6: #domain #codomain |
---|
3937 | | 7: #structname #fieldspec | 8: #unionname #fieldspec | 9: #rg #id ] |
---|
3938 | normalize nodelta |
---|
3939 | [ 1: #H whd in match (ret ??) in H ⊢ %; destruct (H) |
---|
3940 | %1{(Returnstate Vundef (Kcall r (function_switch_removal f') en k0') (free_list m (blocks_of_env e)))} |
---|
3941 | @conj try // %3 destruct // |
---|
3942 | | *: #H destruct (H) ] |
---|
3943 | ] |
---|
3944 | | 2: (* Sassign *) normalize nodelta #Heq @(eventually_now ????) |
---|
3945 | whd in match (exec_step ??); |
---|
3946 | cases lhs in Hu_fresh Heq; #lhs #lhs_type |
---|
3947 | cases (Hlvalue_related lhs lhs_type) |
---|
3948 | whd in match (exec_lvalue ge e m (Expr ??)); |
---|
3949 | whd in match (exec_lvalue ge' e m (Expr ??)); |
---|
3950 | [ 2: * #error #Hfail >Hfail #_ #Habsurd normalize in Habsurd; destruct (Habsurd) ] |
---|
3951 | cases (exec_lvalue' ge e m lhs lhs_type) |
---|
3952 | [ 2: #error #_ whd in match (m_bind ?????); #_ #Habsurd destruct (Habsurd) |
---|
3953 | | 1: * * #lblock #loffset #ltrace #H >(H 〈lblock, loffset, ltrace〉 (refl ??)) |
---|
3954 | whd in match (m_bind ?????); |
---|
3955 | cases (Hexpr_related rhs) |
---|
3956 | [ 2: * #error #Hfail >Hfail #_ |
---|
3957 | whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
3958 | | 1: cases (exec_expr ge e m rhs) |
---|
3959 | [ 2: #error #_ whd in match (bindIO ??????); #_ #Habsurd destruct (Habsurd) |
---|
3960 | | 1: * #rval #rtrace #H >(H 〈rval, rtrace〉 (refl ??)) |
---|
3961 | whd in match (bindIO ??????) in ⊢ (% → % → %); |
---|
3962 | cases (opt_to_io io_out io_in ???) |
---|
3963 | [ 1: #o #resumption whd in match (bindIO ??????); #_ #Habsurd destruct (Habsurd) |
---|
3964 | | 3: #error #_ whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
3965 | | 2: #mem #Hfresh whd in match (bindIO ??????); #Heq destruct (Heq) |
---|
3966 | %{(State (function_switch_removal f) Sskip k' e mem)} |
---|
3967 | whd in match (bindIO ??????); @conj // |
---|
3968 | %1{u} try // @(fresh_for_Sskip … Hfresh) |
---|
3969 | ] ] ] ] |
---|
3970 | | 3: (* Scall *) normalize nodelta #Heq @(eventually_now ????) |
---|
3971 | whd in match (exec_step ??); |
---|
3972 | cases (Hexpr_related func) in Heq; |
---|
3973 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
3974 | | 1: cases (exec_expr ge e m func) |
---|
3975 | [ 2: #error #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
3976 | | 1: * #fval #ftrace #H >(H 〈fval,ftrace〉 (refl ??)) |
---|
3977 | whd in match (m_bind ?????); normalize nodelta |
---|
3978 | lapply (related_globals_exprlist_simulation ge ge' e m Hrelated) |
---|
3979 | #Hexprlist_sim cases (Hexprlist_sim args) |
---|
3980 | [ 2: * #error #Hfail >Hfail |
---|
3981 | whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
3982 | | 1: cases (exec_exprlist ge e m args) |
---|
3983 | [ 2: #error #_ whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
3984 | | 1: * #values #values_trace #Hexprlist >(Hexprlist 〈values,values_trace〉 (refl ??)) |
---|
3985 | whd in match (bindIO ??????) in ⊢ (% → %); |
---|
3986 | elim Hrelated #_ #Hfind_funct #_ lapply (Hfind_funct fval) |
---|
3987 | cases (find_funct clight_fundef ge fval) |
---|
3988 | [ 2: #clfd #Hclfd >(Hclfd clfd (refl ??)) |
---|
3989 | whd in match (bindIO ??????) in ⊢ (% → %); |
---|
3990 | >fundef_type_simplify |
---|
3991 | cases (assert_type_eq (type_of_fundef (fundef_switch_removal clfd)) (fun_typeof func)) |
---|
3992 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
3993 | | 1: #Heq whd in match (bindIO ??????) in ⊢ (% → %); |
---|
3994 | cases retv normalize nodelta |
---|
3995 | [ 1: #Heq2 whd in match (ret ??) in Heq2 ⊢ %; destruct |
---|
3996 | %{(Callstate (fundef_switch_removal clfd) values |
---|
3997 | (Kcall (None (block×offset×type)) (function_switch_removal f) e k') m)} |
---|
3998 | @conj try // %2 try // @swc_call // |
---|
3999 | | 2: * #retval_ed #retval_type |
---|
4000 | whd in match (exec_lvalue ge ???); |
---|
4001 | whd in match (exec_lvalue ge' ???); |
---|
4002 | elim (Hlvalue_related retval_ed retval_type) |
---|
4003 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4004 | | 1: cases (exec_lvalue' ge e m retval_ed retval_type) |
---|
4005 | [ 2: #error #_ whd in match (m_bind ?????); #Habsurd |
---|
4006 | destruct (Habsurd) |
---|
4007 | | 1: * * #block #offset #trace #Hlvalue >(Hlvalue 〈block,offset,trace〉 (refl ??)) |
---|
4008 | whd in match (m_bind ?????) in ⊢ (% → %); |
---|
4009 | #Heq destruct (Heq) |
---|
4010 | %{(Callstate (fundef_switch_removal clfd) values |
---|
4011 | (Kcall (Some ? 〈block,offset,typeof (Expr retval_ed retval_type)〉) |
---|
4012 | (function_switch_removal f) e k') m)} |
---|
4013 | @conj try // |
---|
4014 | %2 @swc_call // |
---|
4015 | ] ] ] ] |
---|
4016 | | 1: #_ whd in match (opt_to_io ?????) in ⊢ (% → %); |
---|
4017 | whd in match (bindIO ??????); #Habsurd destruct (Habsurd) |
---|
4018 | ] ] ] ] ] |
---|
4019 | | 4: (* Ssequence *) normalize nodelta |
---|
4020 | whd in match (ret ??) in ⊢ (% → ?); #Heq |
---|
4021 | @(eventually_now ????) |
---|
4022 | %{(State (function_switch_removal f) |
---|
4023 | (\fst (\fst (switch_removal stm1 u))) |
---|
4024 | (Kseq (\fst (\fst (switch_removal stm2 (\snd (switch_removal stm1 u))))) k') e m)} |
---|
4025 | @conj |
---|
4026 | [ 2: destruct (Heq) %1 |
---|
4027 | [ 1: elim (substatement_fresh (Ssequence stm1 stm2) u Hu_fresh) // |
---|
4028 | | 2: @swc_seq try // @switch_removal_fresh |
---|
4029 | elim (substatement_fresh (Ssequence stm1 stm2) u Hu_fresh) // ] |
---|
4030 | | 1: whd in match (sw_rem ??); whd in match (switch_removal ??); |
---|
4031 | cases (switch_removal stm1 u) |
---|
4032 | * #stm1' #fresh_vars #u' normalize nodelta |
---|
4033 | cases (switch_removal stm2 u') |
---|
4034 | * #stm2' #fresh_vars2 #u'' normalize nodelta |
---|
4035 | whd in match (exec_step ??); |
---|
4036 | destruct (Heq) @refl |
---|
4037 | ] |
---|
4038 | | 5: (* If-then-else *) normalize nodelta |
---|
4039 | whd in match (ret ??) in ⊢ (% → ?); #Heq |
---|
4040 | @(eventually_now ????) whd in match (sw_rem ??); |
---|
4041 | whd in match (switch_removal ??); |
---|
4042 | elim (switch_removal_eq iftrue u) #iftrue' * #fvs_iftrue * #uA #Hiftrue_eq >Hiftrue_eq normalize nodelta |
---|
4043 | elim (switch_removal_eq iffalse uA) #iffalse' * #fvs_iffalse * #uB #Hiffalse_eq >Hiffalse_eq normalize nodelta |
---|
4044 | whd in match (exec_step ??); |
---|
4045 | cases (Hexpr_related cond) in Heq; |
---|
4046 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4047 | | 1: cases (exec_expr ge e m cond) |
---|
4048 | [ 2: #error #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4049 | | 1: * #condval #condtrace #Heq >(Heq 〈condval, condtrace〉 (refl ??)) |
---|
4050 | whd in match (m_bind ?????); whd in match (bindIO ??????) in ⊢ (? → %); |
---|
4051 | cases (exec_bool_of_val condval (typeof cond)) |
---|
4052 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4053 | | 1: * whd in match (bindIO ??????); normalize nodelta #Heq_condval |
---|
4054 | destruct (Heq_condval) whd in match (bindIO ??????); |
---|
4055 | normalize nodelta |
---|
4056 | [ 1: %{(State (function_switch_removal f) iftrue' k' e m)} @conj try // |
---|
4057 | cut (iftrue' = (\fst (\fst (switch_removal iftrue u)))) |
---|
4058 | [ 1: >Hiftrue_eq normalize // ] |
---|
4059 | #Hrewrite >Hrewrite %1 |
---|
4060 | elim (substatement_fresh (Sifthenelse cond iftrue iffalse) u Hu_fresh) // |
---|
4061 | | 2: %{(State (function_switch_removal f) iffalse' k' e m)} @conj try // |
---|
4062 | cut (iffalse' = (\fst (\fst (switch_removal iffalse uA)))) |
---|
4063 | [ 1: >Hiffalse_eq // ] |
---|
4064 | #Hrewrite >Hrewrite %1 try // |
---|
4065 | cut (uA = (\snd (switch_removal iftrue u))) |
---|
4066 | [ 1: >Hiftrue_eq // |
---|
4067 | | 2: #Heq_uA >Heq_uA |
---|
4068 | elim (substatement_fresh (Sifthenelse cond iftrue iffalse) u Hu_fresh) |
---|
4069 | #Hiftrue_fresh #Hiffalse_fresh whd @switch_removal_fresh // |
---|
4070 | ] ] ] ] ] |
---|
4071 | | 6: (* While loop *) normalize nodelta |
---|
4072 | whd in match (ret ??) in ⊢ (% → ?); #Heq |
---|
4073 | @(eventually_now ????) whd in match (sw_rem ??); |
---|
4074 | whd in match (switch_removal ??); |
---|
4075 | elim (switch_removal_eq body u) #body' * #fvs * #uA #Hbody_eq >Hbody_eq normalize nodelta |
---|
4076 | whd in match (exec_step ??); |
---|
4077 | cases (Hexpr_related cond) in Heq; |
---|
4078 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4079 | | 1: cases (exec_expr ge e m cond) |
---|
4080 | [ 2: #error #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4081 | | 1: * #condval #condtrace #Heq >(Heq 〈condval, condtrace〉 (refl ??)) |
---|
4082 | whd in match (m_bind ?????); whd in match (bindIO ??????) in ⊢ (? → %); |
---|
4083 | cases (exec_bool_of_val condval (typeof cond)) |
---|
4084 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4085 | | 1: * whd in match (bindIO ??????); normalize nodelta #Heq_condval |
---|
4086 | destruct (Heq_condval) whd in match (bindIO ??????); |
---|
4087 | normalize nodelta |
---|
4088 | [ 1: %{(State (function_switch_removal f) body' (Kwhile cond body' k') e m)} @conj try // |
---|
4089 | cut (body' = (\fst (\fst (switch_removal body u)))) |
---|
4090 | [ 1: >Hbody_eq // ] |
---|
4091 | #Hrewrite >Hrewrite %1 |
---|
4092 | [ 1: elim (substatement_fresh (Swhile cond body) u Hu_fresh) // |
---|
4093 | | 2: @swc_while lapply (substatement_fresh (Swhile cond body) u Hu_fresh) // ] |
---|
4094 | | 2: %{(State (function_switch_removal f) Sskip k' e m)} @conj // |
---|
4095 | %1{u} try // @(fresh_for_Sskip … Hu_fresh) |
---|
4096 | ] ] ] ] |
---|
4097 | | 7: (* Dowhile loop *) normalize nodelta |
---|
4098 | whd in match (ret ??) in ⊢ (% → ?); #Heq |
---|
4099 | @(eventually_now ????) whd in match (sw_rem ??); |
---|
4100 | whd in match (switch_removal ??); |
---|
4101 | elim (switch_removal_eq body u) #body' * #fvs * #uA #Hbody_eq >Hbody_eq normalize nodelta |
---|
4102 | whd in match (exec_step ??); |
---|
4103 | destruct (Heq) %{(State (function_switch_removal f) body' (Kdowhile cond body' k') e m)} @conj |
---|
4104 | try // |
---|
4105 | cut (body' = (\fst (\fst (switch_removal body u)))) |
---|
4106 | [ 1: >Hbody_eq // ] |
---|
4107 | #Hrewrite >Hrewrite %1 |
---|
4108 | [ 1: elim (substatement_fresh (Swhile cond body) u Hu_fresh) // |
---|
4109 | | 2: @swc_dowhile lapply (substatement_fresh (Swhile cond body) u Hu_fresh) // ] |
---|
4110 | | 8: (* For loop *) normalize nodelta |
---|
4111 | whd in match (ret ??) in ⊢ (% → ?); #Heq |
---|
4112 | @(eventually_now ????) whd in match (sw_rem ??); |
---|
4113 | whd in match (switch_removal ??); |
---|
4114 | cases (is_Sskip init) in Heq; normalize nodelta #Hinit_Sskip |
---|
4115 | [ 1: >Hinit_Sskip normalize in match (switch_removal Sskip u); normalize nodelta |
---|
4116 | elim (switch_removal_eq step u) #step' * #fvs_step * #uA #Hstep_eq >Hstep_eq normalize nodelta |
---|
4117 | elim (switch_removal_eq body uA) #body' * #fvs_body * #uB #Hbody_eq >Hbody_eq normalize nodelta |
---|
4118 | whd in match (exec_step ??); |
---|
4119 | cases (Hexpr_related cond) |
---|
4120 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4121 | | 1: cases (exec_expr ge e m cond) |
---|
4122 | [ 2: #error #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4123 | | 1: * #condval #condtrace #Heq >(Heq 〈condval, condtrace〉 (refl ??)) |
---|
4124 | whd in match (m_bind ?????); whd in match (bindIO ??????) in ⊢ (? → %); |
---|
4125 | cases (exec_bool_of_val condval (typeof cond)) |
---|
4126 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4127 | | 1: * whd in match (bindIO ??????) in ⊢ (% → %); normalize nodelta #Heq_condval |
---|
4128 | destruct (Heq_condval) |
---|
4129 | [ 1: %{(State (function_switch_removal f) body' (Kfor2 cond step' body' k') e m)} @conj |
---|
4130 | try // |
---|
4131 | cut (body' = (\fst (\fst (switch_removal body uA)))) |
---|
4132 | [ 1: >Hbody_eq // ] |
---|
4133 | #Hrewrite >Hrewrite |
---|
4134 | cut (uA = (\snd (switch_removal step u))) |
---|
4135 | [ 1: >Hstep_eq // ] #HuA |
---|
4136 | elim (substatement_fresh (Sfor init cond step body) u Hu_fresh) * * |
---|
4137 | #Hinit_fresh_u #Hcond_fresh_u #Hstep_fresh_u #Hbody_fresh_u %1 |
---|
4138 | [ 1: >HuA @switch_removal_fresh assumption |
---|
4139 | | 2: cut (step' = (\fst (\fst (switch_removal step u)))) |
---|
4140 | [ >Hstep_eq // ] |
---|
4141 | #Hstep >Hstep @swc_for2 try assumption |
---|
4142 | @for_fresh_lift try assumption ] |
---|
4143 | | 2: %{(State (function_switch_removal f) Sskip k' e m)} @conj |
---|
4144 | try // %1{u} try @(fresh_for_Sskip … Hu_fresh) assumption |
---|
4145 | ] ] ] ] |
---|
4146 | | 2: #Heq |
---|
4147 | elim (switch_removal_eq init u) #init' * #fvs_init * #uA #Hinit_eq >Hinit_eq normalize nodelta |
---|
4148 | elim (switch_removal_eq step uA) #step' * #fvs_step * #uB #Hstep_eq >Hstep_eq normalize nodelta |
---|
4149 | elim (switch_removal_eq body uB) #body' * #fvs_body * #uC #Hbody_eq >Hbody_eq normalize nodelta |
---|
4150 | whd in match (exec_step ??); |
---|
4151 | cut (init' = (\fst (\fst (switch_removal init u)))) [ 1: >Hinit_eq // ] |
---|
4152 | #Hinit >Hinit elim (simplify_is_not_skip ? u Hinit_Sskip) |
---|
4153 | whd in match (sw_rem ??) in ⊢ (? → % → ?); #pf #Hskip >Hskip normalize nodelta |
---|
4154 | whd in match (ret ??); destruct (Heq) |
---|
4155 | %{(State (function_switch_removal f) (\fst (\fst (switch_removal init u))) (Kseq (Sfor Sskip cond step' body') k') e m)} |
---|
4156 | @conj try // |
---|
4157 | cut (step' = (\fst (\fst (switch_removal step uA)))) [ >Hstep_eq // ] #Hstep' >Hstep' |
---|
4158 | cut (body' = (\fst (\fst (switch_removal body uB)))) [ >Hbody_eq // ] #Hbody' >Hbody' |
---|
4159 | <for_commute [ 2: >Hstep_eq // ] |
---|
4160 | elim (substatement_fresh (Sfor init cond step body) u Hu_fresh) * * |
---|
4161 | #Hinit_fresh_u #Hcond_fresh_u #Hstep_fresh_u #Hbody_fresh_u %1{u} try assumption |
---|
4162 | @swc_seq try // @for_fresh_lift |
---|
4163 | cut (uA = (\snd (switch_removal init u))) [ 1,3,5: >Hinit_eq // ] #HuA_eq |
---|
4164 | >HuA_eq @switch_removal_fresh assumption |
---|
4165 | ] |
---|
4166 | | 9: (* break *) normalize nodelta |
---|
4167 | inversion Hsim_cont |
---|
4168 | [ 1: #Hk #Hk' #_ |
---|
4169 | | 2: #stm' #k0 #k0' #u0 #Hstm_fresh' #Hconst_cast0 #_ #Hk #Hk' #_ |
---|
4170 | | 3: #cond #body #k0 #k0' #u0 #Hwhile_fresh #Hconst_cast0 #_ #Hk #Hk' #_ |
---|
4171 | | 4: #cond #body #k0 #k0' #u0 #Hdowhile_fresh #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4172 | | 5: #cond #step #body #k0 #k0' #u0 #Hfor_fresh #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4173 | | 6,7: #cond #step #body #k0 #k0' #u0 #uA0 #Hfor_fresh #HuA0 #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4174 | | 8: #k0 #k0' #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4175 | | 9: #r #f0 #en0 #k0 #k0' #Hcont_cast #_ #Hk #Hk' #_ ] |
---|
4176 | normalize nodelta #H try (destruct (H)) |
---|
4177 | whd in match (ret ??) in H; destruct (H) |
---|
4178 | @(eventually_now ????) |
---|
4179 | [ 1,4: %{(State (function_switch_removal f) Sbreak k0' e m)} @conj [ 1,3: // | 2,4: %1{u} // ] |
---|
4180 | | 2,3,5,6: %{(State (function_switch_removal f) Sskip k0' e m)} @conj try // %1{u} // ] |
---|
4181 | | 10: (* Continue *) normalize nodelta |
---|
4182 | inversion Hsim_cont |
---|
4183 | [ 1: #Hk #Hk' #_ |
---|
4184 | | 2: #stm' #k0 #k0' #u0 #Hstm_fresh' #Hconst_cast0 #_ #Hk #Hk' #_ |
---|
4185 | | 3: #cond #body #k0 #k0' #u0 #Hwhile_fresh #Hconst_cast0 #_ #Hk #Hk' #_ |
---|
4186 | | 4: #cond #body #k0 #k0' #u0 #Hdowhile_fresh #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4187 | | 5: #cond #step #body #k0 #k0' #u0 #Hfor_fresh #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4188 | | 6,7: #cond #step #body #k0 #k0' #u0 #uA0 #Hfor_fresh #HuA0 #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4189 | | 8: #k0 #k0' #Hcont_cast0 #_ #Hk #Hk' #_ |
---|
4190 | | 9: #r #f0 #en0 #k0 #k0' #Hcont_cast #_ #Hk #Hk' #_ ] |
---|
4191 | normalize nodelta #H try (destruct (H)) |
---|
4192 | @(eventually_now ????) whd in match (exec_step ??); whd in match (ret ??) in H; |
---|
4193 | destruct (H) |
---|
4194 | [ 1: %{(State (function_switch_removal f) Scontinue k0' e m)} @conj try // %1{u} try assumption |
---|
4195 | | 2: %{(State (function_switch_removal f) (Swhile cond (sw_rem body u0)) k0' e m)} @conj try // |
---|
4196 | >while_commute %1{u0} try assumption |
---|
4197 | | 3: lapply (Hexpr_related cond) cases (exec_expr ge e m cond) in H; |
---|
4198 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4199 | | 1: * #condval #trace whd in match (m_bind ?????); |
---|
4200 | #Heq * |
---|
4201 | [ 2: * #error #Habsurd destruct (Habsurd) |
---|
4202 | | 1: #Hexec lapply (Hexec 〈condval,trace〉 (refl ??)) -Hexec #Hexec >Hexec |
---|
4203 | whd in match (bindIO ??????); |
---|
4204 | cases (exec_bool_of_val condval (typeof cond)) in Heq; |
---|
4205 | [ 2: #error #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4206 | | 1: * #Heq normalize in Heq; destruct (Heq) whd in match (bindIO ??????); |
---|
4207 | [ 1: %{(State (function_switch_removal f) (Sdowhile cond (sw_rem body u0)) k0' e m)} |
---|
4208 | @conj try // >dowhile_commute %1{u0} assumption |
---|
4209 | | 2: %{(State (function_switch_removal f) Sskip k0' e m)} @conj try // |
---|
4210 | %1{u0} try // @(fresh_for_Sskip … Hdowhile_fresh) ] |
---|
4211 | ] ] ] |
---|
4212 | | 4: %{(State (function_switch_removal f) Scontinue k0' e m)} @conj try // %1{u0} |
---|
4213 | try // @(fresh_for_Scontinue … Hfor_fresh) |
---|
4214 | | 5: %{(State (function_switch_removal f) (sw_rem step u0) (Kfor3 cond (sw_rem step u0) (sw_rem body uA0) k0') e m)} |
---|
4215 | @conj try // %1{u0} |
---|
4216 | elim (substatement_fresh … Hfor_fresh) * * try // |
---|
4217 | #HSskip #Hcond #Hstep #Hbody |
---|
4218 | @swc_for3 assumption |
---|
4219 | | 6: %{(State (function_switch_removal f) Scontinue k0' e m)} @conj try // |
---|
4220 | %1{u} try // |
---|
4221 | ] |
---|
4222 | | 11: (* Sreturn *) normalize nodelta #Heq |
---|
4223 | @(eventually_now ????) |
---|
4224 | whd in match (exec_step ??) in Heq ⊢ %; |
---|
4225 | cases retval in Heq; normalize nodelta |
---|
4226 | [ 1: >fn_return_simplify cases (fn_return f) normalize nodelta |
---|
4227 | whd in match (ret ??) in ⊢ (% → %); |
---|
4228 | [ 2: #sz #sg | 3: #fl | 4: #rg #ty' | 5: #rg #ty #n | 6: #tl #ty' |
---|
4229 | | 7: #id #fl | 8: #id #fl | 9: #rg #id ] |
---|
4230 | #H destruct (H) |
---|
4231 | %{(Returnstate Vundef (call_cont k') (free_list m (blocks_of_env e)))} |
---|
4232 | @conj [ 1: // | 2: %3 @call_cont_swremoval // ] |
---|
4233 | | 2: #expr >fn_return_simplify cases (type_eq_dec (fn_return f) Tvoid) normalize nodelta |
---|
4234 | [ 1: #_ #Habsurd destruct (Habsurd) |
---|
4235 | | 2: #_ elim (Hexpr_related expr) |
---|
4236 | [ 2: * #error #Hfail >Hfail #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4237 | | 1: cases (exec_expr ??? expr) |
---|
4238 | [ 2: #error #_ #Habsurd normalize in Habsurd; destruct (Habsurd) |
---|
4239 | | 1: #a #Hsim lapply (Hsim a (refl ? (OK ? a))) |
---|
4240 | #Hrewrite >Hrewrite |
---|
4241 | whd in match (m_bind ?????); whd in match (m_bind ?????); |
---|
4242 | #Heq destruct (Heq) |
---|
4243 | %{(Returnstate (\fst a) (call_cont k') (free_list m (blocks_of_env e)))} |
---|
4244 | @conj [ 1: // | 2: %3 @call_cont_swremoval // ] |
---|
4245 | ] ] ] ] |
---|
4246 | | 12: (* Sswitch. Main proof case. *) normalize nodelta |
---|
4247 | (* Case analysis on the outcome of the tested expression *) |
---|
4248 | cases (exec_expr_int ge e m cond) |
---|
4249 | [ 2: cases (exec_expr ge e m cond) |
---|
4250 | [ 2: #error whd in match (m_bind ?????); #_ #Habsurd destruct (Habsurd) |
---|
4251 | | 1: * #val #trace cases val |
---|
4252 | [ 1: | 2: #condsz #condv | 3: #condf | 4: #condrg | 5: #condptr ] |
---|
4253 | whd in match (m_bind ?????); |
---|
4254 | [ 1,3,4,5: #_ #Habsurd destruct (Habsurd) |
---|
4255 | | 2: #Habsurd lapply (Habsurd condsz condv trace) * #Hfalse @(False_ind … (Hfalse (refl ??))) ] ] |
---|
4256 | ] |
---|
4257 | * #condsz * #condval * #condtr #Hexec_cond >Hexec_cond |
---|
4258 | whd in match (m_bind ?????); #Heq |
---|
4259 | destruct (Heq) |
---|
4260 | @eventually_later |
---|
4261 | whd in match (sw_rem (Sswitch cond switchcases) u); |
---|
4262 | whd in match (switch_removal (Sswitch cond switchcases) u); |
---|
4263 | elim (switch_removal_branches_eq switchcases u) |
---|
4264 | #switchcases' * #new_vars * #uv1 #Hsrb_eq >Hsrb_eq normalize nodelta |
---|
4265 | cut (uv1 = (\snd (switch_removal_branches switchcases u))) |
---|
4266 | [ 1: >Hsrb_eq // ] #Huv1_eq |
---|
4267 | cut (fresh_for_statement (Sswitch cond switchcases) uv1) |
---|
4268 | [ 1: >Huv1_eq @switch_removal_branches_fresh assumption ] -Huv1_eq #Huv1_eq |
---|
4269 | elim (fresh_eq … Huv1_eq) #switch_tmp * #uv2 * #Hfresh_eq >Hfresh_eq -Hfresh_eq #Huv2_eq normalize nodelta |
---|
4270 | whd in match (simplify_switch ???); |
---|
4271 | elim (fresh_eq … Huv2_eq) #exit_label * #uv3 * #Hfresh_eq >Hfresh_eq -Hfresh_eq #Huv3_eq normalize nodelta |
---|
4272 | lapply (produce_cond_fresh (Expr (Evar switch_tmp) (typeof cond)) exit_label switchcases' uv3 (max_of_statement (Sswitch cond switchcases)) Huv3_eq) |
---|
4273 | elim (produce_cond_eq (Expr (Evar switch_tmp) (typeof cond)) switchcases' uv3 exit_label) |
---|
4274 | #result * #top_label * #uv4 #Hproduce_cond_eq >Hproduce_cond_eq normalize nodelta |
---|
4275 | #Huv4_eq |
---|
4276 | whd in match (exec_step ??); |
---|
4277 | %{(State (function_switch_removal f) |
---|
4278 | (Sassign (Expr (Evar switch_tmp) (typeof cond)) cond) |
---|
4279 | (Kseq (Ssequence result (Slabel exit_label Sskip)) k') e m)} |
---|
4280 | %{E0} @conj try @refl |
---|
4281 | %{tr} normalize in match (eq ???); @conj try // |
---|
4282 | (* execute the conditional *) |
---|
4283 | @eventually_later |
---|
4284 | (* lift the result of the previous case analysis from [ge] to [ge'] *) |
---|
4285 | whd in match (exec_step ??); |
---|
4286 | whd in match (exec_lvalue ????); |
---|
4287 | |
---|
4288 | >(exec_expr_related … Hexec_cond (Hexpr_related cond)) |
---|
4289 | |
---|
4290 | *) |
---|
4291 | |
---|