source: src/Clight/TypeComparison.ma @ 1603

Last change on this file since 1603 was 1515, checked in by campbell, 8 years ago

Add type of maps on positive binary numbers, and use them for identifers.

Also:

  • fix interpretation for - on positives
  • move eq_nat_dec to a more appropriate place
  • split out costs from other identifiers in ASM
  • use identifier abstractions in back-end
File size: 5.5 KB
Line 
1
2include "Clight/Csyntax.ma".
3include "utilities/extranat.ma".
4
5axiom TypeMismatch : String.
6
7definition sz_eq_dec : ∀s1,s2:intsize. (s1 = s2) + (s1 ≠ s2).
8#s1 cases s1; #s2 cases s2; /2/; %2 ; % #H destruct; qed.
9definition sg_eq_dec : ∀s1,s2:signedness. (s1 = s2) + (s1 ≠ s2).
10#s1 cases s1; #s2 cases s2; /2/; %2 ; % #H destruct; qed.
11definition fs_eq_dec : ∀s1,s2:floatsize. (s1 = s2) + (s1 ≠ s2).
12#s1 cases s1; #s2 cases s2; /2/; %2 ; % #H destruct; qed.
13
14let rec type_eq_dec (t1,t2:type) : Sum (t1 = t2) (t1 ≠ t2) ≝
15match t1 return λt'. Sum (t' = t2) (t' ≠ t2) with
16[ Tvoid ⇒ match t2 return λt'. Sum (Tvoid = t') (Tvoid ≠ t') with [ Tvoid ⇒ inl ?? (refl ??) | _ ⇒ inr ?? (nmk ? (λH.?)) ]
17| Tint sz sg ⇒ match t2 return λt'. Sum (Tint ?? = t') (Tint ?? ≠ t')  with [ Tint sz' sg' ⇒
18    match sz_eq_dec sz sz' with [ inl e1 ⇒
19    match sg_eq_dec sg sg' with [ inl e2 ⇒ inl ???
20    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
21    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
22    | _ ⇒ inr ?? (nmk ? (λH.?)) ]
23| Tfloat f ⇒ match t2 return λt'. Sum (Tfloat ? = t') (Tfloat ? ≠ t')  with [ Tfloat f' ⇒
24    match fs_eq_dec f f' with [ inl e1 ⇒ inl ???
25    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
26    | _ ⇒ inr ?? (nmk ? (λH.?)) ]
27| Tpointer s t ⇒ match t2 return λt'. Sum (Tpointer ?? = t') (Tpointer ?? ≠ t')  with [ Tpointer s' t' ⇒
28    match eq_region_dec s s' with [ inl e1 ⇒
29      match type_eq_dec t t' with [ inl e2 ⇒ inl ???
30      | inr e2 ⇒ inr ?? (nmk ? (λH.match e2 with [ nmk e' ⇒ e' ? ])) ]
31    | inr e1 ⇒ inr ?? (nmk ? (λH.match e1 with [ nmk e' ⇒ e' ? ])) ] | _ ⇒ inr ?? (nmk ? (λH.?)) ]
32| Tarray s t n ⇒ match t2 return λt'. Sum (Tarray ??? = t') (Tarray ??? ≠ t')  with [ Tarray s' t' n' ⇒
33    match eq_region_dec s s' with [ inl e1 ⇒
34      match type_eq_dec t t' with [ inl e2 ⇒
35        match eq_nat_dec n n' with [ inl e3 ⇒ inl ???
36        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
37        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
38        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
39        | _ ⇒ inr ?? (nmk ? (λH.?)) ]
40| Tfunction tl t ⇒ match t2 return λt'. Sum (Tfunction ?? = t') (Tfunction ?? ≠ t')  with [ Tfunction tl' t' ⇒
41    match typelist_eq_dec tl tl' with [ inl e1 ⇒
42    match type_eq_dec t t' with [ inl e2 ⇒ inl ???
43    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
44    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
45  | _ ⇒ inr ?? (nmk ? (λH.?)) ]
46| Tstruct i fl ⇒
47    match t2 return λt'. Sum (Tstruct ?? = t') (Tstruct ?? ≠ t')  with [ Tstruct i' fl' ⇒
48    match ident_eq i i' with [ inl e1 ⇒
49    match fieldlist_eq_dec fl fl' with [ inl e2 ⇒ inl ???
50    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
51    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
52    | _ ⇒ inr ?? (nmk ? (λH.?)) ]
53| Tunion i fl ⇒
54    match t2 return λt'. Sum (Tunion ?? = t') (Tunion ?? ≠ t')  with [ Tunion i' fl' ⇒
55    match ident_eq i i' with [ inl e1 ⇒
56    match fieldlist_eq_dec fl fl' with [ inl e2 ⇒ inl ???
57    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
58    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
59    |  _ ⇒ inr ?? (nmk ? (λH.?)) ]
60| Tcomp_ptr r i ⇒ match t2 return λt'. Sum (Tcomp_ptr ? ? = t') (Tcomp_ptr ? ? ≠ t')  with [ Tcomp_ptr r' i' ⇒
61    match eq_region_dec r r' with [ inl e1 ⇒
62      match ident_eq i i' with [ inl e2 ⇒ inl ???
63      | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
64    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
65    | _ ⇒ inr ?? (nmk ? (λH.?)) ]
66]
67and typelist_eq_dec (tl1,tl2:typelist) : Sum (tl1 = tl2) (tl1 ≠ tl2) ≝
68match tl1 return λtl'. Sum (tl' = tl2) (tl' ≠ tl2) with
69[ Tnil ⇒ match tl2 return λtl'. Sum (Tnil = tl') (Tnil ≠ tl') with [ Tnil ⇒ inl ?? (refl ??) | _ ⇒ inr ?? (nmk ? (λH.?)) ]
70| Tcons t1 ts1 ⇒ match tl2 return λtl'. Sum (Tcons ?? = tl') (Tcons ?? ≠ tl') with [ Tnil ⇒ inr ?? (nmk ? (λH.?)) | Tcons t2 ts2 ⇒
71    match type_eq_dec t1 t2 with [ inl e1 ⇒
72    match typelist_eq_dec ts1 ts2 with [ inl e2 ⇒ inl ???
73    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
74    | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ] ]
75]
76and fieldlist_eq_dec (fl1,fl2:fieldlist) : Sum (fl1 = fl2) (fl1 ≠ fl2) ≝
77match fl1 return λfl'. Sum (fl' = fl2) (fl' ≠ fl2) with
78[ Fnil ⇒ match fl2 return λfl'. Sum (Fnil = fl') (Fnil ≠ fl') with [ Fnil ⇒ inl ?? (refl ??) | _ ⇒ inr ?? (nmk ? (λH.?)) ]
79| Fcons i1 t1 fs1 ⇒ match fl2 return λfl'. Sum (Fcons ??? = fl') (Fcons ??? ≠ fl') with [ Fnil ⇒ inr ?? (nmk ? (λH.?)) | Fcons i2 t2 fs2 ⇒
80    match ident_eq i1 i2 with [ inl e1 ⇒
81      match type_eq_dec t1 t2 with [ inl e2 ⇒
82        match fieldlist_eq_dec fs1 fs2 with [ inl e3 ⇒ inl ???
83        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
84        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ]
85        | inr e ⇒ inr ?? (nmk ? (λH.match e with [ nmk e' ⇒ e' ? ])) ] ]
86]. try destruct; //
87qed.
88
89definition assert_type_eq : ∀t1,t2:type. res (t1 = t2) ≝
90λt1,t2. match type_eq_dec t1 t2 with [ inl p ⇒ OK ? p | inr _ ⇒ Error ? (msg TypeMismatch)].
91
92definition type_eq : type → type → bool ≝
93λt1,t2. match type_eq_dec t1 t2 with [ inl _ ⇒ true | inr _ ⇒ false ].
94
Note: See TracBrowser for help on using the repository browser.