1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Abstract syntax for the Clight language *) |
---|
17 | |
---|
18 | (*include "Integers.ma".*) |
---|
19 | include "common/AST.ma". |
---|
20 | include "utilities/Coqlib.ma". |
---|
21 | include "common/Errors.ma". |
---|
22 | include "common/CostLabel.ma". |
---|
23 | |
---|
24 | (* * * Abstract syntax *) |
---|
25 | |
---|
26 | (* * ** Types *) |
---|
27 | |
---|
28 | (* * Clight types are similar to those of C. They include numeric types, |
---|
29 | pointers, arrays, function types, and composite types (struct and |
---|
30 | union). Numeric types (integers and floats) fully specify the |
---|
31 | bit size of the type. An integer type is a pair of a signed/unsigned |
---|
32 | flag and a bit size: 8, 16 or 32 bits. *) |
---|
33 | |
---|
34 | inductive signedness : Type[0] ≝ |
---|
35 | | Signed: signedness |
---|
36 | | Unsigned: signedness. |
---|
37 | |
---|
38 | inductive intsize : Type[0] ≝ |
---|
39 | | I8: intsize |
---|
40 | | I16: intsize |
---|
41 | | I32: intsize. |
---|
42 | |
---|
43 | (* * Float types come in two sizes: 32 bits (single precision) |
---|
44 | and 64-bit (double precision). *) |
---|
45 | |
---|
46 | inductive floatsize : Type[0] ≝ |
---|
47 | | F32: floatsize |
---|
48 | | F64: floatsize. |
---|
49 | |
---|
50 | (* * The syntax of type expressions. Some points to note: |
---|
51 | - Array types [Tarray n] carry the size [n] of the array. |
---|
52 | Arrays with unknown sizes are represented by pointer types. |
---|
53 | - Function types [Tfunction targs tres] specify the number and types |
---|
54 | of the function arguments (list [targs]), and the type of the |
---|
55 | function result ([tres]). Variadic functions and old-style unprototyped |
---|
56 | functions are not supported. |
---|
57 | - In C, struct and union types are named and compared by name. |
---|
58 | This enables the definition of recursive struct types such as |
---|
59 | << |
---|
60 | struct s1 { int n; struct * s1 next; }; |
---|
61 | >> |
---|
62 | Note that recursion within types must go through a pointer type. |
---|
63 | For instance, the following is not allowed in C. |
---|
64 | << |
---|
65 | struct s2 { int n; struct s2 next; }; |
---|
66 | >> |
---|
67 | In Clight, struct and union types [Tstruct id fields] and |
---|
68 | [Tunion id fields] are compared by structure: the [fields] |
---|
69 | argument gives the names and types of the members. The identifier |
---|
70 | [id] is a local name which can be used in conjuction with the |
---|
71 | [Tcomp_ptr] constructor to express recursive types. [Tcomp_ptr rg id] |
---|
72 | stands for a pointer type to the nearest enclosing [Tstruct] |
---|
73 | or [Tunion] type named [id] in memory region [rg]. For instance. |
---|
74 | the structure [s1] defined above in C is expressed by |
---|
75 | << |
---|
76 | Tstruct "s1" (Fcons "n" (Tint I32 Signed) |
---|
77 | (Fcons "next" (Tcomp_ptr Any "id") |
---|
78 | Fnil)) |
---|
79 | >> |
---|
80 | Note that the incorrect structure [s2] above cannot be expressed at |
---|
81 | all, since [Tcomp_ptr] lets us refer to a pointer to an enclosing |
---|
82 | structure or union, but not to the structure or union directly. |
---|
83 | *) |
---|
84 | |
---|
85 | inductive type : Type[0] ≝ |
---|
86 | | Tvoid: type (**r the [void] type *) |
---|
87 | | Tint: intsize → signedness → type (**r integer types *) |
---|
88 | | Tfloat: floatsize → type (**r floating-point types *) |
---|
89 | | Tpointer: region → type → type (**r pointer types ([*ty]) *) |
---|
90 | | Tarray: region → type → nat → type (**r array types ([ty[len]]) *) |
---|
91 | | Tfunction: typelist → type → type (**r function types *) |
---|
92 | | Tstruct: ident → fieldlist → type (**r struct types *) |
---|
93 | | Tunion: ident → fieldlist → type (**r union types *) |
---|
94 | | Tcomp_ptr: region → ident → type (**r pointer to named struct or union *) |
---|
95 | |
---|
96 | with typelist : Type[0] ≝ |
---|
97 | | Tnil: typelist |
---|
98 | | Tcons: type → typelist → typelist |
---|
99 | |
---|
100 | with fieldlist : Type[0] ≝ |
---|
101 | | Fnil: fieldlist |
---|
102 | | Fcons: ident → type → fieldlist → fieldlist. |
---|
103 | |
---|
104 | (* XXX: no induction scheme! *) |
---|
105 | let rec type_ind |
---|
106 | (P:type → Prop) |
---|
107 | (vo:P Tvoid) |
---|
108 | (it:∀i,s. P (Tint i s)) |
---|
109 | (fl:∀f. P (Tfloat f)) |
---|
110 | (pt:∀s,t. P t → P (Tpointer s t)) |
---|
111 | (ar:∀s,t,n. P t → P (Tarray s t n)) |
---|
112 | (fn:∀tl,t. P t → P (Tfunction tl t)) |
---|
113 | (st:∀i,fl. P (Tstruct i fl)) |
---|
114 | (un:∀i,fl. P (Tunion i fl)) |
---|
115 | (cp:∀rg,i. P (Tcomp_ptr rg i)) |
---|
116 | (t:type) on t : P t ≝ |
---|
117 | match t return λt'.P t' with |
---|
118 | [ Tvoid ⇒ vo |
---|
119 | | Tint i s ⇒ it i s |
---|
120 | | Tfloat s ⇒ fl s |
---|
121 | | Tpointer s t' ⇒ pt s t' (type_ind P vo it fl pt ar fn st un cp t') |
---|
122 | | Tarray s t' n ⇒ ar s t' n (type_ind P vo it fl pt ar fn st un cp t') |
---|
123 | | Tfunction tl t' ⇒ fn tl t' (type_ind P vo it fl pt ar fn st un cp t') |
---|
124 | | Tstruct i fs ⇒ st i fs |
---|
125 | | Tunion i fs ⇒ un i fs |
---|
126 | | Tcomp_ptr rg i ⇒ cp rg i |
---|
127 | ]. |
---|
128 | |
---|
129 | let rec fieldlist_ind |
---|
130 | (P:fieldlist → Prop) |
---|
131 | (nl:P Fnil) |
---|
132 | (cs:∀i,t,fs. P fs → P (Fcons i t fs)) |
---|
133 | (fs:fieldlist) on fs : P fs ≝ |
---|
134 | match fs with |
---|
135 | [ Fnil ⇒ nl |
---|
136 | | Fcons i t fs' ⇒ cs i t fs' (fieldlist_ind P nl cs fs') |
---|
137 | ]. |
---|
138 | |
---|
139 | (* * ** Expressions *) |
---|
140 | |
---|
141 | (* * Arithmetic and logical operators. *) |
---|
142 | |
---|
143 | inductive unary_operation : Type[0] ≝ |
---|
144 | | Onotbool : unary_operation (**r boolean negation ([!] in C) *) |
---|
145 | | Onotint : unary_operation (**r integer complement ([~] in C) *) |
---|
146 | | Oneg : unary_operation. (**r opposite (unary [-]) *) |
---|
147 | |
---|
148 | inductive binary_operation : Type[0] ≝ |
---|
149 | | Oadd : binary_operation (**r addition (binary [+]) *) |
---|
150 | | Osub : binary_operation (**r subtraction (binary [-]) *) |
---|
151 | | Omul : binary_operation (**r multiplication (binary [*]) *) |
---|
152 | | Odiv : binary_operation (**r division ([/]) *) |
---|
153 | | Omod : binary_operation (**r remainder ([%]) *) |
---|
154 | | Oand : binary_operation (**r bitwise and ([&]) *) |
---|
155 | | Oor : binary_operation (**r bitwise or ([|]) *) |
---|
156 | | Oxor : binary_operation (**r bitwise xor ([^]) *) |
---|
157 | | Oshl : binary_operation (**r left shift ([<<]) *) |
---|
158 | | Oshr : binary_operation (**r right shift ([>>]) *) |
---|
159 | | Oeq: binary_operation (**r comparison ([==]) *) |
---|
160 | | One: binary_operation (**r comparison ([!=]) *) |
---|
161 | | Olt: binary_operation (**r comparison ([<]) *) |
---|
162 | | Ogt: binary_operation (**r comparison ([>]) *) |
---|
163 | | Ole: binary_operation (**r comparison ([<=]) *) |
---|
164 | | Oge: binary_operation. (**r comparison ([>=]) *) |
---|
165 | |
---|
166 | (* * Clight expressions are a large subset of those of C. |
---|
167 | The main omissions are string literals and assignment operators |
---|
168 | ([=], [+=], [++], etc). In Clight, assignment is a statement, |
---|
169 | not an expression. |
---|
170 | |
---|
171 | All expressions are annotated with their types. An expression |
---|
172 | (type [expr]) is therefore a pair of a type and an expression |
---|
173 | description (type [expr_descr]). |
---|
174 | *) |
---|
175 | |
---|
176 | inductive expr : Type[0] ≝ |
---|
177 | | Expr: expr_descr → type → expr |
---|
178 | |
---|
179 | with expr_descr : Type[0] ≝ |
---|
180 | | Econst_int: int → expr_descr (**r integer literal *) |
---|
181 | | Econst_float: float → expr_descr (**r float literal *) |
---|
182 | | Evar: ident → expr_descr (**r variable *) |
---|
183 | | Ederef: expr → expr_descr (**r pointer dereference (unary [*]) *) |
---|
184 | | Eaddrof: expr → expr_descr (**r address-of operator ([&]) *) |
---|
185 | | Eunop: unary_operation → expr → expr_descr (**r unary operation *) |
---|
186 | | Ebinop: binary_operation → expr → expr → expr_descr (**r binary operation *) |
---|
187 | | Ecast: type → expr → expr_descr (**r type cast ([(ty) e]) *) |
---|
188 | | Econdition: expr → expr → expr → expr_descr (**r conditional ([e1 ? e2 : e3]) *) |
---|
189 | | Eandbool: expr → expr → expr_descr (**r sequential and ([&&]) *) |
---|
190 | | Eorbool: expr → expr → expr_descr (**r sequential or ([||]) *) |
---|
191 | | Esizeof: type → expr_descr (**r size of a type *) |
---|
192 | | Efield: expr → ident → expr_descr (**r access to a member of a struct or union *) |
---|
193 | | Ecost: costlabel → expr → expr_descr. |
---|
194 | |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | (* * Extract the type part of a type-annotated Clight expression. *) |
---|
199 | |
---|
200 | definition typeof : expr → type ≝ λe. |
---|
201 | match e with [ Expr de te ⇒ te ]. |
---|
202 | |
---|
203 | (* * ** Statements *) |
---|
204 | |
---|
205 | (* * Clight statements include all C statements. |
---|
206 | Only structured forms of [switch] are supported; moreover, |
---|
207 | the [default] case must occur last. Blocks and block-scoped declarations |
---|
208 | are not supported. *) |
---|
209 | |
---|
210 | definition label ≝ ident. |
---|
211 | |
---|
212 | inductive statement : Type[0] ≝ |
---|
213 | | Sskip : statement (**r do nothing *) |
---|
214 | | Sassign : expr → expr → statement (**r assignment [lvalue = rvalue] *) |
---|
215 | | Scall: option expr → expr → list expr → statement (**r function call *) |
---|
216 | | Ssequence : statement → statement → statement (**r sequence *) |
---|
217 | | Sifthenelse : expr → statement → statement → statement (**r conditional *) |
---|
218 | | Swhile : expr → statement → statement (**r [while] loop *) |
---|
219 | | Sdowhile : expr → statement → statement (**r [do] loop *) |
---|
220 | | Sfor: statement → expr → statement → statement → statement (**r [for] loop *) |
---|
221 | | Sbreak : statement (**r [break] statement *) |
---|
222 | | Scontinue : statement (**r [continue] statement *) |
---|
223 | | Sreturn : option expr → statement (**r [return] statement *) |
---|
224 | | Sswitch : expr → labeled_statements → statement (**r [switch] statement *) |
---|
225 | | Slabel : label → statement → statement |
---|
226 | | Sgoto : label → statement |
---|
227 | | Scost : costlabel → statement → statement |
---|
228 | |
---|
229 | with labeled_statements : Type[0] ≝ (**r cases of a [switch] *) |
---|
230 | | LSdefault: statement → labeled_statements |
---|
231 | | LScase: int → statement → labeled_statements → labeled_statements. |
---|
232 | |
---|
233 | let rec statement_ind2 |
---|
234 | (P:statement → Prop) (Q:labeled_statements → Prop) |
---|
235 | (Ssk:P Sskip) |
---|
236 | (Sas:∀e1,e2. P (Sassign e1 e2)) |
---|
237 | (Sca:∀eo,e,args. P (Scall eo e args)) |
---|
238 | (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) |
---|
239 | (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) |
---|
240 | (Swh:∀e,s. P s → P (Swhile e s)) |
---|
241 | (Sdo:∀e,s. P s → P (Sdowhile e s)) |
---|
242 | (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) |
---|
243 | (Sbr:P Sbreak) |
---|
244 | (Sco:P Scontinue) |
---|
245 | (Sre:∀eo. P (Sreturn eo)) |
---|
246 | (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) |
---|
247 | (Sla:∀l,s. P s → P (Slabel l s)) |
---|
248 | (Sgo:∀l. P (Sgoto l)) |
---|
249 | (Scs:∀l,s. P s → P (Scost l s)) |
---|
250 | (LSd:∀s. P s → Q (LSdefault s)) |
---|
251 | (LSc:∀i,s,t. P s → Q t → Q (LScase i s t)) |
---|
252 | (s:statement) on s : P s ≝ |
---|
253 | match s with |
---|
254 | [ Sskip ⇒ Ssk |
---|
255 | | Sassign e1 e2 ⇒ Sas e1 e2 |
---|
256 | | Scall eo e args ⇒ Sca eo e args |
---|
257 | | Ssequence s1 s2 ⇒ Ssq s1 s2 |
---|
258 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
259 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
260 | | Sifthenelse e s1 s2 ⇒ Sif e s1 s2 |
---|
261 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
262 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
263 | | Swhile e s ⇒ Swh e s |
---|
264 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
265 | | Sdowhile e s ⇒ Sdo e s |
---|
266 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
267 | | Sfor s1 e s2 s3 ⇒ Sfo s1 e s2 s3 |
---|
268 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s1) |
---|
269 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s2) |
---|
270 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s3) |
---|
271 | | Sbreak ⇒ Sbr |
---|
272 | | Scontinue ⇒ Sco |
---|
273 | | Sreturn eo ⇒ Sre eo |
---|
274 | | Sswitch e ls ⇒ Ssw e ls |
---|
275 | (labeled_statements_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc ls) |
---|
276 | | Slabel l s ⇒ Sla l s |
---|
277 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
278 | | Sgoto l ⇒ Sgo l |
---|
279 | | Scost l s ⇒ Scs l s |
---|
280 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
281 | ] |
---|
282 | and labeled_statements_ind2 |
---|
283 | (P:statement → Prop) (Q:labeled_statements → Prop) |
---|
284 | (Ssk:P Sskip) |
---|
285 | (Sas:∀e1,e2. P (Sassign e1 e2)) |
---|
286 | (Sca:∀eo,e,args. P (Scall eo e args)) |
---|
287 | (Ssq:∀s1,s2. P s1 → P s2 → P (Ssequence s1 s2)) |
---|
288 | (Sif:∀e,s1,s2. P s1 → P s2 → P (Sifthenelse e s1 s2)) |
---|
289 | (Swh:∀e,s. P s → P (Swhile e s)) |
---|
290 | (Sdo:∀e,s. P s → P (Sdowhile e s)) |
---|
291 | (Sfo:∀s1,e,s2,s3. P s1 → P s2 → P s3 → P (Sfor s1 e s2 s3)) |
---|
292 | (Sbr:P Sbreak) |
---|
293 | (Sco:P Scontinue) |
---|
294 | (Sre:∀eo. P (Sreturn eo)) |
---|
295 | (Ssw:∀e,ls. Q ls → P (Sswitch e ls)) |
---|
296 | (Sla:∀l,s. P s → P (Slabel l s)) |
---|
297 | (Sgo:∀l. P (Sgoto l)) |
---|
298 | (Scs:∀l,s. P s → P (Scost l s)) |
---|
299 | (LSd:∀s. P s → Q (LSdefault s)) |
---|
300 | (LSc:∀i,s,t. P s → Q t → Q (LScase i s t)) |
---|
301 | (ls:labeled_statements) on ls : Q ls ≝ |
---|
302 | match ls with |
---|
303 | [ LSdefault s ⇒ LSd s |
---|
304 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
305 | | LScase i s t ⇒ LSc i s t |
---|
306 | (statement_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc s) |
---|
307 | (labeled_statements_ind2 P Q Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs LSd LSc t) |
---|
308 | ]. |
---|
309 | |
---|
310 | definition statement_ind ≝ λP,Ssk,Sas,Sca,Ssq,Sif,Swh,Sdo,Sfo,Sbr,Sco,Sre,Ssw,Sla,Sgo,Scs. |
---|
311 | statement_ind2 P (λ_.True) Ssk Sas Sca Ssq Sif Swh Sdo Sfo Sbr Sco Sre Ssw Sla Sgo Scs |
---|
312 | (λ_,_. I) (λ_,_,_,_,_.I). |
---|
313 | |
---|
314 | (* * ** Functions *) |
---|
315 | |
---|
316 | (* * A function definition is composed of its return type ([fn_return]), |
---|
317 | the names and types of its parameters ([fn_params]), the names |
---|
318 | and types of its local variables ([fn_vars]), and the body of the |
---|
319 | function (a statement, [fn_body]). *) |
---|
320 | |
---|
321 | record function : Type[0] ≝ { |
---|
322 | fn_return: type; |
---|
323 | fn_params: list (ident × type); |
---|
324 | fn_vars: list (ident × type); |
---|
325 | fn_body: statement |
---|
326 | }. |
---|
327 | |
---|
328 | (* * Functions can either be defined ([CL_Internal]) or declared as |
---|
329 | external functions ([CL_External]). Similar to the AST definition, but |
---|
330 | with high level type information for external functions. *) |
---|
331 | |
---|
332 | inductive clight_fundef : Type[0] ≝ |
---|
333 | | CL_Internal: function → clight_fundef |
---|
334 | | CL_External: ident → typelist → type → clight_fundef. |
---|
335 | |
---|
336 | (* * ** Programs *) |
---|
337 | |
---|
338 | (* * A program is a collection of named functions, plus a collection |
---|
339 | of named global variables, carrying their types and optional initialization |
---|
340 | data. See module [AST] for more details. *) |
---|
341 | |
---|
342 | definition clight_program : Type[0] ≝ program clight_fundef type. |
---|
343 | |
---|
344 | (* * * Operations over types *) |
---|
345 | |
---|
346 | (* * The type of a function definition. *) |
---|
347 | |
---|
348 | let rec type_of_params (params: list (ident × type)) : typelist ≝ |
---|
349 | match params with |
---|
350 | [ nil ⇒ Tnil |
---|
351 | | cons h rem ⇒ match h with [ pair id ty ⇒ Tcons ty (type_of_params rem) ] |
---|
352 | ]. |
---|
353 | |
---|
354 | definition type_of_function : function → type ≝ λf. |
---|
355 | Tfunction (type_of_params (fn_params f)) (fn_return f). |
---|
356 | |
---|
357 | definition type_of_fundef : clight_fundef → type ≝ λf. |
---|
358 | match f with |
---|
359 | [ CL_Internal fd ⇒ type_of_function fd |
---|
360 | | CL_External id args res ⇒ Tfunction args res |
---|
361 | ]. |
---|
362 | |
---|
363 | (* * Natural alignment of a type, in bytes. *) |
---|
364 | (* FIXME: these are old values for 32 bit machines *) |
---|
365 | let rec alignof (t: type) : nat ≝ |
---|
366 | match t with |
---|
367 | [ Tvoid ⇒ 1 |
---|
368 | | Tint sz _ ⇒ match sz with [ I8 ⇒ 1 | I16 ⇒ 2 | I32 ⇒ 4 ] |
---|
369 | | Tfloat sz ⇒ match sz with [ F32 ⇒ 4 | F64 ⇒ 8 ] |
---|
370 | | Tpointer _ _ ⇒ 4 |
---|
371 | | Tarray _ t' n ⇒ alignof t' |
---|
372 | | Tfunction _ _ ⇒ 1 |
---|
373 | | Tstruct _ fld ⇒ alignof_fields fld |
---|
374 | | Tunion _ fld ⇒ alignof_fields fld |
---|
375 | | Tcomp_ptr _ _ ⇒ 4 |
---|
376 | ] |
---|
377 | |
---|
378 | and alignof_fields (f: fieldlist) : nat ≝ |
---|
379 | match f with |
---|
380 | [ Fnil ⇒ 1 |
---|
381 | | Fcons id t f' ⇒ max (alignof t) (alignof_fields f') |
---|
382 | ]. |
---|
383 | |
---|
384 | (* |
---|
385 | Scheme type_ind2 := Induction for type Sort Prop |
---|
386 | with fieldlist_ind2 := Induction for fieldlist Sort Prop. |
---|
387 | *) |
---|
388 | |
---|
389 | (* XXX: automatic generation? *) |
---|
390 | let rec type_ind2 |
---|
391 | (P:type → Prop) (Q:fieldlist → Prop) |
---|
392 | (vo:P Tvoid) |
---|
393 | (it:∀i,s. P (Tint i s)) |
---|
394 | (fl:∀f. P (Tfloat f)) |
---|
395 | (pt:∀s,t. P t → P (Tpointer s t)) |
---|
396 | (ar:∀s,t,n. P t → P (Tarray s t n)) |
---|
397 | (fn:∀tl,t. P t → P (Tfunction tl t)) |
---|
398 | (st:∀i,fl. Q fl → P (Tstruct i fl)) |
---|
399 | (un:∀i,fl. Q fl → P (Tunion i fl)) |
---|
400 | (cp:∀r,i. P (Tcomp_ptr r i)) |
---|
401 | (nl:Q Fnil) |
---|
402 | (cs:∀i,t,f'. P t → Q f' → Q (Fcons i t f')) |
---|
403 | (t:type) on t : P t ≝ |
---|
404 | match t return λt'.P t' with |
---|
405 | [ Tvoid ⇒ vo |
---|
406 | | Tint i s ⇒ it i s |
---|
407 | | Tfloat s ⇒ fl s |
---|
408 | | Tpointer s t' ⇒ pt s t' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') |
---|
409 | | Tarray s t' n ⇒ ar s t' n (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') |
---|
410 | | Tfunction tl t' ⇒ fn tl t' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t') |
---|
411 | | Tstruct i fs ⇒ st i fs (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs fs) |
---|
412 | | Tunion i fs ⇒ un i fs (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs fs) |
---|
413 | | Tcomp_ptr r i ⇒ cp r i |
---|
414 | ] |
---|
415 | and fieldlist_ind2 |
---|
416 | (P:type → Prop) (Q:fieldlist → Prop) |
---|
417 | (vo:P Tvoid) |
---|
418 | (it:∀i,s. P (Tint i s)) |
---|
419 | (fl:∀f. P (Tfloat f)) |
---|
420 | (pt:∀s,t. P t → P (Tpointer s t)) |
---|
421 | (ar:∀s,t,n. P t → P (Tarray s t n)) |
---|
422 | (fn:∀tl,t. P t → P (Tfunction tl t)) |
---|
423 | (st:∀i,fl. Q fl → P (Tstruct i fl)) |
---|
424 | (un:∀i,fl. Q fl → P (Tunion i fl)) |
---|
425 | (cp:∀r,i. P (Tcomp_ptr r i)) |
---|
426 | (nl:Q Fnil) |
---|
427 | (cs:∀i,t,f'. P t → Q f' → Q (Fcons i t f')) |
---|
428 | (fs:fieldlist) on fs : Q fs ≝ |
---|
429 | match fs return λfs'.Q fs' with |
---|
430 | [ Fnil ⇒ nl |
---|
431 | | Fcons i t f' ⇒ cs i t f' (type_ind2 P Q vo it fl pt ar fn st un cp nl cs t) |
---|
432 | (fieldlist_ind2 P Q vo it fl pt ar fn st un cp nl cs f') |
---|
433 | ]. |
---|
434 | |
---|
435 | lemma alignof_fields_pos: |
---|
436 | ∀f. alignof_fields f > 0. |
---|
437 | @fieldlist_ind //; |
---|
438 | #i #t #fs' #IH @max_r @IH qed. |
---|
439 | |
---|
440 | lemma alignof_pos: |
---|
441 | ∀t. alignof t > 0. |
---|
442 | #t elim t; normalize; //; |
---|
443 | [ 1,2: #z cases z; /2/; |
---|
444 | | 3,4: #i @alignof_fields_pos |
---|
445 | ] qed. |
---|
446 | |
---|
447 | (* * Size of a type, in bytes. *) |
---|
448 | |
---|
449 | let rec sizeof (t: type) : nat ≝ |
---|
450 | match t with |
---|
451 | [ Tvoid ⇒ 1 |
---|
452 | | Tint i _ ⇒ match i with [ I8 ⇒ 1 | I16 ⇒ 2 | I32 ⇒ 4 ] |
---|
453 | | Tfloat f ⇒ match f with [ F32 ⇒ 4 | F64 ⇒ 8 ] |
---|
454 | | Tpointer r _ ⇒ size_pointer r |
---|
455 | | Tarray _ t' n ⇒ sizeof t' * max 1 n |
---|
456 | | Tfunction _ _ ⇒ 1 |
---|
457 | | Tstruct _ fld ⇒ align (max 1 (sizeof_struct fld 0)) (alignof t) |
---|
458 | | Tunion _ fld ⇒ align (max 1 (sizeof_union fld)) (alignof t) |
---|
459 | | Tcomp_ptr r _ ⇒ size_pointer r |
---|
460 | ] |
---|
461 | |
---|
462 | and sizeof_struct (fld: fieldlist) (pos: nat) on fld : nat ≝ |
---|
463 | match fld with |
---|
464 | [ Fnil ⇒ pos |
---|
465 | | Fcons id t fld' ⇒ sizeof_struct fld' (align pos (alignof t) + sizeof t) |
---|
466 | ] |
---|
467 | |
---|
468 | and sizeof_union (fld: fieldlist) : nat ≝ |
---|
469 | match fld with |
---|
470 | [ Fnil ⇒ 0 |
---|
471 | | Fcons id t fld' ⇒ max (sizeof t) (sizeof_union fld') |
---|
472 | ]. |
---|
473 | (* TODO: needs some Z_times results |
---|
474 | lemma sizeof_pos: |
---|
475 | ∀t. sizeof t > 0. |
---|
476 | #t0 |
---|
477 | napply (type_ind2 (λt. sizeof t > 0) |
---|
478 | (λf. sizeof_union f ≥ 0 ∧ ∀pos:Z. pos ≥ 0 → sizeof_struct f pos ≥ 0)); |
---|
479 | [ 1,4,6,9: //; |
---|
480 | | #i cases i;#s //; |
---|
481 | | #f cases f;// |
---|
482 | | #t #n #H whd in ⊢ (?%?); |
---|
483 | Proof. |
---|
484 | intro t0. |
---|
485 | apply (type_ind2 (fun t => sizeof t > 0) |
---|
486 | (fun f => sizeof_union f >= 0 /\ forall pos, pos >= 0 -> sizeof_struct f pos >= 0)); |
---|
487 | intros; simpl; auto; try omega. |
---|
488 | destruct i; omega. |
---|
489 | destruct f; omega. |
---|
490 | apply Zmult_gt_0_compat. auto. generalize (Zmax1 1 z); omega. |
---|
491 | destruct H. |
---|
492 | generalize (align_le (Zmax 1 (sizeof_struct f 0)) (alignof_fields f) (alignof_fields_pos f)). |
---|
493 | generalize (Zmax1 1 (sizeof_struct f 0)). omega. |
---|
494 | generalize (align_le (Zmax 1 (sizeof_union f)) (alignof_fields f) (alignof_fields_pos f)). |
---|
495 | generalize (Zmax1 1 (sizeof_union f)). omega. |
---|
496 | split. omega. auto. |
---|
497 | destruct H0. split; intros. |
---|
498 | generalize (Zmax2 (sizeof t) (sizeof_union f)). omega. |
---|
499 | apply H1. |
---|
500 | generalize (align_le pos (alignof t) (alignof_pos t)). omega. |
---|
501 | Qed. |
---|
502 | |
---|
503 | Lemma sizeof_struct_incr: |
---|
504 | forall fld pos, pos <= sizeof_struct fld pos. |
---|
505 | Proof. |
---|
506 | induction fld; intros; simpl. omega. |
---|
507 | eapply Zle_trans. 2: apply IHfld. |
---|
508 | apply Zle_trans with (align pos (alignof t)). |
---|
509 | apply align_le. apply alignof_pos. |
---|
510 | assert (sizeof t > 0) by apply sizeof_pos. omega. |
---|
511 | Qed. |
---|
512 | |
---|
513 | (** Byte offset for a field in a struct or union. |
---|
514 | Field are laid out consecutively, and padding is inserted |
---|
515 | to align each field to the natural alignment for its type. *) |
---|
516 | |
---|
517 | Open Local Scope string_scope. |
---|
518 | *) |
---|
519 | let rec field_offset_rec (id: ident) (fld: fieldlist) (pos: nat) |
---|
520 | on fld : res nat ≝ |
---|
521 | match fld with |
---|
522 | [ Fnil ⇒ Error ? (*MSG "Unknown field " :: CTX id :: nil*) |
---|
523 | | Fcons id' t fld' ⇒ |
---|
524 | match ident_eq id id' with |
---|
525 | [ inl _ ⇒ OK ? (align pos (alignof t)) |
---|
526 | | inr _ ⇒ field_offset_rec id fld' (align pos (alignof t) + sizeof t) |
---|
527 | ] |
---|
528 | ]. |
---|
529 | |
---|
530 | definition field_offset ≝ λid: ident. λfld: fieldlist. |
---|
531 | field_offset_rec id fld 0. |
---|
532 | |
---|
533 | let rec field_type (id: ident) (fld: fieldlist) on fld : res type := |
---|
534 | match fld with |
---|
535 | [ Fnil ⇒ Error ? (*MSG "Unknown field " :: CTX id :: nil*) |
---|
536 | | Fcons id' t fld' ⇒ match ident_eq id id' with [ inl _ ⇒ OK ? t | inr _ ⇒ field_type id fld'] |
---|
537 | ]. |
---|
538 | |
---|
539 | (* * Some sanity checks about field offsets. First, field offsets are |
---|
540 | within the range of acceptable offsets. *) |
---|
541 | (* |
---|
542 | Remark field_offset_rec_in_range: |
---|
543 | forall id ofs ty fld pos, |
---|
544 | field_offset_rec id fld pos = OK ofs → field_type id fld = OK ty → |
---|
545 | pos <= ofs /\ ofs + sizeof ty <= sizeof_struct fld pos. |
---|
546 | Proof. |
---|
547 | intros until ty. induction fld; simpl. |
---|
548 | congruence. |
---|
549 | destruct (ident_eq id i); intros. |
---|
550 | inv H. inv H0. split. apply align_le. apply alignof_pos. apply sizeof_struct_incr. |
---|
551 | exploit IHfld; eauto. intros [A B]. split; auto. |
---|
552 | eapply Zle_trans; eauto. apply Zle_trans with (align pos (alignof t)). |
---|
553 | apply align_le. apply alignof_pos. generalize (sizeof_pos t). omega. |
---|
554 | Qed. |
---|
555 | |
---|
556 | Lemma field_offset_in_range: |
---|
557 | forall id fld ofs ty, |
---|
558 | field_offset id fld = OK ofs → field_type id fld = OK ty → |
---|
559 | 0 <= ofs /\ ofs + sizeof ty <= sizeof_struct fld 0. |
---|
560 | Proof. |
---|
561 | intros. eapply field_offset_rec_in_range. unfold field_offset in H; eauto. eauto. |
---|
562 | Qed. |
---|
563 | |
---|
564 | (** Second, two distinct fields do not overlap *) |
---|
565 | |
---|
566 | Lemma field_offset_no_overlap: |
---|
567 | forall id1 ofs1 ty1 id2 ofs2 ty2 fld, |
---|
568 | field_offset id1 fld = OK ofs1 → field_type id1 fld = OK ty1 → |
---|
569 | field_offset id2 fld = OK ofs2 → field_type id2 fld = OK ty2 → |
---|
570 | id1 <> id2 → |
---|
571 | ofs1 + sizeof ty1 <= ofs2 \/ ofs2 + sizeof ty2 <= ofs1. |
---|
572 | Proof. |
---|
573 | intros until ty2. intros fld0 A B C D NEQ. |
---|
574 | assert (forall fld pos, |
---|
575 | field_offset_rec id1 fld pos = OK ofs1 -> field_type id1 fld = OK ty1 -> |
---|
576 | field_offset_rec id2 fld pos = OK ofs2 -> field_type id2 fld = OK ty2 -> |
---|
577 | ofs1 + sizeof ty1 <= ofs2 \/ ofs2 + sizeof ty2 <= ofs1). |
---|
578 | induction fld; intro pos; simpl. congruence. |
---|
579 | destruct (ident_eq id1 i); destruct (ident_eq id2 i). |
---|
580 | congruence. |
---|
581 | subst i. intros. inv H; inv H0. |
---|
582 | exploit field_offset_rec_in_range. eexact H1. eauto. tauto. |
---|
583 | subst i. intros. inv H1; inv H2. |
---|
584 | exploit field_offset_rec_in_range. eexact H. eauto. tauto. |
---|
585 | intros. eapply IHfld; eauto. |
---|
586 | |
---|
587 | apply H with fld0 0; auto. |
---|
588 | Qed. |
---|
589 | |
---|
590 | (** Third, if a struct is a prefix of another, the offsets of fields |
---|
591 | in common is the same. *) |
---|
592 | |
---|
593 | Fixpoint fieldlist_app (fld1 fld2: fieldlist) {struct fld1} : fieldlist := |
---|
594 | match fld1 with |
---|
595 | | Fnil ⇒ fld2 |
---|
596 | | Fcons id ty fld ⇒ Fcons id ty (fieldlist_app fld fld2) |
---|
597 | end. |
---|
598 | |
---|
599 | Lemma field_offset_prefix: |
---|
600 | forall id ofs fld2 fld1, |
---|
601 | field_offset id fld1 = OK ofs → |
---|
602 | field_offset id (fieldlist_app fld1 fld2) = OK ofs. |
---|
603 | Proof. |
---|
604 | intros until fld2. |
---|
605 | assert (forall fld1 pos, |
---|
606 | field_offset_rec id fld1 pos = OK ofs -> |
---|
607 | field_offset_rec id (fieldlist_app fld1 fld2) pos = OK ofs). |
---|
608 | induction fld1; intros pos; simpl. congruence. |
---|
609 | destruct (ident_eq id i); auto. |
---|
610 | intros. unfold field_offset; auto. |
---|
611 | Qed. |
---|
612 | *) |
---|
613 | (* * The [access_mode] function describes how a variable of the given |
---|
614 | type must be accessed: |
---|
615 | - [By_value ch]: access by value, i.e. by loading from the address |
---|
616 | of the variable using the memory chunk [ch]; |
---|
617 | - [By_reference]: access by reference, i.e. by just returning |
---|
618 | the address of the variable; |
---|
619 | - [By_nothing]: no access is possible, e.g. for the [void] type. |
---|
620 | |
---|
621 | We currently do not support 64-bit integers and 128-bit floats, so these |
---|
622 | have an access mode of [By_nothing]. |
---|
623 | *) |
---|
624 | |
---|
625 | inductive mode: Type[0] ≝ |
---|
626 | | By_value: memory_chunk → mode |
---|
627 | | By_reference: region → mode |
---|
628 | | By_nothing: mode. |
---|
629 | |
---|
630 | definition access_mode : type → mode ≝ λty. |
---|
631 | match ty with |
---|
632 | [ Tint i s ⇒ |
---|
633 | match i with [ I8 ⇒ |
---|
634 | match s with [ Signed ⇒ By_value Mint8signed |
---|
635 | | Unsigned ⇒ By_value Mint8unsigned ] |
---|
636 | | I16 ⇒ |
---|
637 | match s with [ Signed ⇒ By_value Mint16signed |
---|
638 | | Unsigned ⇒ By_value Mint16unsigned ] |
---|
639 | | I32 ⇒ By_value Mint32 ] |
---|
640 | | Tfloat f ⇒ match f with [ F32 ⇒ By_value Mfloat32 |
---|
641 | | F64 ⇒ By_value Mfloat64 ] |
---|
642 | | Tvoid ⇒ By_nothing |
---|
643 | | Tpointer r _ ⇒ By_value (Mpointer r) |
---|
644 | | Tarray r _ _ ⇒ By_reference r |
---|
645 | | Tfunction _ _ ⇒ By_reference Code |
---|
646 | | Tstruct _ fList ⇒ By_nothing |
---|
647 | | Tunion _ fList ⇒ By_nothing |
---|
648 | | Tcomp_ptr r _ ⇒ By_value (Mpointer r) |
---|
649 | ]. |
---|
650 | |
---|
651 | (* * Classification of arithmetic operations and comparisons. |
---|
652 | The following [classify_] functions take as arguments the types |
---|
653 | of the arguments of an operation. They return enough information |
---|
654 | to resolve overloading for this operator applications, such as |
---|
655 | ``both arguments are floats'', or ``the first is a pointer |
---|
656 | and the second is an integer''. These functions are used to resolve |
---|
657 | overloading both in the dynamic semantics (module [Csem]) and in the |
---|
658 | compiler (module [Cshmgen]). |
---|
659 | *) |
---|
660 | |
---|
661 | inductive classify_add_cases : Type[0] ≝ |
---|
662 | | add_case_ii: classify_add_cases (**r int , int *) |
---|
663 | | add_case_ff: classify_add_cases (**r float , float *) |
---|
664 | | add_case_pi: type → classify_add_cases (**r ptr or array, int *) |
---|
665 | | add_case_ip: type → classify_add_cases (**r int, ptr or array *) |
---|
666 | | add_default: classify_add_cases. (**r other *) |
---|
667 | |
---|
668 | definition classify_add ≝ λty1: type. λty2: type. |
---|
669 | (* |
---|
670 | match ty1, ty2 with |
---|
671 | [ Tint _ _, Tint _ _ ⇒ add_case_ii |
---|
672 | | Tfloat _, Tfloat _ ⇒ add_case_ff |
---|
673 | | Tpointer ty, Tint _ _ ⇒ add_case_pi ty |
---|
674 | | Tarray ty _, Tint _ _ ⇒ add_case_pi ty |
---|
675 | | Tint _ _, Tpointer ty ⇒ add_case_ip ty |
---|
676 | | Tint _ _, Tarray ty _ ⇒ add_case_ip ty |
---|
677 | | _, _ ⇒ add_default |
---|
678 | ]. |
---|
679 | *) |
---|
680 | match ty1 with |
---|
681 | [ Tint _ _ ⇒ |
---|
682 | match ty2 with |
---|
683 | [ Tint _ _ ⇒ add_case_ii |
---|
684 | | Tpointer _ ty ⇒ add_case_ip ty |
---|
685 | | Tarray _ ty _ ⇒ add_case_ip ty |
---|
686 | | _ ⇒ add_default ] |
---|
687 | | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ add_case_ff | _ ⇒ add_default ] |
---|
688 | | Tpointer _ ty ⇒ match ty2 with [Tint _ _ ⇒ add_case_pi ty | _ ⇒ add_default ] |
---|
689 | | Tarray _ ty _ ⇒ match ty2 with [Tint _ _ ⇒ add_case_pi ty | _ ⇒ add_default ] |
---|
690 | | _ ⇒ add_default |
---|
691 | ]. |
---|
692 | |
---|
693 | inductive classify_sub_cases : Type[0] ≝ |
---|
694 | | sub_case_ii: classify_sub_cases (**r int , int *) |
---|
695 | | sub_case_ff: classify_sub_cases (**r float , float *) |
---|
696 | | sub_case_pi: type → classify_sub_cases (**r ptr or array , int *) |
---|
697 | | sub_case_pp: type → classify_sub_cases (**r ptr or array , ptr or array *) |
---|
698 | | sub_default: classify_sub_cases . (**r other *) |
---|
699 | |
---|
700 | definition classify_sub ≝ λty1: type. λty2: type. |
---|
701 | (* match ty1, ty2 with |
---|
702 | | Tint _ _ , Tint _ _ ⇒ sub_case_ii |
---|
703 | | Tfloat _ , Tfloat _ ⇒ sub_case_ff |
---|
704 | | Tpointer ty , Tint _ _ ⇒ sub_case_pi ty |
---|
705 | | Tarray ty _ , Tint _ _ ⇒ sub_case_pi ty |
---|
706 | | Tpointer ty , Tpointer _ ⇒ sub_case_pp ty |
---|
707 | | Tpointer ty , Tarray _ _⇒ sub_case_pp ty |
---|
708 | | Tarray ty _ , Tpointer _ ⇒ sub_case_pp ty |
---|
709 | | Tarray ty _ , Tarray _ _ ⇒ sub_case_pp ty |
---|
710 | | _ ,_ ⇒ sub_default |
---|
711 | end. |
---|
712 | *) |
---|
713 | match ty1 with |
---|
714 | [ Tint _ _ ⇒ match ty2 with [ Tint _ _ ⇒ sub_case_ii | _ ⇒ sub_default ] |
---|
715 | | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ sub_case_ff | _ ⇒ sub_default ] |
---|
716 | | Tpointer _ ty ⇒ |
---|
717 | match ty2 with |
---|
718 | [ Tint _ _ ⇒ sub_case_pi ty |
---|
719 | | Tpointer _ _ ⇒ sub_case_pp ty |
---|
720 | | Tarray _ _ _ ⇒ sub_case_pp ty |
---|
721 | | _ ⇒ sub_default ] |
---|
722 | | Tarray _ ty _ ⇒ |
---|
723 | match ty2 with |
---|
724 | [ Tint _ _ ⇒ sub_case_pi ty |
---|
725 | | Tpointer _ _ ⇒ sub_case_pp ty |
---|
726 | | Tarray _ _ _ ⇒ sub_case_pp ty |
---|
727 | | _ ⇒ sub_default ] |
---|
728 | | _ ⇒ sub_default |
---|
729 | ]. |
---|
730 | |
---|
731 | inductive classify_mul_cases : Type[0] ≝ |
---|
732 | | mul_case_ii: classify_mul_cases (**r int , int *) |
---|
733 | | mul_case_ff: classify_mul_cases (**r float , float *) |
---|
734 | | mul_default: classify_mul_cases . (**r other *) |
---|
735 | |
---|
736 | definition classify_mul ≝ λty1: type. λty2: type. |
---|
737 | match ty1 with |
---|
738 | [ Tint _ _ ⇒ match ty2 with [ Tint _ _ ⇒ mul_case_ii | _ ⇒ mul_default ] |
---|
739 | | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ mul_case_ff | _ ⇒ mul_default ] |
---|
740 | | _ ⇒ mul_default |
---|
741 | ]. |
---|
742 | (* |
---|
743 | match ty1,ty2 with |
---|
744 | | Tint _ _, Tint _ _ ⇒ mul_case_ii |
---|
745 | | Tfloat _ , Tfloat _ ⇒ mul_case_ff |
---|
746 | | _,_ ⇒ mul_default |
---|
747 | end. |
---|
748 | *) |
---|
749 | inductive classify_div_cases : Type[0] ≝ |
---|
750 | | div_case_I32unsi: classify_div_cases (**r unsigned int32 , int *) |
---|
751 | | div_case_ii: classify_div_cases (**r int , int *) |
---|
752 | | div_case_ff: classify_div_cases (**r float , float *) |
---|
753 | | div_default: classify_div_cases. (**r other *) |
---|
754 | |
---|
755 | definition classify_32un_aux ≝ λT:Type[0].λi.λs.λr1:T.λr2:T. |
---|
756 | match i with [ I32 ⇒ |
---|
757 | match s with [ Unsigned ⇒ r1 | _ ⇒ r2 ] |
---|
758 | | _ ⇒ r2 ]. |
---|
759 | |
---|
760 | definition classify_div ≝ λty1: type. λty2: type. |
---|
761 | match ty1 with |
---|
762 | [ Tint i1 s1 ⇒ |
---|
763 | match ty2 with |
---|
764 | [ Tint i2 s2 ⇒ |
---|
765 | classify_32un_aux ? i1 s1 div_case_I32unsi |
---|
766 | (classify_32un_aux ? i2 s2 div_case_I32unsi div_case_ii) |
---|
767 | | _ ⇒ div_default ] |
---|
768 | | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ div_case_ff | _ ⇒ div_default ] |
---|
769 | | _ ⇒ div_default |
---|
770 | ]. |
---|
771 | (* |
---|
772 | definition classify_div ≝ λty1: type. λty2: type. |
---|
773 | match ty1,ty2 with |
---|
774 | | Tint I32 Unsigned, Tint _ _ ⇒ div_case_I32unsi |
---|
775 | | Tint _ _ , Tint I32 Unsigned ⇒ div_case_I32unsi |
---|
776 | | Tint _ _ , Tint _ _ ⇒ div_case_ii |
---|
777 | | Tfloat _ , Tfloat _ ⇒ div_case_ff |
---|
778 | | _ ,_ ⇒ div_default |
---|
779 | end. |
---|
780 | *) |
---|
781 | inductive classify_mod_cases : Type[0] ≝ |
---|
782 | | mod_case_I32unsi: classify_mod_cases (**r unsigned I32 , int *) |
---|
783 | | mod_case_ii: classify_mod_cases (**r int , int *) |
---|
784 | | mod_default: classify_mod_cases . (**r other *) |
---|
785 | |
---|
786 | definition classify_mod ≝ λty1:type. λty2:type. |
---|
787 | match ty1 with |
---|
788 | [ Tint i1 s1 ⇒ |
---|
789 | match ty2 with |
---|
790 | [ Tint i2 s2 ⇒ |
---|
791 | classify_32un_aux ? i1 s1 mod_case_I32unsi |
---|
792 | (classify_32un_aux ? i2 s2 mod_case_I32unsi mod_case_ii) |
---|
793 | | _ ⇒ mod_default ] |
---|
794 | | _ ⇒ mod_default |
---|
795 | ]. |
---|
796 | (* |
---|
797 | Definition classify_mod (ty1: type) (ty2: type) := |
---|
798 | match ty1,ty2 with |
---|
799 | | Tint I32 Unsigned , Tint _ _ ⇒ mod_case_I32unsi |
---|
800 | | Tint _ _ , Tint I32 Unsigned ⇒ mod_case_I32unsi |
---|
801 | | Tint _ _ , Tint _ _ ⇒ mod_case_ii |
---|
802 | | _ , _ ⇒ mod_default |
---|
803 | end . |
---|
804 | *) |
---|
805 | inductive classify_shr_cases :Type[0] ≝ |
---|
806 | | shr_case_I32unsi: classify_shr_cases (**r unsigned I32 , int *) |
---|
807 | | shr_case_ii :classify_shr_cases (**r int , int *) |
---|
808 | | shr_default : classify_shr_cases . (**r other *) |
---|
809 | |
---|
810 | definition classify_shr ≝ λty1: type. λty2: type. |
---|
811 | match ty1 with |
---|
812 | [ Tint i1 s1 ⇒ |
---|
813 | match ty2 with |
---|
814 | [ Tint _ _ ⇒ |
---|
815 | classify_32un_aux ? i1 s1 shr_case_I32unsi shr_case_ii |
---|
816 | | _ ⇒ shr_default ] |
---|
817 | | _ ⇒ shr_default |
---|
818 | ]. |
---|
819 | |
---|
820 | (* |
---|
821 | Definition classify_shr (ty1: type) (ty2: type) := |
---|
822 | match ty1,ty2 with |
---|
823 | | Tint I32 Unsigned , Tint _ _ ⇒ shr_case_I32unsi |
---|
824 | | Tint _ _ , Tint _ _ ⇒ shr_case_ii |
---|
825 | | _ , _ ⇒ shr_default |
---|
826 | end. |
---|
827 | *) |
---|
828 | inductive classify_cmp_cases : Type[0] ≝ |
---|
829 | | cmp_case_I32unsi: classify_cmp_cases (**r unsigned I32 , int *) |
---|
830 | | cmp_case_ipip: classify_cmp_cases (**r int|ptr|array , int|ptr|array*) |
---|
831 | | cmp_case_ff: classify_cmp_cases (**r float , float *) |
---|
832 | | cmp_default: classify_cmp_cases . (**r other *) |
---|
833 | |
---|
834 | definition classify_cmp ≝ λty1:type. λty2:type. |
---|
835 | match ty1 with |
---|
836 | [ Tint i1 s1 ⇒ |
---|
837 | match ty2 with |
---|
838 | [ Tint i2 s2 ⇒ |
---|
839 | classify_32un_aux ? i1 s1 cmp_case_I32unsi |
---|
840 | (classify_32un_aux ? i2 s2 cmp_case_I32unsi cmp_case_ipip) |
---|
841 | | _ ⇒ cmp_default ] |
---|
842 | | Tfloat _ ⇒ match ty2 with [ Tfloat _ ⇒ cmp_case_ff | _ ⇒ cmp_default ] |
---|
843 | | Tpointer _ _ ⇒ |
---|
844 | match ty2 with |
---|
845 | [ Tint _ _ ⇒ cmp_case_ipip |
---|
846 | | Tpointer _ _ ⇒ cmp_case_ipip |
---|
847 | | Tarray _ _ _ ⇒ cmp_case_ipip |
---|
848 | | _ ⇒ cmp_default ] |
---|
849 | | Tarray _ _ _ ⇒ |
---|
850 | match ty2 with |
---|
851 | [ Tint _ _ ⇒ cmp_case_ipip |
---|
852 | | Tpointer _ _ ⇒ cmp_case_ipip |
---|
853 | | Tarray _ _ _ ⇒ cmp_case_ipip |
---|
854 | | _ ⇒ cmp_default ] |
---|
855 | | _ ⇒ cmp_default |
---|
856 | ]. |
---|
857 | |
---|
858 | (* |
---|
859 | Definition classify_cmp (ty1: type) (ty2: type) := |
---|
860 | match ty1,ty2 with |
---|
861 | | Tint I32 Unsigned , Tint _ _ ⇒ cmp_case_I32unsi |
---|
862 | | Tint _ _ , Tint I32 Unsigned ⇒ cmp_case_I32unsi |
---|
863 | | Tint _ _ , Tint _ _ ⇒ cmp_case_ipip |
---|
864 | | Tfloat _ , Tfloat _ ⇒ cmp_case_ff |
---|
865 | | Tpointer _ , Tint _ _ ⇒ cmp_case_ipip |
---|
866 | | Tarray _ _ , Tint _ _ ⇒ cmp_case_ipip |
---|
867 | | Tpointer _ , Tpointer _ ⇒ cmp_case_ipip |
---|
868 | | Tpointer _ , Tarray _ _ ⇒ cmp_case_ipip |
---|
869 | | Tarray _ _ ,Tpointer _ ⇒ cmp_case_ipip |
---|
870 | | Tarray _ _ ,Tarray _ _ ⇒ cmp_case_ipip |
---|
871 | | _ , _ ⇒ cmp_default |
---|
872 | end. |
---|
873 | *) |
---|
874 | inductive classify_fun_cases : Type[0] ≝ |
---|
875 | | fun_case_f: typelist → type → classify_fun_cases (**r (pointer to) function *) |
---|
876 | | fun_default: classify_fun_cases . (**r other *) |
---|
877 | |
---|
878 | definition classify_fun ≝ λty: type. |
---|
879 | match ty with |
---|
880 | [ Tfunction args res ⇒ fun_case_f args res |
---|
881 | | Tpointer _ ty' ⇒ match ty' with [ Tfunction args res ⇒ fun_case_f args res |
---|
882 | | _ ⇒ fun_default |
---|
883 | ] |
---|
884 | | _ ⇒ fun_default |
---|
885 | ]. |
---|
886 | |
---|
887 | (* * Translating Clight types to Cminor types, function signatures, |
---|
888 | and external functions. *) |
---|
889 | |
---|
890 | definition typ_of_type : type → typ ≝ λt. |
---|
891 | match t with |
---|
892 | [ Tfloat _ ⇒ ASTfloat |
---|
893 | | _ ⇒ ASTint |
---|
894 | ]. |
---|
895 | |
---|
896 | definition opttyp_of_type : type → option typ ≝ λt. |
---|
897 | match t with |
---|
898 | [ Tvoid ⇒ None ? |
---|
899 | | Tfloat _ ⇒ Some ? ASTfloat |
---|
900 | | _ ⇒ Some ? ASTint |
---|
901 | ]. |
---|
902 | |
---|
903 | let rec typlist_of_typelist (tl: typelist) : list typ ≝ |
---|
904 | match tl with |
---|
905 | [ Tnil ⇒ nil ? |
---|
906 | | Tcons hd tl ⇒ typ_of_type hd :: typlist_of_typelist tl |
---|
907 | ]. |
---|
908 | |
---|
909 | definition signature_of_type : typelist → type → signature ≝ λargs. λres. |
---|
910 | mk_signature (typlist_of_typelist args) (opttyp_of_type res). |
---|
911 | |
---|
912 | definition external_function |
---|
913 | : ident → typelist → type → external_function ≝ λid. λtargs. λtres. |
---|
914 | mk_external_function id (signature_of_type targs tres). |
---|