1 | (* *********************************************************************) |
---|
2 | (* *) |
---|
3 | (* The Compcert verified compiler *) |
---|
4 | (* *) |
---|
5 | (* Xavier Leroy, INRIA Paris-Rocquencourt *) |
---|
6 | (* *) |
---|
7 | (* Copyright Institut National de Recherche en Informatique et en *) |
---|
8 | (* Automatique. All rights reserved. This file is distributed *) |
---|
9 | (* under the terms of the GNU General Public License as published by *) |
---|
10 | (* the Free Software Foundation, either version 2 of the License, or *) |
---|
11 | (* (at your option) any later version. This file is also distributed *) |
---|
12 | (* under the terms of the INRIA Non-Commercial License Agreement. *) |
---|
13 | (* *) |
---|
14 | (* *********************************************************************) |
---|
15 | |
---|
16 | (* * Dynamic semantics for the Clight language *) |
---|
17 | |
---|
18 | (*include "Coqlib.ma".*) |
---|
19 | (*include "Errors.ma".*) |
---|
20 | (*include "Integers.ma".*) |
---|
21 | (*include "Floats.ma".*) |
---|
22 | (*include "Values.ma".*) |
---|
23 | (*include "AST.ma".*) |
---|
24 | (*include "Mem.ma".*) |
---|
25 | include "common/Globalenvs.ma". |
---|
26 | include "Clight/Csyntax.ma". |
---|
27 | (*include "Events.ma".*) |
---|
28 | include "common/Smallstep.ma". |
---|
29 | include "Clight/ClassifyOp.ma". |
---|
30 | |
---|
31 | (* * * Semantics of type-dependent operations *) |
---|
32 | |
---|
33 | (* * Interpretation of values as truth values. |
---|
34 | Non-zero integers, non-zero floats and non-null pointers are |
---|
35 | considered as true. The integer zero (which also represents |
---|
36 | the null pointer) and the float 0.0 are false. *) |
---|
37 | |
---|
38 | inductive is_false: val → type → Prop ≝ |
---|
39 | | is_false_int: ∀sz,sg. |
---|
40 | is_false (Vint sz (zero ?)) (Tint sz sg) |
---|
41 | | is_false_pointer: ∀r,r',t. |
---|
42 | is_false (Vnull r) (Tpointer r' t) |
---|
43 | | is_false_float: ∀sz. |
---|
44 | is_false (Vfloat Fzero) (Tfloat sz). |
---|
45 | |
---|
46 | inductive is_true: val → type → Prop ≝ |
---|
47 | | is_true_int_int: ∀sz,sg,n. |
---|
48 | n ≠ (zero ?) → |
---|
49 | is_true (Vint sz n) (Tint sz sg) |
---|
50 | | is_true_pointer_pointer: ∀ptr,s,t. |
---|
51 | is_true (Vptr ptr) (Tpointer s t) |
---|
52 | | is_true_float: ∀f,sz. |
---|
53 | f ≠ Fzero → |
---|
54 | is_true (Vfloat f) (Tfloat sz). |
---|
55 | |
---|
56 | inductive bool_of_val : val → type → val → Prop ≝ |
---|
57 | | bool_of_val_true: ∀v,ty. |
---|
58 | is_true v ty → |
---|
59 | bool_of_val v ty Vtrue |
---|
60 | | bool_of_val_false: ∀v,ty. |
---|
61 | is_false v ty → |
---|
62 | bool_of_val v ty Vfalse. |
---|
63 | |
---|
64 | (* * The following [sem_] functions compute the result of an operator |
---|
65 | application. Since operators are overloaded, the result depends |
---|
66 | both on the static types of the arguments and on their run-time values. |
---|
67 | Unlike in C, automatic conversions between integers and floats |
---|
68 | are not performed. For instance, [e1 + e2] is undefined if [e1] |
---|
69 | is a float and [e2] an integer. The Clight producer must have explicitly |
---|
70 | promoted [e2] to a float. *) |
---|
71 | |
---|
72 | let rec sem_neg (v: val) (ty: type) : option val ≝ |
---|
73 | match ty with |
---|
74 | [ Tint sz _ ⇒ |
---|
75 | match v with |
---|
76 | [ Vint sz' n ⇒ if eq_intsize sz sz' |
---|
77 | then Some ? (Vint ? (two_complement_negation ? n)) |
---|
78 | else None ? |
---|
79 | | _ ⇒ None ? |
---|
80 | ] |
---|
81 | | Tfloat _ ⇒ |
---|
82 | match v with |
---|
83 | [ Vfloat f ⇒ Some ? (Vfloat (Fneg f)) |
---|
84 | | _ ⇒ None ? |
---|
85 | ] |
---|
86 | | _ ⇒ None ? |
---|
87 | ]. |
---|
88 | |
---|
89 | let rec sem_notint (v: val) : option val ≝ |
---|
90 | match v with |
---|
91 | [ Vint sz n ⇒ Some ? (Vint ? (exclusive_disjunction_bv ? n (mone ?))) (* XXX *) |
---|
92 | | _ ⇒ None ? |
---|
93 | ]. |
---|
94 | |
---|
95 | let rec sem_notbool (v: val) (ty: type) : option val ≝ |
---|
96 | match ty with |
---|
97 | [ Tint sz _ ⇒ |
---|
98 | match v with |
---|
99 | [ Vint sz' n ⇒ if eq_intsize sz sz' |
---|
100 | then Some ? (of_bool (eq_bv ? n (zero ?))) |
---|
101 | else None ? |
---|
102 | | _ ⇒ None ? |
---|
103 | ] |
---|
104 | | Tpointer _ _ ⇒ |
---|
105 | match v with |
---|
106 | [ Vptr _ ⇒ Some ? Vfalse |
---|
107 | | Vnull _ ⇒ Some ? Vtrue |
---|
108 | | _ ⇒ None ? |
---|
109 | ] |
---|
110 | | Tfloat _ ⇒ |
---|
111 | match v with |
---|
112 | [ Vfloat f ⇒ Some ? (of_bool (Fcmp Ceq f Fzero)) |
---|
113 | | _ ⇒ None ? |
---|
114 | ] |
---|
115 | | _ ⇒ None ? |
---|
116 | ]. |
---|
117 | |
---|
118 | let rec sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val ≝ |
---|
119 | match classify_add t1 t2 with |
---|
120 | [ add_case_ii _ _ ⇒ (**r integer addition *) |
---|
121 | match v1 with |
---|
122 | [ Vint sz1 n1 ⇒ match v2 with |
---|
123 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
124 | (λn1. Some ? (Vint ? (addition_n ? n1 n2))) (None ?) |
---|
125 | | _ ⇒ None ? ] |
---|
126 | | _ ⇒ None ? ] |
---|
127 | | add_case_ff _ ⇒ (**r float addition *) |
---|
128 | match v1 with |
---|
129 | [ Vfloat n1 ⇒ match v2 with |
---|
130 | [ Vfloat n2 ⇒ Some ? (Vfloat (Fadd n1 n2)) |
---|
131 | | _ ⇒ None ? ] |
---|
132 | | _ ⇒ None ? ] |
---|
133 | | add_case_pi _ _ ty _ _ ⇒ (**r pointer plus integer *) |
---|
134 | match v1 with |
---|
135 | [ Vptr ptr1 ⇒ match v2 with |
---|
136 | [ Vint sz2 n2 ⇒ Some ? (Vptr (shift_pointer_n ? ptr1 (sizeof ty) n2)) |
---|
137 | | _ ⇒ None ? ] |
---|
138 | | Vnull r ⇒ match v2 with |
---|
139 | [ Vint sz2 n2 ⇒ if eq_bv ? n2 (zero ?) then Some ? (Vnull r) else None ? |
---|
140 | | _ ⇒ None ? ] |
---|
141 | | _ ⇒ None ? ] |
---|
142 | | add_case_ip _ _ _ _ ty ⇒ (**r integer plus pointer *) |
---|
143 | match v1 with |
---|
144 | [ Vint sz1 n1 ⇒ match v2 with |
---|
145 | [ Vptr ptr2 ⇒ Some ? (Vptr (shift_pointer_n ? ptr2 (sizeof ty) n1)) |
---|
146 | | Vnull r ⇒ if eq_bv ? n1 (zero ?) then Some ? (Vnull r) else None ? |
---|
147 | | _ ⇒ None ? ] |
---|
148 | | _ ⇒ None ? ] |
---|
149 | | add_default _ _ ⇒ None ? |
---|
150 | ]. |
---|
151 | |
---|
152 | let rec sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val ≝ |
---|
153 | match classify_sub t1 t2 with |
---|
154 | [ sub_case_ii _ _ ⇒ (**r integer subtraction *) |
---|
155 | match v1 with |
---|
156 | [ Vint sz1 n1 ⇒ match v2 with |
---|
157 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
158 | (λn1.Some ? (Vint sz2 (subtraction ? n1 n2))) (None ?) |
---|
159 | | _ ⇒ None ? ] |
---|
160 | | _ ⇒ None ? ] |
---|
161 | | sub_case_ff _ ⇒ (**r float subtraction *) |
---|
162 | match v1 with |
---|
163 | [ Vfloat f1 ⇒ match v2 with |
---|
164 | [ Vfloat f2 ⇒ Some ? (Vfloat (Fsub f1 f2)) |
---|
165 | | _ ⇒ None ? ] |
---|
166 | | _ ⇒ None ? ] |
---|
167 | | sub_case_pi _ _ ty _ _ ⇒ (**r pointer minus integer *) |
---|
168 | match v1 with |
---|
169 | [ Vptr ptr1 ⇒ match v2 with |
---|
170 | [ Vint sz2 n2 ⇒ Some ? (Vptr (neg_shift_pointer_n ? ptr1 (sizeof ty) n2)) |
---|
171 | | _ ⇒ None ? ] |
---|
172 | | Vnull r ⇒ match v2 with |
---|
173 | [ Vint sz2 n2 ⇒ if eq_bv ? n2 (zero ?) then Some ? (Vnull r) else None ? |
---|
174 | | _ ⇒ None ? ] |
---|
175 | | _ ⇒ None ? ] |
---|
176 | | sub_case_pp _ _ _ ty _ _ ⇒ (**r pointer minus pointer *) |
---|
177 | match v1 with |
---|
178 | [ Vptr ptr1 ⇒ match v2 with |
---|
179 | [ Vptr ptr2 ⇒ |
---|
180 | if eq_block (pblock ptr1) (pblock ptr2) then |
---|
181 | if eqb (sizeof ty) 0 then None ? |
---|
182 | else match division_u ? (sub_offset ? (poff ptr1) (poff ptr2)) (repr (sizeof ty)) with |
---|
183 | [ None ⇒ None ? |
---|
184 | | Some v ⇒ Some ? (Vint I32 v) (* XXX choose size from result type? *) |
---|
185 | ] |
---|
186 | else None ? |
---|
187 | | _ ⇒ None ? ] |
---|
188 | | Vnull r ⇒ match v2 with [ Vnull r' ⇒ Some ? (Vint I32 (*XXX*) (zero ?)) | _ ⇒ None ? ] |
---|
189 | | _ ⇒ None ? ] |
---|
190 | | sub_default _ _ ⇒ None ? |
---|
191 | ]. |
---|
192 | |
---|
193 | let rec sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val ≝ |
---|
194 | match classify_aop t1 t2 with |
---|
195 | [ aop_case_ii _ _ ⇒ |
---|
196 | match v1 with |
---|
197 | [ Vint sz1 n1 ⇒ match v2 with |
---|
198 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
199 | (λn1. Some ? (Vint sz2 (\snd (split ??? (multiplication ? n1 n2))))) (None ?) |
---|
200 | | _ ⇒ None ? ] |
---|
201 | | _ ⇒ None ? ] |
---|
202 | | aop_case_ff _ ⇒ |
---|
203 | match v1 with |
---|
204 | [ Vfloat f1 ⇒ match v2 with |
---|
205 | [ Vfloat f2 ⇒ Some ? (Vfloat (Fmul f1 f2)) |
---|
206 | | _ ⇒ None ? ] |
---|
207 | | _ ⇒ None ? ] |
---|
208 | | aop_default _ _ ⇒ |
---|
209 | None ? |
---|
210 | ]. |
---|
211 | |
---|
212 | let rec sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val ≝ |
---|
213 | match classify_aop t1 t2 with |
---|
214 | [ aop_case_ii _ sg ⇒ |
---|
215 | match v1 with |
---|
216 | [ Vint sz1 n1 ⇒ match v2 with |
---|
217 | [ Vint sz2 n2 ⇒ |
---|
218 | match sg with |
---|
219 | [ Signed ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
220 | (λn1. option_map … (Vint ?) (division_s ? n1 n2)) (None ?) |
---|
221 | | Unsigned ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
222 | (λn1. option_map … (Vint ?) (division_u ? n1 n2)) (None ?) |
---|
223 | ] |
---|
224 | | _ ⇒ None ? ] |
---|
225 | | _ ⇒ None ? ] |
---|
226 | | aop_case_ff _ ⇒ |
---|
227 | match v1 with |
---|
228 | [ Vfloat f1 ⇒ match v2 with |
---|
229 | [ Vfloat f2 ⇒ Some ? (Vfloat(Fdiv f1 f2)) |
---|
230 | | _ ⇒ None ? ] |
---|
231 | | _ ⇒ None ? ] |
---|
232 | | aop_default _ _ ⇒ |
---|
233 | None ? |
---|
234 | ]. |
---|
235 | |
---|
236 | let rec sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val ≝ |
---|
237 | match classify_aop t1 t2 with |
---|
238 | [ aop_case_ii sz sg ⇒ |
---|
239 | match v1 with |
---|
240 | [ Vint sz1 n1 ⇒ match v2 with |
---|
241 | [ Vint sz2 n2 ⇒ |
---|
242 | match sg with |
---|
243 | [ Unsigned ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
244 | (λn1. option_map … (Vint ?) (modulus_u ? n1 n2)) (None ?) |
---|
245 | | Signed ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
246 | (λn1. option_map … (Vint ?) (modulus_s ? n1 n2)) (None ?) |
---|
247 | ] |
---|
248 | | _ ⇒ None ? ] |
---|
249 | | _ ⇒ None ? ] |
---|
250 | | _ ⇒ |
---|
251 | None ? |
---|
252 | ]. |
---|
253 | |
---|
254 | let rec sem_and (v1,v2: val) : option val ≝ |
---|
255 | match v1 with |
---|
256 | [ Vint sz1 n1 ⇒ match v2 with |
---|
257 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
258 | (λn1. Some ? (Vint ? (conjunction_bv ? n1 n2))) (None ?) |
---|
259 | | _ ⇒ None ? ] |
---|
260 | | _ ⇒ None ? |
---|
261 | ]. |
---|
262 | |
---|
263 | let rec sem_or (v1,v2: val) : option val ≝ |
---|
264 | match v1 with |
---|
265 | [ Vint sz1 n1 ⇒ match v2 with |
---|
266 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
267 | (λn1. Some ? (Vint ? (inclusive_disjunction_bv ? n1 n2))) (None ?) |
---|
268 | | _ ⇒ None ? ] |
---|
269 | | _ ⇒ None ? |
---|
270 | ]. |
---|
271 | |
---|
272 | let rec sem_xor (v1,v2: val) : option val ≝ |
---|
273 | match v1 with |
---|
274 | [ Vint sz1 n1 ⇒ match v2 with |
---|
275 | [ Vint sz2 n2 ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
276 | (λn1. Some ? (Vint ? (exclusive_disjunction_bv ? n1 n2))) (None ?) |
---|
277 | | _ ⇒ None ? ] |
---|
278 | | _ ⇒ None ? |
---|
279 | ]. |
---|
280 | |
---|
281 | let rec sem_shl (v1,v2: val): option val ≝ |
---|
282 | match v1 with |
---|
283 | [ Vint sz1 n1 ⇒ match v2 with |
---|
284 | [ Vint sz2 n2 ⇒ |
---|
285 | if lt_u ? n2 (bitvector_of_nat … (bitsize_of_intsize sz1)) |
---|
286 | then Some ? (Vint sz1 (shift_left ?? (nat_of_bitvector … n2) n1 false)) |
---|
287 | else None ? |
---|
288 | | _ ⇒ None ? ] |
---|
289 | | _ ⇒ None ? ]. |
---|
290 | |
---|
291 | let rec sem_shr (v1: val) (t1: type) (v2: val) (t2: type): option val ≝ |
---|
292 | match classify_aop t1 t2 with |
---|
293 | [ aop_case_ii _ sg ⇒ |
---|
294 | match v1 with |
---|
295 | [ Vint sz1 n1 ⇒ match v2 with |
---|
296 | [ Vint sz2 n2 ⇒ |
---|
297 | match sg with |
---|
298 | [ Unsigned ⇒ |
---|
299 | if lt_u ? n2 (bitvector_of_nat … (bitsize_of_intsize sz1)) |
---|
300 | then Some ? (Vint ? (shift_right ?? (nat_of_bitvector … n2) n1 false)) |
---|
301 | else None ? |
---|
302 | | Signed ⇒ |
---|
303 | if lt_u ? n2 (bitvector_of_nat … (bitsize_of_intsize sz1)) |
---|
304 | then Some ? (Vint ? (shift_right ?? (nat_of_bitvector … n2) n1 (head' … n1))) |
---|
305 | else None ? |
---|
306 | ] |
---|
307 | | _ ⇒ None ? ] |
---|
308 | | _ ⇒ None ? ] |
---|
309 | | _ ⇒ |
---|
310 | None ? |
---|
311 | ]. |
---|
312 | |
---|
313 | let rec sem_cmp_mismatch (c: comparison): option val ≝ |
---|
314 | match c with |
---|
315 | [ Ceq ⇒ Some ? Vfalse |
---|
316 | | Cne ⇒ Some ? Vtrue |
---|
317 | | _ ⇒ None ? |
---|
318 | ]. |
---|
319 | |
---|
320 | let rec sem_cmp_match (c: comparison): option val ≝ |
---|
321 | match c with |
---|
322 | [ Ceq ⇒ Some ? Vtrue |
---|
323 | | Cne ⇒ Some ? Vfalse |
---|
324 | | _ ⇒ None ? |
---|
325 | ]. |
---|
326 | |
---|
327 | let rec sem_cmp (c:comparison) |
---|
328 | (v1: val) (t1: type) (v2: val) (t2: type) |
---|
329 | (m: mem): option val ≝ |
---|
330 | match classify_cmp t1 t2 with |
---|
331 | [ cmp_case_ii _ sg ⇒ |
---|
332 | match v1 with |
---|
333 | [ Vint sz1 n1 ⇒ match v2 with |
---|
334 | [ Vint sz2 n2 ⇒ |
---|
335 | match sg with |
---|
336 | [ Unsigned ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
337 | (λn1. Some ? (of_bool (cmpu_int ? c n1 n2))) (None ?) |
---|
338 | | Signed ⇒ intsize_eq_elim ? sz1 sz2 ? n1 |
---|
339 | (λn1. Some ? (of_bool (cmp_int ? c n1 n2))) (None ?) |
---|
340 | ] |
---|
341 | | _ ⇒ None ? |
---|
342 | ] |
---|
343 | | _ ⇒ None ? |
---|
344 | ] |
---|
345 | | cmp_case_pp _ _ _ ⇒ |
---|
346 | match v1 with |
---|
347 | [ Vptr ptr1 ⇒ |
---|
348 | match v2 with |
---|
349 | [ Vptr ptr2 ⇒ |
---|
350 | if valid_pointer m ptr1 |
---|
351 | ∧ valid_pointer m ptr2 then |
---|
352 | if eq_block (pblock ptr1) (pblock ptr2) |
---|
353 | then Some ? (of_bool (cmp_offset c (poff ptr1) (poff ptr2))) |
---|
354 | else sem_cmp_mismatch c |
---|
355 | else None ? |
---|
356 | | Vnull r2 ⇒ sem_cmp_mismatch c |
---|
357 | | _ ⇒ None ? ] |
---|
358 | | Vnull r1 ⇒ |
---|
359 | match v2 with |
---|
360 | [ Vptr ptr2 ⇒ sem_cmp_mismatch c |
---|
361 | | Vnull r2 ⇒ sem_cmp_match c |
---|
362 | | _ ⇒ None ? |
---|
363 | ] |
---|
364 | | _ ⇒ None ? ] |
---|
365 | | cmp_case_ff _ ⇒ |
---|
366 | match v1 with |
---|
367 | [ Vfloat f1 ⇒ |
---|
368 | match v2 with |
---|
369 | [ Vfloat f2 ⇒ Some ? (of_bool (Fcmp c f1 f2)) |
---|
370 | | _ ⇒ None ? ] |
---|
371 | | _ ⇒ None ? ] |
---|
372 | | cmp_default _ _ ⇒ None ? |
---|
373 | ]. |
---|
374 | |
---|
375 | definition sem_unary_operation |
---|
376 | : unary_operation → val → type → option val ≝ |
---|
377 | λop,v,ty. |
---|
378 | match op with |
---|
379 | [ Onotbool => sem_notbool v ty |
---|
380 | | Onotint => sem_notint v |
---|
381 | | Oneg => sem_neg v ty |
---|
382 | ]. |
---|
383 | |
---|
384 | let rec sem_binary_operation |
---|
385 | (op: binary_operation) |
---|
386 | (v1: val) (t1: type) (v2: val) (t2:type) |
---|
387 | (m: mem): option val ≝ |
---|
388 | match op with |
---|
389 | [ Oadd ⇒ sem_add v1 t1 v2 t2 |
---|
390 | | Osub ⇒ sem_sub v1 t1 v2 t2 |
---|
391 | | Omul ⇒ sem_mul v1 t1 v2 t2 |
---|
392 | | Omod ⇒ sem_mod v1 t1 v2 t2 |
---|
393 | | Odiv ⇒ sem_div v1 t1 v2 t2 |
---|
394 | | Oand ⇒ sem_and v1 v2 |
---|
395 | | Oor ⇒ sem_or v1 v2 |
---|
396 | | Oxor ⇒ sem_xor v1 v2 |
---|
397 | | Oshl ⇒ sem_shl v1 v2 |
---|
398 | | Oshr ⇒ sem_shr v1 t1 v2 t2 |
---|
399 | | Oeq ⇒ sem_cmp Ceq v1 t1 v2 t2 m |
---|
400 | | One ⇒ sem_cmp Cne v1 t1 v2 t2 m |
---|
401 | | Olt ⇒ sem_cmp Clt v1 t1 v2 t2 m |
---|
402 | | Ogt ⇒ sem_cmp Cgt v1 t1 v2 t2 m |
---|
403 | | Ole ⇒ sem_cmp Cle v1 t1 v2 t2 m |
---|
404 | | Oge ⇒ sem_cmp Cge v1 t1 v2 t2 m |
---|
405 | ]. |
---|
406 | |
---|
407 | (* * Semantic of casts. [cast v1 t1 t2 v2] holds if value [v1], |
---|
408 | viewed with static type [t1], can be cast to type [t2], |
---|
409 | resulting in value [v2]. *) |
---|
410 | |
---|
411 | let rec cast_int_int (sz: intsize) (sg: signedness) (dstsz: intsize) (i: BitVector (bitsize_of_intsize sz)) : BitVector (bitsize_of_intsize dstsz) ≝ |
---|
412 | match sg with [ Signed ⇒ sign_ext ?? i | Unsigned ⇒ zero_ext ?? i ]. |
---|
413 | |
---|
414 | let rec cast_int_float (si : signedness) (n:nat) (i: BitVector n) : float ≝ |
---|
415 | match si with |
---|
416 | [ Signed ⇒ floatofint ? i |
---|
417 | | Unsigned ⇒ floatofintu ? i |
---|
418 | ]. |
---|
419 | |
---|
420 | let rec cast_float_int (sz : intsize) (si : signedness) (f: float) : BitVector (bitsize_of_intsize sz) ≝ |
---|
421 | match si with |
---|
422 | [ Signed ⇒ intoffloat ? f |
---|
423 | | Unsigned ⇒ intuoffloat ? f |
---|
424 | ]. |
---|
425 | |
---|
426 | let rec cast_float_float (sz: floatsize) (f: float) : float ≝ |
---|
427 | match sz with |
---|
428 | [ F32 ⇒ singleoffloat f |
---|
429 | | F64 ⇒ f |
---|
430 | ]. |
---|
431 | |
---|
432 | inductive type_region : type → region → Prop ≝ |
---|
433 | | type_rgn_pointer : ∀s,t. type_region (Tpointer s t) s |
---|
434 | | type_rgn_array : ∀s,t,n. type_region (Tarray s t n) s |
---|
435 | (* XXX Is the following necessary? *) |
---|
436 | | type_rgn_code : ∀tys,ty. type_region (Tfunction tys ty) Code. |
---|
437 | |
---|
438 | inductive cast : mem → val → type → type → val → Prop ≝ |
---|
439 | | cast_ii: ∀m,sz2,sz1,si1,si2,i. (**r int to int *) |
---|
440 | cast m (Vint sz1 i) (Tint sz1 si1) (Tint sz2 si2) |
---|
441 | (Vint sz2 (cast_int_int sz1 si1 sz2 i)) |
---|
442 | | cast_fi: ∀m,f,sz1,sz2,si2. (**r float to int *) |
---|
443 | cast m (Vfloat f) (Tfloat sz1) (Tint sz2 si2) |
---|
444 | (Vint sz2 (cast_float_int sz2 si2 f)) |
---|
445 | | cast_if: ∀m,sz1,sz2,si1,i. (**r int to float *) |
---|
446 | cast m (Vint sz1 i) (Tint sz1 si1) (Tfloat sz2) |
---|
447 | (Vfloat (cast_float_float sz2 (cast_int_float si1 ? i))) |
---|
448 | | cast_ff: ∀m,f,sz1,sz2. (**r float to float *) |
---|
449 | cast m (Vfloat f) (Tfloat sz1) (Tfloat sz2) |
---|
450 | (Vfloat (cast_float_float sz2 f)) |
---|
451 | | cast_pp: ∀m,ty,ty',ptr,r'. |
---|
452 | type_region ty (ptype ptr) → |
---|
453 | type_region ty' r' → |
---|
454 | ∀pc':pointer_compat (pblock ptr) r'. |
---|
455 | cast m (Vptr ptr) ty ty' (Vptr (mk_pointer r' (pblock ptr) pc' (poff ptr))) |
---|
456 | | cast_ip_z: ∀m,sz,sg,ty',r. |
---|
457 | type_region ty' r → |
---|
458 | cast m (Vint sz (zero ?)) (Tint sz sg) ty' (Vnull r) |
---|
459 | | cast_pp_z: ∀m,ty,ty',r,r'. |
---|
460 | type_region ty r → |
---|
461 | type_region ty' r' → |
---|
462 | cast m (Vnull r) ty ty' (Vnull r'). |
---|
463 | |
---|
464 | (* * * Operational semantics *) |
---|
465 | |
---|
466 | (* * The semantics uses two environments. The global environment |
---|
467 | maps names of functions and global variables to memory block references, |
---|
468 | and function pointers to their definitions. (See module [Globalenvs].) *) |
---|
469 | |
---|
470 | definition genv ≝ (genv_t Genv) clight_fundef. |
---|
471 | |
---|
472 | (* * The local environment maps local variables to block references. |
---|
473 | The current value of the variable is stored in the associated memory |
---|
474 | block. *) |
---|
475 | |
---|
476 | definition env ≝ identifier_map SymbolTag block. (* map variable -> location *) |
---|
477 | |
---|
478 | definition empty_env: env ≝ (empty_map …). |
---|
479 | |
---|
480 | (* * [load_value_of_type ty m b ofs] computes the value of a datum |
---|
481 | of type [ty] residing in memory [m] at block [b], offset [ofs]. |
---|
482 | If the type [ty] indicates an access by value, the corresponding |
---|
483 | memory load is performed. If the type [ty] indicates an access by |
---|
484 | reference, the pointer [Vptr b ofs] is returned. *) |
---|
485 | |
---|
486 | let rec load_value_of_type (ty: type) (m: mem) (b: block) (ofs: offset) : option val ≝ |
---|
487 | match access_mode ty with |
---|
488 | [ By_value chunk ⇒ loadv chunk m (Vptr (mk_pointer Any b ? ofs)) |
---|
489 | | By_reference r ⇒ |
---|
490 | match pointer_compat_dec b r with |
---|
491 | [ inl p ⇒ Some ? (Vptr (mk_pointer r b p ofs)) |
---|
492 | | inr _ ⇒ None ? |
---|
493 | ] |
---|
494 | | By_nothing _ ⇒ None ? |
---|
495 | ]. |
---|
496 | cases b // |
---|
497 | qed. |
---|
498 | |
---|
499 | (* * Symmetrically, [store_value_of_type ty m b ofs v] returns the |
---|
500 | memory state after storing the value [v] in the datum |
---|
501 | of type [ty] residing in memory [m] at block [b], offset [ofs]. |
---|
502 | This is allowed only if [ty] indicates an access by value. *) |
---|
503 | |
---|
504 | let rec store_value_of_type (ty_dest: type) (m: mem) (loc: block) (ofs: offset) (v: val) : option mem ≝ |
---|
505 | match access_mode ty_dest with |
---|
506 | [ By_value chunk ⇒ storev chunk m (Vptr (mk_pointer Any loc ? ofs)) v |
---|
507 | | By_reference _ ⇒ None ? |
---|
508 | | By_nothing _ ⇒ None ? |
---|
509 | ]. |
---|
510 | cases loc // |
---|
511 | qed. |
---|
512 | |
---|
513 | (* * Allocation of function-local variables. |
---|
514 | [alloc_variables e1 m1 vars e2 m2] allocates one memory block |
---|
515 | for each variable declared in [vars], and associates the variable |
---|
516 | name with this block. [e1] and [m1] are the initial local environment |
---|
517 | and memory state. [e2] and [m2] are the final local environment |
---|
518 | and memory state. *) |
---|
519 | |
---|
520 | inductive alloc_variables: env → mem → |
---|
521 | list (ident × type) → |
---|
522 | env → mem → Prop ≝ |
---|
523 | | alloc_variables_nil: |
---|
524 | ∀e,m. |
---|
525 | alloc_variables e m (nil ?) e m |
---|
526 | | alloc_variables_cons: |
---|
527 | ∀e,m,id,ty,vars,m1,b1,m2,e2. |
---|
528 | alloc becontentT m 0 (sizeof ty) Any = 〈m1, b1〉 → |
---|
529 | alloc_variables (add … e id (pi1 … b1)) m1 vars e2 m2 → |
---|
530 | alloc_variables e m (〈id, ty〉 :: vars) e2 m2. |
---|
531 | |
---|
532 | (* * Initialization of local variables that are parameters to a function. |
---|
533 | [bind_parameters e m1 params args m2] stores the values [args] |
---|
534 | in the memory blocks corresponding to the variables [params]. |
---|
535 | [m1] is the initial memory state and [m2] the final memory state. *) |
---|
536 | |
---|
537 | inductive bind_parameters: env → |
---|
538 | mem → list (ident × type) → list val → |
---|
539 | mem → Prop ≝ |
---|
540 | | bind_parameters_nil: |
---|
541 | ∀e,m. |
---|
542 | bind_parameters e m (nil ?) (nil ?) m |
---|
543 | | bind_parameters_cons: |
---|
544 | ∀e,m,id,ty,params,v1,vl,b,m1,m2. |
---|
545 | lookup ?? e id = Some ? b → |
---|
546 | store_value_of_type ty m b zero_offset v1 = Some ? m1 → |
---|
547 | bind_parameters e m1 params vl m2 → |
---|
548 | bind_parameters e m (〈id, ty〉 :: params) (v1 :: vl) m2. |
---|
549 | |
---|
550 | (* * Return the list of blocks in the codomain of [e]. *) |
---|
551 | |
---|
552 | definition blocks_of_env : env → list block ≝ λe. |
---|
553 | map ?? (λx. snd ?? x) (elements ?? e). |
---|
554 | |
---|
555 | (* * Selection of the appropriate case of a [switch], given the value [n] |
---|
556 | of the selector expression. *) |
---|
557 | (* FIXME: now that we have several sizes of integer, it isn't clear whether we |
---|
558 | should allow case labels to be of a different size to the switch expression. *) |
---|
559 | let rec select_switch (sz:intsize) (n: BitVector (bitsize_of_intsize sz)) (sl: labeled_statements) |
---|
560 | on sl : labeled_statements ≝ |
---|
561 | match sl with |
---|
562 | [ LSdefault _ ⇒ sl |
---|
563 | | LScase sz' c s sl' ⇒ intsize_eq_elim ? sz sz' ? n |
---|
564 | (λn. if eq_bv ? c n then sl else select_switch sz' n sl') (select_switch sz n sl') |
---|
565 | ]. |
---|
566 | |
---|
567 | (* * Turn a labeled statement into a sequence *) |
---|
568 | |
---|
569 | let rec seq_of_labeled_statement (sl: labeled_statements) : statement ≝ |
---|
570 | match sl with |
---|
571 | [ LSdefault s ⇒ s |
---|
572 | | LScase _ c s sl' ⇒ Ssequence s (seq_of_labeled_statement sl') |
---|
573 | ]. |
---|
574 | |
---|
575 | (* |
---|
576 | Section SEMANTICS. |
---|
577 | |
---|
578 | Variable ge: genv. |
---|
579 | |
---|
580 | (** ** Evaluation of expressions *) |
---|
581 | |
---|
582 | Section EXPR. |
---|
583 | |
---|
584 | Variable e: env. |
---|
585 | Variable m: mem. |
---|
586 | *) |
---|
587 | (* * [eval_expr ge e m a v] defines the evaluation of expression [a] |
---|
588 | in r-value position. [v] is the value of the expression. |
---|
589 | [e] is the current environment and [m] is the current memory state. *) |
---|
590 | |
---|
591 | inductive eval_expr (ge:genv) (e:env) (m:mem) : expr → val → trace → Prop ≝ |
---|
592 | | eval_Econst_int: ∀sz,sg,i. |
---|
593 | eval_expr ge e m (Expr (Econst_int sz i) (Tint sz sg)) (Vint sz i) E0 |
---|
594 | | eval_Econst_float: ∀f,ty. |
---|
595 | eval_expr ge e m (Expr (Econst_float f) ty) (Vfloat f) E0 |
---|
596 | | eval_Elvalue: ∀a,ty,loc,ofs,v,tr. |
---|
597 | eval_lvalue ge e m (Expr a ty) loc ofs tr → |
---|
598 | load_value_of_type ty m loc ofs = Some ? v → |
---|
599 | eval_expr ge e m (Expr a ty) v tr |
---|
600 | | eval_Eaddrof: ∀a,ty,r,loc,ofs,tr. |
---|
601 | eval_lvalue ge e m a loc ofs tr → |
---|
602 | ∀pc:pointer_compat loc r. |
---|
603 | eval_expr ge e m (Expr (Eaddrof a) (Tpointer r ty)) (Vptr (mk_pointer r loc pc ofs)) tr |
---|
604 | | eval_Esizeof: ∀ty',sz,sg. |
---|
605 | eval_expr ge e m (Expr (Esizeof ty') (Tint sz sg)) (Vint sz (repr ? (sizeof ty'))) E0 |
---|
606 | | eval_Eunop: ∀op,a,ty,v1,v,tr. |
---|
607 | eval_expr ge e m a v1 tr → |
---|
608 | sem_unary_operation op v1 (typeof a) = Some ? v → |
---|
609 | eval_expr ge e m (Expr (Eunop op a) ty) v tr |
---|
610 | | eval_Ebinop: ∀op,a1,a2,ty,v1,v2,v,tr1,tr2. |
---|
611 | eval_expr ge e m a1 v1 tr1 → |
---|
612 | eval_expr ge e m a2 v2 tr2 → |
---|
613 | sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m = Some ? v → |
---|
614 | eval_expr ge e m (Expr (Ebinop op a1 a2) ty) v (tr1⧺tr2) |
---|
615 | | eval_Econdition_true: ∀a1,a2,a3,ty,v1,v2,tr1,tr2. |
---|
616 | eval_expr ge e m a1 v1 tr1 → |
---|
617 | is_true v1 (typeof a1) → |
---|
618 | eval_expr ge e m a2 v2 tr2 → |
---|
619 | eval_expr ge e m (Expr (Econdition a1 a2 a3) ty) v2 (tr1⧺tr2) |
---|
620 | | eval_Econdition_false: ∀a1,a2,a3,ty,v1,v3,tr1,tr2. |
---|
621 | eval_expr ge e m a1 v1 tr1 → |
---|
622 | is_false v1 (typeof a1) → |
---|
623 | eval_expr ge e m a3 v3 tr2 → |
---|
624 | eval_expr ge e m (Expr (Econdition a1 a2 a3) ty) v3 (tr1⧺tr2) |
---|
625 | | eval_Eorbool_1: ∀a1,a2,ty,v1,tr. |
---|
626 | eval_expr ge e m a1 v1 tr → |
---|
627 | is_true v1 (typeof a1) → |
---|
628 | eval_expr ge e m (Expr (Eorbool a1 a2) ty) Vtrue tr |
---|
629 | | eval_Eorbool_2: ∀a1,a2,ty,v1,v2,v,tr1,tr2. |
---|
630 | eval_expr ge e m a1 v1 tr1 → |
---|
631 | is_false v1 (typeof a1) → |
---|
632 | eval_expr ge e m a2 v2 tr2 → |
---|
633 | bool_of_val v2 (typeof a2) v → |
---|
634 | eval_expr ge e m (Expr (Eorbool a1 a2) ty) v (tr1⧺tr2) |
---|
635 | | eval_Eandbool_1: ∀a1,a2,ty,v1,tr. |
---|
636 | eval_expr ge e m a1 v1 tr → |
---|
637 | is_false v1 (typeof a1) → |
---|
638 | eval_expr ge e m (Expr (Eandbool a1 a2) ty) Vfalse tr |
---|
639 | | eval_Eandbool_2: ∀a1,a2,ty,v1,v2,v,tr1,tr2. |
---|
640 | eval_expr ge e m a1 v1 tr1 → |
---|
641 | is_true v1 (typeof a1) → |
---|
642 | eval_expr ge e m a2 v2 tr2 → |
---|
643 | bool_of_val v2 (typeof a2) v → |
---|
644 | eval_expr ge e m (Expr (Eandbool a1 a2) ty) v (tr1⧺tr2) |
---|
645 | | eval_Ecast: ∀a,ty,ty',v1,v,tr. |
---|
646 | eval_expr ge e m a v1 tr → |
---|
647 | cast m v1 (typeof a) ty v → |
---|
648 | eval_expr ge e m (Expr (Ecast ty a) ty') v tr |
---|
649 | | eval_Ecost: ∀a,ty,v,l,tr. |
---|
650 | eval_expr ge e m a v tr → |
---|
651 | eval_expr ge e m (Expr (Ecost l a) ty) v (tr⧺Echarge l) |
---|
652 | |
---|
653 | (* * [eval_lvalue ge e m a r b ofs] defines the evaluation of expression [a] |
---|
654 | in l-value position. The result is the memory location [b, ofs] |
---|
655 | that contains the value of the expression [a]. The memory location should |
---|
656 | be representable in a pointer of region r. *) |
---|
657 | |
---|
658 | with eval_lvalue (*(ge:genv) (e:env) (m:mem)*) : expr → block → offset → trace → Prop ≝ |
---|
659 | | eval_Evar_local: ∀id,l,ty. |
---|
660 | (* XXX notation? e!id*) lookup ?? e id = Some ? l → |
---|
661 | eval_lvalue ge e m (Expr (Evar id) ty) l zero_offset E0 |
---|
662 | | eval_Evar_global: ∀id,l,ty. |
---|
663 | (* XXX e!id *) lookup ?? e id = None ? → |
---|
664 | find_symbol ?? ge id = Some ? l → |
---|
665 | eval_lvalue ge e m (Expr (Evar id) ty) l zero_offset E0 |
---|
666 | | eval_Ederef: ∀a,ty,r,l,p,ofs,tr. |
---|
667 | eval_expr ge e m a (Vptr (mk_pointer r l p ofs)) tr → |
---|
668 | eval_lvalue ge e m (Expr (Ederef a) ty) l ofs tr |
---|
669 | (* Aside: note that each block of memory is entirely contained within one |
---|
670 | memory region; hence adding a field offset will not produce a location |
---|
671 | outside of the original location's region. *) |
---|
672 | | eval_Efield_struct: ∀a,i,ty,l,ofs,id,fList,delta,tr. |
---|
673 | eval_lvalue ge e m a l ofs tr → |
---|
674 | typeof a = Tstruct id fList → |
---|
675 | field_offset i fList = OK ? delta → |
---|
676 | eval_lvalue ge e m (Expr (Efield a i) ty) l (shift_offset ? ofs (repr I32 delta)) tr |
---|
677 | | eval_Efield_union: ∀a,i,ty,l,ofs,id,fList,tr. |
---|
678 | eval_lvalue ge e m a l ofs tr → |
---|
679 | typeof a = Tunion id fList → |
---|
680 | eval_lvalue ge e m (Expr (Efield a i) ty) l ofs tr. |
---|
681 | |
---|
682 | let rec eval_expr_ind (ge:genv) (e:env) (m:mem) |
---|
683 | (P:∀a,v,tr. eval_expr ge e m a v tr → Prop) |
---|
684 | (eci:∀sz,sg,i. P ??? (eval_Econst_int ge e m sz sg i)) |
---|
685 | (ecF:∀f,ty. P ??? (eval_Econst_float ge e m f ty)) |
---|
686 | (elv:∀a,ty,loc,ofs,v,tr,H1,H2. P ??? (eval_Elvalue ge e m a ty loc ofs v tr H1 H2)) |
---|
687 | (ead:∀a,ty,r,loc,pc,ofs,tr,H. P ??? (eval_Eaddrof ge e m a ty r loc pc ofs tr H)) |
---|
688 | (esz:∀ty',sz,sg. P ??? (eval_Esizeof ge e m ty' sz sg)) |
---|
689 | (eun:∀op,a,ty,v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Eunop ge e m op a ty v1 v tr H1 H2)) |
---|
690 | (ebi:∀op,a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H2 → P ??? (eval_Ebinop ge e m op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3)) |
---|
691 | (ect:∀a1,a2,a3,ty,v1,v2,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Econdition_true ge e m a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3)) |
---|
692 | (ecf:∀a1,a2,a3,ty,v1,v3,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a3 v3 tr2 H3 → P ??? (eval_Econdition_false ge e m a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3)) |
---|
693 | (eo1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eorbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
694 | (eo2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eorbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
695 | (ea1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eandbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
696 | (ea2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eandbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
697 | (ecs:∀a,ty,ty',v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Ecast ge e m a ty ty' v1 v tr H1 H2)) |
---|
698 | (eco:∀a,ty,v,l,tr,H. P a v tr H → P ??? (eval_Ecost ge e m a ty v l tr H)) |
---|
699 | (a:expr) (v:val) (tr:trace) (ev:eval_expr ge e m a v tr) on ev : P a v tr ev ≝ |
---|
700 | match ev with |
---|
701 | [ eval_Econst_int sz sg i ⇒ eci sz sg i |
---|
702 | | eval_Econst_float f ty ⇒ ecF f ty |
---|
703 | | eval_Elvalue a ty loc ofs v tr H1 H2 ⇒ elv a ty loc ofs v tr H1 H2 |
---|
704 | | eval_Eaddrof a ty r loc pc ofs tr H ⇒ ead a ty r loc pc ofs tr H |
---|
705 | | eval_Esizeof ty' sz sg ⇒ esz ty' sz sg |
---|
706 | | eval_Eunop op a ty v1 v tr H1 H2 ⇒ eun op a ty v1 v tr H1 H2 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a v1 tr H1) |
---|
707 | | eval_Ebinop op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 ⇒ ebi op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr1 H1) (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a2 v2 tr2 H2) |
---|
708 | | eval_Econdition_true a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3 ⇒ ect a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr1 H1) (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a2 v2 tr2 H3) |
---|
709 | | eval_Econdition_false a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3 ⇒ ecf a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr1 H1) (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a3 v3 tr2 H3) |
---|
710 | | eval_Eorbool_1 a1 a2 ty v1 tr H1 H2 ⇒ eo1 a1 a2 ty v1 tr H1 H2 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr H1) |
---|
711 | | eval_Eorbool_2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 ⇒ eo2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr1 H1) (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a2 v2 tr2 H3) |
---|
712 | | eval_Eandbool_1 a1 a2 ty v1 tr H1 H2 ⇒ ea1 a1 a2 ty v1 tr H1 H2 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr H1) |
---|
713 | | eval_Eandbool_2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 ⇒ ea2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a1 v1 tr1 H1) (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a2 v2 tr2 H3) |
---|
714 | | eval_Ecast a ty ty' v1 v tr H1 H2 ⇒ ecs a ty ty' v1 v tr H1 H2 (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a v1 tr H1) |
---|
715 | | eval_Ecost a ty v l tr H ⇒ eco a ty v l tr H (eval_expr_ind ge e m P eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco a v tr H) |
---|
716 | ]. |
---|
717 | (* |
---|
718 | inverter eval_expr_inv_ind for eval_expr : Prop. |
---|
719 | *) |
---|
720 | let rec eval_lvalue_ind (ge:genv) (e:env) (m:mem) |
---|
721 | (P:∀a,loc,ofs,tr. eval_lvalue ge e m a loc ofs tr → Prop) |
---|
722 | (lvl:∀id,l,ty,H. P ???? (eval_Evar_local ge e m id l ty H)) |
---|
723 | (lvg:∀id,l,ty,H1,H2. P ???? (eval_Evar_global ge e m id l ty H1 H2)) |
---|
724 | (lde:∀a,ty,r,l,pc,ofs,tr,H. P ???? (eval_Ederef ge e m a ty r l pc ofs tr H)) |
---|
725 | (lfs:∀a,i,ty,l,ofs,id,fList,delta,tr,H1,H2,H3. P a l ofs tr H1 → P ???? (eval_Efield_struct ge e m a i ty l ofs id fList delta tr H1 H2 H3)) |
---|
726 | (lfu:∀a,i,ty,l,ofs,id,fList,tr,H1,H2. P a l ofs tr H1 → P ???? (eval_Efield_union ge e m a i ty l ofs id fList tr H1 H2)) |
---|
727 | (a:expr) (loc:block) (ofs:offset) (tr:trace) (ev:eval_lvalue ge e m a loc ofs tr) on ev : P a loc ofs tr ev ≝ |
---|
728 | match ev with |
---|
729 | [ eval_Evar_local id l ty H ⇒ lvl id l ty H |
---|
730 | | eval_Evar_global id l ty H1 H2 ⇒ lvg id l ty H1 H2 |
---|
731 | | eval_Ederef a ty r l pc ofs tr H ⇒ lde a ty r l pc ofs tr H |
---|
732 | | eval_Efield_struct a i ty l ofs id fList delta tr H1 H2 H3 ⇒ lfs a i ty l ofs id fList delta tr H1 H2 H3 (eval_lvalue_ind ge e m P lvl lvg lde lfs lfu a l ofs tr H1) |
---|
733 | | eval_Efield_union a i ty l ofs id fList tr H1 H2 ⇒ lfu a i ty l ofs id fList tr H1 H2 (eval_lvalue_ind ge e m P lvl lvg lde lfs lfu a l ofs tr H1) |
---|
734 | ]. |
---|
735 | |
---|
736 | (* |
---|
737 | ninverter eval_lvalue_inv_ind for eval_lvalue : Prop. |
---|
738 | *) |
---|
739 | (* |
---|
740 | definition eval_lvalue_inv_ind : |
---|
741 | ∀x1: genv. |
---|
742 | ∀x2: env. |
---|
743 | ∀x3: mem. |
---|
744 | ∀x4: expr. |
---|
745 | ∀x6: block. |
---|
746 | ∀x7: offset. |
---|
747 | ∀x8: trace. |
---|
748 | ∀P: |
---|
749 | ∀_z1430: expr. |
---|
750 | ∀_z1428: block. ∀_z1427: offset. ∀_z1426: trace. Prop. |
---|
751 | ∀_H1: ?. |
---|
752 | ∀_H2: ?. |
---|
753 | ∀_H3: ?. |
---|
754 | ∀_H4: ?. |
---|
755 | ∀_H5: ?. |
---|
756 | ∀_Hterm: eval_lvalue x1 x2 x3 x4 x6 x7 x8. |
---|
757 | P x4 x6 x7 x8 |
---|
758 | := |
---|
759 | (λx1:genv. |
---|
760 | (λx2:env. |
---|
761 | (λx3:mem. |
---|
762 | (λx4:expr. |
---|
763 | (λx6:block. |
---|
764 | (λx7:offset. |
---|
765 | (λx8:trace. |
---|
766 | (λP:∀_z1430: expr. |
---|
767 | ∀_z1428: block. |
---|
768 | ∀_z1427: offset. ∀_z1426: trace. Prop. |
---|
769 | (λH1:?. |
---|
770 | (λH2:?. |
---|
771 | (λH3:?. |
---|
772 | (λH4:?. |
---|
773 | (λH5:?. |
---|
774 | (λHterm:eval_lvalue x1 x2 x3 x4 x6 x7 x8. |
---|
775 | ((λHcut:∀z1435: eq expr x4 x4. |
---|
776 | ∀z1433: eq block x6 x6. |
---|
777 | ∀z1432: eq offset x7 x7. |
---|
778 | ∀z1431: eq trace x8 x8. |
---|
779 | P x4 x6 x7 x8. |
---|
780 | (Hcut (refl expr x4) |
---|
781 | (refl block x6) |
---|
782 | (refl offset x7) (refl trace x8))) |
---|
783 | ?))))))))))))))). |
---|
784 | [ @(eval_lvalue_ind x1 x2 x3 (λa,loc,ofs,tr,e. ∀e1:eq ? x4 a. ∀e3:eq ? x6 loc. ∀e4:eq ? x7 ofs. ∀e5:eq ? x8 tr. P a loc ofs tr) … Hterm) |
---|
785 | [ @H1 | @H2 | @H3 | @H4 | @H5 ] |
---|
786 | | *: skip |
---|
787 | ] qed. |
---|
788 | *) |
---|
789 | let rec eval_expr_ind2 (ge:genv) (e:env) (m:mem) |
---|
790 | (P:∀a,v,tr. eval_expr ge e m a v tr → Prop) |
---|
791 | (Q:∀a,loc,ofs,tr. eval_lvalue ge e m a loc ofs tr → Prop) |
---|
792 | (eci:∀sz,sg,i. P ??? (eval_Econst_int ge e m sz sg i)) |
---|
793 | (ecF:∀f,ty. P ??? (eval_Econst_float ge e m f ty)) |
---|
794 | (elv:∀a,ty,loc,ofs,v,tr,H1,H2. Q (Expr a ty) loc ofs tr H1 → P ??? (eval_Elvalue ge e m a ty loc ofs v tr H1 H2)) |
---|
795 | (ead:∀a,ty,r,loc,pc,ofs,tr,H. Q a loc ofs tr H → P ??? (eval_Eaddrof ge e m a ty r loc ofs tr H pc)) |
---|
796 | (esz:∀ty',sz,sg. P ??? (eval_Esizeof ge e m ty' sz sg)) |
---|
797 | (eun:∀op,a,ty,v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Eunop ge e m op a ty v1 v tr H1 H2)) |
---|
798 | (ebi:∀op,a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H2 → P ??? (eval_Ebinop ge e m op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3)) |
---|
799 | (ect:∀a1,a2,a3,ty,v1,v2,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Econdition_true ge e m a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3)) |
---|
800 | (ecf:∀a1,a2,a3,ty,v1,v3,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a3 v3 tr2 H3 → P ??? (eval_Econdition_false ge e m a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3)) |
---|
801 | (eo1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eorbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
802 | (eo2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eorbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
803 | (ea1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eandbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
804 | (ea2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eandbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
805 | (ecs:∀a,ty,ty',v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Ecast ge e m a ty ty' v1 v tr H1 H2)) |
---|
806 | (eco:∀a,ty,v,l,tr,H. P a v tr H → P ??? (eval_Ecost ge e m a ty v l tr H)) |
---|
807 | (lvl:∀id,l,ty,H. Q ???? (eval_Evar_local ge e m id l ty H)) |
---|
808 | (lvg:∀id,l,ty,H1,H2. Q ???? (eval_Evar_global ge e m id l ty H1 H2)) |
---|
809 | (lde:∀a,ty,r,l,pc,ofs,tr,H. P a (Vptr (mk_pointer r l pc ofs)) tr H → Q ???? (eval_Ederef ge e m a ty r l pc ofs tr H)) |
---|
810 | (lfs:∀a,i,ty,l,ofs,id,fList,delta,tr,H1,H2,H3. Q a l ofs tr H1 → Q ???? (eval_Efield_struct ge e m a i ty l ofs id fList delta tr H1 H2 H3)) |
---|
811 | (lfu:∀a,i,ty,l,ofs,id,fList,tr,H1,H2. Q a l ofs tr H1 → Q ???? (eval_Efield_union ge e m a i ty l ofs id fList tr H1 H2)) |
---|
812 | |
---|
813 | (a:expr) (v:val) (tr:trace) (ev:eval_expr ge e m a v tr) on ev : P a v tr ev ≝ |
---|
814 | match ev with |
---|
815 | [ eval_Econst_int sz sg i ⇒ eci sz sg i |
---|
816 | | eval_Econst_float f ty ⇒ ecF f ty |
---|
817 | | eval_Elvalue a ty loc ofs v tr H1 H2 ⇒ elv a ty loc ofs v tr H1 H2 (eval_lvalue_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu (Expr a ty) loc ofs tr H1) |
---|
818 | | eval_Eaddrof a ty r loc ofs tr H pc ⇒ ead a ty r loc pc ofs tr H (eval_lvalue_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a loc ofs tr H) |
---|
819 | | eval_Esizeof ty' sz sg ⇒ esz ty' sz sg |
---|
820 | | eval_Eunop op a ty v1 v tr H1 H2 ⇒ eun op a ty v1 v tr H1 H2 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a v1 tr H1) |
---|
821 | | eval_Ebinop op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 ⇒ ebi op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr1 H1) (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a2 v2 tr2 H2) |
---|
822 | | eval_Econdition_true a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3 ⇒ ect a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr1 H1) (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a2 v2 tr2 H3) |
---|
823 | | eval_Econdition_false a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3 ⇒ ecf a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr1 H1) (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a3 v3 tr2 H3) |
---|
824 | | eval_Eorbool_1 a1 a2 ty v1 tr H1 H2 ⇒ eo1 a1 a2 ty v1 tr H1 H2 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr H1) |
---|
825 | | eval_Eorbool_2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 ⇒ eo2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr1 H1) (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a2 v2 tr2 H3) |
---|
826 | | eval_Eandbool_1 a1 a2 ty v1 tr H1 H2 ⇒ ea1 a1 a2 ty v1 tr H1 H2 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr H1) |
---|
827 | | eval_Eandbool_2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 ⇒ ea2 a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a1 v1 tr1 H1) (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a2 v2 tr2 H3) |
---|
828 | | eval_Ecast a ty ty' v1 v tr H1 H2 ⇒ ecs a ty ty' v1 v tr H1 H2 (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a v1 tr H1) |
---|
829 | | eval_Ecost a ty v l tr H ⇒ eco a ty v l tr H (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a v tr H) |
---|
830 | ] |
---|
831 | and eval_lvalue_ind2 (ge:genv) (e:env) (m:mem) |
---|
832 | (P:∀a,v,tr. eval_expr ge e m a v tr → Prop) |
---|
833 | (Q:∀a,loc,ofs,tr. eval_lvalue ge e m a loc ofs tr → Prop) |
---|
834 | (eci:∀sz,sg,i. P ??? (eval_Econst_int ge e m sz sg i)) |
---|
835 | (ecF:∀f,ty. P ??? (eval_Econst_float ge e m f ty)) |
---|
836 | (elv:∀a,ty,loc,ofs,v,tr,H1,H2. Q (Expr a ty) loc ofs tr H1 → P ??? (eval_Elvalue ge e m a ty loc ofs v tr H1 H2)) |
---|
837 | (ead:∀a,ty,r,loc,pc,ofs,tr,H. Q a loc ofs tr H → P ??? (eval_Eaddrof ge e m a ty r loc ofs tr H pc)) |
---|
838 | (esz:∀ty',sz,sg. P ??? (eval_Esizeof ge e m ty' sz sg)) |
---|
839 | (eun:∀op,a,ty,v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Eunop ge e m op a ty v1 v tr H1 H2)) |
---|
840 | (ebi:∀op,a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H2 → P ??? (eval_Ebinop ge e m op a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3)) |
---|
841 | (ect:∀a1,a2,a3,ty,v1,v2,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Econdition_true ge e m a1 a2 a3 ty v1 v2 tr1 tr2 H1 H2 H3)) |
---|
842 | (ecf:∀a1,a2,a3,ty,v1,v3,tr1,tr2,H1,H2,H3. P a1 v1 tr1 H1 → P a3 v3 tr2 H3 → P ??? (eval_Econdition_false ge e m a1 a2 a3 ty v1 v3 tr1 tr2 H1 H2 H3)) |
---|
843 | (eo1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eorbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
844 | (eo2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eorbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
845 | (ea1:∀a1,a2,ty,v1,tr,H1,H2. P a1 v1 tr H1 → P ??? (eval_Eandbool_1 ge e m a1 a2 ty v1 tr H1 H2)) |
---|
846 | (ea2:∀a1,a2,ty,v1,v2,v,tr1,tr2,H1,H2,H3,H4. P a1 v1 tr1 H1 → P a2 v2 tr2 H3 → P ??? (eval_Eandbool_2 ge e m a1 a2 ty v1 v2 v tr1 tr2 H1 H2 H3 H4)) |
---|
847 | (ecs:∀a,ty,ty',v1,v,tr,H1,H2. P a v1 tr H1 → P ??? (eval_Ecast ge e m a ty ty' v1 v tr H1 H2)) |
---|
848 | (eco:∀a,ty,v,l,tr,H. P a v tr H → P ??? (eval_Ecost ge e m a ty v l tr H)) |
---|
849 | (lvl:∀id,l,ty,H. Q ???? (eval_Evar_local ge e m id l ty H)) |
---|
850 | (lvg:∀id,l,ty,H1,H2. Q ???? (eval_Evar_global ge e m id l ty H1 H2)) |
---|
851 | (lde:∀a,ty,r,l,pc,ofs,tr,H. P a (Vptr (mk_pointer r l pc ofs)) tr H → Q ???? (eval_Ederef ge e m a ty r l pc ofs tr H)) |
---|
852 | (lfs:∀a,i,ty,l,ofs,id,fList,delta,tr,H1,H2,H3. Q a l ofs tr H1 → Q ???? (eval_Efield_struct ge e m a i ty l ofs id fList delta tr H1 H2 H3)) |
---|
853 | (lfu:∀a,i,ty,l,ofs,id,fList,tr,H1,H2. Q a l ofs tr H1 → Q ???? (eval_Efield_union ge e m a i ty l ofs id fList tr H1 H2)) |
---|
854 | (a:expr) (loc:block) (ofs:offset) (tr:trace) (ev:eval_lvalue ge e m a loc ofs tr) on ev : Q a loc ofs tr ev ≝ |
---|
855 | match ev with |
---|
856 | [ eval_Evar_local id l ty H ⇒ lvl id l ty H |
---|
857 | | eval_Evar_global id l ty H1 H2 ⇒ lvg id l ty H1 H2 |
---|
858 | | eval_Ederef a ty r l pc ofs tr H ⇒ lde a ty r l pc ofs tr H (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a (Vptr (mk_pointer r l pc ofs)) tr H) |
---|
859 | | eval_Efield_struct a i ty l ofs id fList delta tr H1 H2 H3 ⇒ lfs a i ty l ofs id fList delta tr H1 H2 H3 (eval_lvalue_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a l ofs tr H1) |
---|
860 | | eval_Efield_union a i ty l ofs id fList tr H1 H2 ⇒ lfu a i ty l ofs id fList tr H1 H2 (eval_lvalue_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu a l ofs tr H1) |
---|
861 | ]. |
---|
862 | |
---|
863 | definition combined_expr_lvalue_ind ≝ |
---|
864 | λge,e,m,P,Q,eci,ecF,elv,ead,esz,eun,ebi,ect,ecf,eo1,eo2,ea1,ea2,ecs,eco,lvl,lvg,lde,lfs,lfu. |
---|
865 | conj ?? |
---|
866 | (eval_expr_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu) |
---|
867 | (eval_lvalue_ind2 ge e m P Q eci ecF elv ead esz eun ebi ect ecf eo1 eo2 ea1 ea2 ecs eco lvl lvg lde lfs lfu). |
---|
868 | |
---|
869 | (* * [eval_lvalue ge e m a b ofs] defines the evaluation of expression [a] |
---|
870 | in l-value position. The result is the memory location [b, ofs] |
---|
871 | that contains the value of the expression [a]. *) |
---|
872 | |
---|
873 | (* |
---|
874 | Scheme eval_expr_ind22 := Minimality for eval_expr Sort Prop |
---|
875 | with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop. |
---|
876 | *) |
---|
877 | |
---|
878 | (* * [eval_exprlist ge e m al vl] evaluates a list of r-value |
---|
879 | expressions [al] to their values [vl]. *) |
---|
880 | |
---|
881 | inductive eval_exprlist (ge:genv) (e:env) (m:mem) : list expr → list val → trace → Prop ≝ |
---|
882 | | eval_Enil: |
---|
883 | eval_exprlist ge e m (nil ?) (nil ?) E0 |
---|
884 | | eval_Econs: ∀a,bl,v,vl,tr1,tr2. |
---|
885 | eval_expr ge e m a v tr1 → |
---|
886 | eval_exprlist ge e m bl vl tr2 → |
---|
887 | eval_exprlist ge e m (a :: bl) (v :: vl) (tr1⧺tr2). |
---|
888 | |
---|
889 | (*End EXPR.*) |
---|
890 | |
---|
891 | (* * ** Transition semantics for statements and functions *) |
---|
892 | |
---|
893 | (* * Continuations *) |
---|
894 | |
---|
895 | inductive cont: Type[0] := |
---|
896 | | Kstop: cont |
---|
897 | | Kseq: statement -> cont -> cont |
---|
898 | (**r [Kseq s2 k] = after [s1] in [s1;s2] *) |
---|
899 | | Kwhile: expr -> statement -> cont -> cont |
---|
900 | (**r [Kwhile e s k] = after [s] in [while (e) s] *) |
---|
901 | | Kdowhile: expr -> statement -> cont -> cont |
---|
902 | (**r [Kdowhile e s k] = after [s] in [do s while (e)] *) |
---|
903 | | Kfor2: expr -> statement -> statement -> cont -> cont |
---|
904 | (**r [Kfor2 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *) |
---|
905 | | Kfor3: expr -> statement -> statement -> cont -> cont |
---|
906 | (**r [Kfor3 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *) |
---|
907 | | Kswitch: cont -> cont |
---|
908 | (**r catches [break] statements arising out of [switch] *) |
---|
909 | | Kcall: option (block × offset × type) -> (**r where to store result *) |
---|
910 | function -> (**r calling function *) |
---|
911 | env -> (**r local env of calling function *) |
---|
912 | cont -> cont. |
---|
913 | |
---|
914 | (* * Pop continuation until a call or stop *) |
---|
915 | |
---|
916 | let rec call_cont (k: cont) : cont := |
---|
917 | match k with |
---|
918 | [ Kseq s k => call_cont k |
---|
919 | | Kwhile e s k => call_cont k |
---|
920 | | Kdowhile e s k => call_cont k |
---|
921 | | Kfor2 e2 e3 s k => call_cont k |
---|
922 | | Kfor3 e2 e3 s k => call_cont k |
---|
923 | | Kswitch k => call_cont k |
---|
924 | | _ => k |
---|
925 | ]. |
---|
926 | |
---|
927 | definition is_call_cont : cont → Prop ≝ λk. |
---|
928 | match k with |
---|
929 | [ Kstop => True |
---|
930 | | Kcall _ _ _ _ => True |
---|
931 | | _ => False |
---|
932 | ]. |
---|
933 | |
---|
934 | (* * States *) |
---|
935 | |
---|
936 | inductive state: Type[0] := |
---|
937 | | State: |
---|
938 | ∀f: function. |
---|
939 | ∀s: statement. |
---|
940 | ∀k: cont. |
---|
941 | ∀e: env. |
---|
942 | ∀m: mem. state |
---|
943 | | Callstate: |
---|
944 | ∀fd: clight_fundef. |
---|
945 | ∀args: list val. |
---|
946 | ∀k: cont. |
---|
947 | ∀m: mem. state |
---|
948 | | Returnstate: |
---|
949 | ∀res: val. |
---|
950 | ∀k: cont. |
---|
951 | ∀m: mem. state |
---|
952 | | Finalstate: |
---|
953 | ∀r: int. |
---|
954 | state. |
---|
955 | |
---|
956 | (* * Find the statement and manufacture the continuation |
---|
957 | corresponding to a label *) |
---|
958 | |
---|
959 | let rec find_label (lbl: label) (s: statement) (k: cont) |
---|
960 | on s: option (statement × cont) := |
---|
961 | match s with |
---|
962 | [ Ssequence s1 s2 => |
---|
963 | match find_label lbl s1 (Kseq s2 k) with |
---|
964 | [ Some sk => Some ? sk |
---|
965 | | None => find_label lbl s2 k |
---|
966 | ] |
---|
967 | | Sifthenelse a s1 s2 => |
---|
968 | match find_label lbl s1 k with |
---|
969 | [ Some sk => Some ? sk |
---|
970 | | None => find_label lbl s2 k |
---|
971 | ] |
---|
972 | | Swhile a s1 => |
---|
973 | find_label lbl s1 (Kwhile a s1 k) |
---|
974 | | Sdowhile a s1 => |
---|
975 | find_label lbl s1 (Kdowhile a s1 k) |
---|
976 | | Sfor a1 a2 a3 s1 => |
---|
977 | match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with |
---|
978 | [ Some sk => Some ? sk |
---|
979 | | None => |
---|
980 | match find_label lbl s1 (Kfor2 a2 a3 s1 k) with |
---|
981 | [ Some sk => Some ? sk |
---|
982 | | None => find_label lbl a3 (Kfor3 a2 a3 s1 k) |
---|
983 | ] |
---|
984 | ] |
---|
985 | | Sswitch e sl => |
---|
986 | find_label_ls lbl sl (Kswitch k) |
---|
987 | | Slabel lbl' s' => |
---|
988 | match ident_eq lbl lbl' with |
---|
989 | [ inl _ ⇒ Some ? 〈s', k〉 |
---|
990 | | inr _ ⇒ find_label lbl s' k |
---|
991 | ] |
---|
992 | | Scost c s' ⇒ |
---|
993 | find_label lbl s' k |
---|
994 | | _ => None ? |
---|
995 | ] |
---|
996 | |
---|
997 | and find_label_ls (lbl: label) (sl: labeled_statements) (k: cont) |
---|
998 | on sl: option (statement × cont) := |
---|
999 | match sl with |
---|
1000 | [ LSdefault s => find_label lbl s k |
---|
1001 | | LScase _ _ s sl' => |
---|
1002 | match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with |
---|
1003 | [ Some sk => Some ? sk |
---|
1004 | | None => find_label_ls lbl sl' k |
---|
1005 | ] |
---|
1006 | ]. |
---|
1007 | |
---|
1008 | (* * Transition relation *) |
---|
1009 | |
---|
1010 | (* Strip off outer pointer for use when comparing function types. *) |
---|
1011 | definition fun_typeof ≝ |
---|
1012 | λe. match typeof e with |
---|
1013 | [ Tvoid ⇒ Tvoid |
---|
1014 | | Tint a b ⇒ Tint a b |
---|
1015 | | Tfloat a ⇒ Tfloat a |
---|
1016 | | Tpointer _ ty ⇒ ty |
---|
1017 | | Tarray a b c ⇒ Tarray a b c |
---|
1018 | | Tfunction a b ⇒ Tfunction a b |
---|
1019 | | Tstruct a b ⇒ Tstruct a b |
---|
1020 | | Tunion a b ⇒ Tunion a b |
---|
1021 | | Tcomp_ptr a b ⇒ Tcomp_ptr a b |
---|
1022 | ]. |
---|
1023 | |
---|
1024 | (* XXX: note that cost labels in exprs expose a particular eval order. *) |
---|
1025 | |
---|
1026 | inductive step (ge:genv) : state → trace → state → Prop ≝ |
---|
1027 | |
---|
1028 | | step_assign: ∀f,a1,a2,k,e,m,loc,ofs,v2,m',tr1,tr2. |
---|
1029 | eval_lvalue ge e m a1 loc ofs tr1 → |
---|
1030 | eval_expr ge e m a2 v2 tr2 → |
---|
1031 | store_value_of_type (typeof a1) m loc ofs v2 = Some ? m' → |
---|
1032 | step ge (State f (Sassign a1 a2) k e m) |
---|
1033 | (tr1⧺tr2) (State f Sskip k e m') |
---|
1034 | |
---|
1035 | | step_call_none: ∀f,a,al,k,e,m,vf,vargs,fd,tr1,tr2. |
---|
1036 | eval_expr ge e m a vf tr1 → |
---|
1037 | eval_exprlist ge e m al vargs tr2 → |
---|
1038 | find_funct ?? ge vf = Some ? fd → |
---|
1039 | type_of_fundef fd = fun_typeof a → |
---|
1040 | step ge (State f (Scall (None ?) a al) k e m) |
---|
1041 | (tr1⧺tr2) (Callstate fd vargs (Kcall (None ?) f e k) m) |
---|
1042 | |
---|
1043 | | step_call_some: ∀f,lhs,a,al,k,e,m,loc,ofs,vf,vargs,fd,tr1,tr2,tr3. |
---|
1044 | eval_lvalue ge e m lhs loc ofs tr1 → |
---|
1045 | eval_expr ge e m a vf tr2 → |
---|
1046 | eval_exprlist ge e m al vargs tr3 → |
---|
1047 | find_funct ?? ge vf = Some ? fd → |
---|
1048 | type_of_fundef fd = fun_typeof a → |
---|
1049 | step ge (State f (Scall (Some ? lhs) a al) k e m) |
---|
1050 | (tr1⧺tr2⧺tr3) (Callstate fd vargs (Kcall (Some ? 〈〈loc, ofs〉, typeof lhs〉) f e k) m) |
---|
1051 | |
---|
1052 | | step_seq: ∀f,s1,s2,k,e,m. |
---|
1053 | step ge (State f (Ssequence s1 s2) k e m) |
---|
1054 | E0 (State f s1 (Kseq s2 k) e m) |
---|
1055 | | step_skip_seq: ∀f,s,k,e,m. |
---|
1056 | step ge (State f Sskip (Kseq s k) e m) |
---|
1057 | E0 (State f s k e m) |
---|
1058 | | step_continue_seq: ∀f,s,k,e,m. |
---|
1059 | step ge (State f Scontinue (Kseq s k) e m) |
---|
1060 | E0 (State f Scontinue k e m) |
---|
1061 | | step_break_seq: ∀f,s,k,e,m. |
---|
1062 | step ge (State f Sbreak (Kseq s k) e m) |
---|
1063 | E0 (State f Sbreak k e m) |
---|
1064 | |
---|
1065 | | step_ifthenelse_true: ∀f,a,s1,s2,k,e,m,v1,tr. |
---|
1066 | eval_expr ge e m a v1 tr → |
---|
1067 | is_true v1 (typeof a) → |
---|
1068 | step ge (State f (Sifthenelse a s1 s2) k e m) |
---|
1069 | tr (State f s1 k e m) |
---|
1070 | | step_ifthenelse_false: ∀f,a,s1,s2,k,e,m,v1,tr. |
---|
1071 | eval_expr ge e m a v1 tr → |
---|
1072 | is_false v1 (typeof a) → |
---|
1073 | step ge (State f (Sifthenelse a s1 s2) k e m) |
---|
1074 | tr (State f s2 k e m) |
---|
1075 | |
---|
1076 | | step_while_false: ∀f,a,s,k,e,m,v,tr. |
---|
1077 | eval_expr ge e m a v tr → |
---|
1078 | is_false v (typeof a) → |
---|
1079 | step ge (State f (Swhile a s) k e m) |
---|
1080 | tr (State f Sskip k e m) |
---|
1081 | | step_while_true: ∀f,a,s,k,e,m,v,tr. |
---|
1082 | eval_expr ge e m a v tr → |
---|
1083 | is_true v (typeof a) → |
---|
1084 | step ge (State f (Swhile a s) k e m) |
---|
1085 | tr (State f s (Kwhile a s k) e m) |
---|
1086 | | step_skip_or_continue_while: ∀f,x,a,s,k,e,m. |
---|
1087 | x = Sskip ∨ x = Scontinue → |
---|
1088 | step ge (State f x (Kwhile a s k) e m) |
---|
1089 | E0 (State f (Swhile a s) k e m) |
---|
1090 | | step_break_while: ∀f,a,s,k,e,m. |
---|
1091 | step ge (State f Sbreak (Kwhile a s k) e m) |
---|
1092 | E0 (State f Sskip k e m) |
---|
1093 | |
---|
1094 | | step_dowhile: ∀f,a,s,k,e,m. |
---|
1095 | step ge (State f (Sdowhile a s) k e m) |
---|
1096 | E0 (State f s (Kdowhile a s k) e m) |
---|
1097 | | step_skip_or_continue_dowhile_false: ∀f,x,a,s,k,e,m,v,tr. |
---|
1098 | x = Sskip ∨ x = Scontinue → |
---|
1099 | eval_expr ge e m a v tr → |
---|
1100 | is_false v (typeof a) → |
---|
1101 | step ge (State f x (Kdowhile a s k) e m) |
---|
1102 | tr (State f Sskip k e m) |
---|
1103 | | step_skip_or_continue_dowhile_true: ∀f,x,a,s,k,e,m,v,tr. |
---|
1104 | x = Sskip ∨ x = Scontinue → |
---|
1105 | eval_expr ge e m a v tr → |
---|
1106 | is_true v (typeof a) → |
---|
1107 | step ge (State f x (Kdowhile a s k) e m) |
---|
1108 | tr (State f (Sdowhile a s) k e m) |
---|
1109 | | step_break_dowhile: ∀f,a,s,k,e,m. |
---|
1110 | step ge (State f Sbreak (Kdowhile a s k) e m) |
---|
1111 | E0 (State f Sskip k e m) |
---|
1112 | |
---|
1113 | | step_for_start: ∀f,a1,a2,a3,s,k,e,m. |
---|
1114 | a1 ≠ Sskip → |
---|
1115 | step ge (State f (Sfor a1 a2 a3 s) k e m) |
---|
1116 | E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m) |
---|
1117 | | step_for_false: ∀f,a2,a3,s,k,e,m,v,tr. |
---|
1118 | eval_expr ge e m a2 v tr → |
---|
1119 | is_false v (typeof a2) → |
---|
1120 | step ge (State f (Sfor Sskip a2 a3 s) k e m) |
---|
1121 | tr (State f Sskip k e m) |
---|
1122 | | step_for_true: ∀f,a2,a3,s,k,e,m,v,tr. |
---|
1123 | eval_expr ge e m a2 v tr → |
---|
1124 | is_true v (typeof a2) → |
---|
1125 | step ge (State f (Sfor Sskip a2 a3 s) k e m) |
---|
1126 | tr (State f s (Kfor2 a2 a3 s k) e m) |
---|
1127 | | step_skip_or_continue_for2: ∀f,x,a2,a3,s,k,e,m. |
---|
1128 | x = Sskip ∨ x = Scontinue → |
---|
1129 | step ge (State f x (Kfor2 a2 a3 s k) e m) |
---|
1130 | E0 (State f a3 (Kfor3 a2 a3 s k) e m) |
---|
1131 | | step_break_for2: ∀f,a2,a3,s,k,e,m. |
---|
1132 | step ge (State f Sbreak (Kfor2 a2 a3 s k) e m) |
---|
1133 | E0 (State f Sskip k e m) |
---|
1134 | | step_skip_for3: ∀f,a2,a3,s,k,e,m. |
---|
1135 | step ge (State f Sskip (Kfor3 a2 a3 s k) e m) |
---|
1136 | E0 (State f (Sfor Sskip a2 a3 s) k e m) |
---|
1137 | |
---|
1138 | | step_return_0: ∀f,k,e,m. |
---|
1139 | fn_return f = Tvoid → |
---|
1140 | step ge (State f (Sreturn (None ?)) k e m) |
---|
1141 | E0 (Returnstate Vundef (call_cont k) (free_list becontentT m (blocks_of_env e))) |
---|
1142 | | step_return_1: ∀f,a,k,e,m,v,tr. |
---|
1143 | fn_return f ≠ Tvoid → |
---|
1144 | eval_expr ge e m a v tr → |
---|
1145 | step ge (State f (Sreturn (Some ? a)) k e m) |
---|
1146 | tr (Returnstate v (call_cont k) (free_list becontentT m (blocks_of_env e))) |
---|
1147 | | step_skip_call: ∀f,k,e,m. |
---|
1148 | is_call_cont k → |
---|
1149 | fn_return f = Tvoid → |
---|
1150 | step ge (State f Sskip k e m) |
---|
1151 | E0 (Returnstate Vundef k (free_list becontentT m (blocks_of_env e))) |
---|
1152 | |
---|
1153 | | step_switch: ∀f,a,sl,k,e,m,sz,n,tr. |
---|
1154 | eval_expr ge e m a (Vint sz n) tr → |
---|
1155 | step ge (State f (Sswitch a sl) k e m) |
---|
1156 | tr (State f (seq_of_labeled_statement (select_switch ? n sl)) (Kswitch k) e m) |
---|
1157 | | step_skip_break_switch: ∀f,x,k,e,m. |
---|
1158 | x = Sskip ∨ x = Sbreak → |
---|
1159 | step ge (State f x (Kswitch k) e m) |
---|
1160 | E0 (State f Sskip k e m) |
---|
1161 | | step_continue_switch: ∀f,k,e,m. |
---|
1162 | step ge (State f Scontinue (Kswitch k) e m) |
---|
1163 | E0 (State f Scontinue k e m) |
---|
1164 | |
---|
1165 | | step_label: ∀f,lbl,s,k,e,m. |
---|
1166 | step ge (State f (Slabel lbl s) k e m) |
---|
1167 | E0 (State f s k e m) |
---|
1168 | |
---|
1169 | | step_goto: ∀f,lbl,k,e,m,s',k'. |
---|
1170 | find_label lbl (fn_body f) (call_cont k) = Some ? 〈s', k'〉 → |
---|
1171 | step ge (State f (Sgoto lbl) k e m) |
---|
1172 | E0 (State f s' k' e m) |
---|
1173 | |
---|
1174 | | step_internal_function: ∀f,vargs,k,m,e,m1,m2. |
---|
1175 | alloc_variables empty_env m ((fn_params f) @ (fn_vars f)) e m1 → |
---|
1176 | bind_parameters e m1 (fn_params f) vargs m2 → |
---|
1177 | step ge (Callstate (CL_Internal f) vargs k m) |
---|
1178 | E0 (State f (fn_body f) k e m2) |
---|
1179 | |
---|
1180 | | step_external_function: ∀id,targs,tres,vargs,k,m,vres,t. |
---|
1181 | event_match (external_function id targs tres) vargs t vres → |
---|
1182 | step ge (Callstate (CL_External id targs tres) vargs k m) |
---|
1183 | t (Returnstate vres k m) |
---|
1184 | |
---|
1185 | | step_returnstate_0: ∀v,f,e,k,m. |
---|
1186 | step ge (Returnstate v (Kcall (None ?) f e k) m) |
---|
1187 | E0 (State f Sskip k e m) |
---|
1188 | |
---|
1189 | | step_returnstate_1: ∀v,f,e,k,m,m',loc,ofs,ty. |
---|
1190 | store_value_of_type ty m loc ofs v = Some ? m' → |
---|
1191 | step ge (Returnstate v (Kcall (Some ? 〈〈loc, ofs〉, ty〉) f e k) m) |
---|
1192 | E0 (State f Sskip k e m') |
---|
1193 | |
---|
1194 | | step_cost: ∀f,lbl,s,k,e,m. |
---|
1195 | step ge (State f (Scost lbl s) k e m) |
---|
1196 | (Echarge lbl) (State f s k e m) |
---|
1197 | |
---|
1198 | | step_final: ∀r,m. |
---|
1199 | step ge (Returnstate (Vint I32 r) Kstop m) |
---|
1200 | E0 (Finalstate r). |
---|
1201 | |
---|
1202 | (* |
---|
1203 | End SEMANTICS. |
---|
1204 | *) |
---|
1205 | |
---|
1206 | (* * * Whole-program semantics *) |
---|
1207 | |
---|
1208 | (* * Execution of whole programs are described as sequences of transitions |
---|
1209 | from an initial state to a final state. An initial state is a [Callstate] |
---|
1210 | corresponding to the invocation of the ``main'' function of the program |
---|
1211 | without arguments and with an empty continuation. *) |
---|
1212 | |
---|
1213 | inductive initial_state (p: clight_program): state -> Prop := |
---|
1214 | | initial_state_intro: ∀b,f,ge,m0. |
---|
1215 | globalenv Genv ?? (fst ??) p = ge → |
---|
1216 | init_mem Genv ?? (fst ??) p = OK ? m0 → |
---|
1217 | find_symbol ?? ge (prog_main ?? p) = Some ? b → |
---|
1218 | find_funct_ptr ?? ge b = Some ? f → |
---|
1219 | initial_state p (Callstate f (nil ?) Kstop m0). |
---|
1220 | |
---|
1221 | (* * A final state is a [Returnstate] with an empty continuation. *) |
---|
1222 | |
---|
1223 | inductive final_state: state -> int -> Prop := |
---|
1224 | | final_state_intro: ∀r. |
---|
1225 | final_state (Finalstate r) r. |
---|
1226 | |
---|
1227 | (* * Execution of a whole program: [exec_program p beh] |
---|
1228 | holds if the application of [p]'s main function to no arguments |
---|
1229 | in the initial memory state for [p] has [beh] as observable |
---|
1230 | behavior. *) |
---|
1231 | |
---|
1232 | definition exec_program : clight_program → program_behavior → Prop ≝ λp,beh. |
---|
1233 | ∀ge. globalenv ??? (fst ??) p = ge → |
---|
1234 | program_behaves (mk_transrel ?? step) (initial_state p) final_state ge beh. |
---|
1235 | |
---|