[475] | 1 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 2 | (* Vector.ma: Fixed length polymorphic vectors, and routine operations on *) |
---|
| 3 | (* them. *) |
---|
| 4 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 5 | |
---|
| 6 | include "basics/list.ma". |
---|
| 7 | include "basics/bool.ma". |
---|
[697] | 8 | include "basics/types.ma". |
---|
[475] | 9 | |
---|
[698] | 10 | include "ASM/Util.ma". |
---|
[475] | 11 | |
---|
| 12 | include "arithmetics/nat.ma". |
---|
| 13 | |
---|
[744] | 14 | include "utilities/extranat.ma". |
---|
[700] | 15 | include "utilities/oldlib/eq.ma". |
---|
[475] | 16 | |
---|
| 17 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 18 | (* The datatype. *) |
---|
| 19 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 20 | |
---|
| 21 | inductive Vector (A: Type[0]): nat → Type[0] ≝ |
---|
| 22 | VEmpty: Vector A O |
---|
| 23 | | VCons: ∀n: nat. A → Vector A n → Vector A (S n). |
---|
| 24 | |
---|
| 25 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 26 | (* Syntax. *) |
---|
| 27 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 28 | |
---|
| 29 | notation "hvbox(hd break ::: tl)" |
---|
| 30 | right associative with precedence 52 |
---|
| 31 | for @{ 'vcons $hd $tl }. |
---|
| 32 | |
---|
| 33 | notation "[[ list0 x sep ; ]]" |
---|
| 34 | non associative with precedence 90 |
---|
| 35 | for ${fold right @'vnil rec acc @{'vcons $x $acc}}. |
---|
| 36 | |
---|
| 37 | interpretation "Vector vnil" 'vnil = (VEmpty ?). |
---|
| 38 | interpretation "Vector vcons" 'vcons hd tl = (VCons ? ? hd tl). |
---|
| 39 | |
---|
| 40 | notation "hvbox(l break !!! break n)" |
---|
| 41 | non associative with precedence 90 |
---|
| 42 | for @{ 'get_index_v $l $n }. |
---|
| 43 | |
---|
| 44 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 45 | (* Lookup. *) |
---|
| 46 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 47 | |
---|
| 48 | let rec get_index_v (A: Type[0]) (n: nat) |
---|
| 49 | (v: Vector A n) (m: nat) (lt: m < n) on m: A ≝ |
---|
| 50 | (match m with |
---|
| 51 | [ O ⇒ |
---|
| 52 | match v return λx.λ_. O < x → A with |
---|
| 53 | [ VEmpty ⇒ λabsd1: O < O. ? |
---|
| 54 | | VCons p hd tl ⇒ λprf1: O < S p. hd |
---|
| 55 | ] |
---|
| 56 | | S o ⇒ |
---|
| 57 | (match v return λx.λ_. S o < x → A with |
---|
| 58 | [ VEmpty ⇒ λprf: S o < O. ? |
---|
| 59 | | VCons p hd tl ⇒ λprf: S o < S p. get_index_v A p tl o ? |
---|
| 60 | ]) |
---|
| 61 | ]) lt. |
---|
| 62 | [ cases (not_le_Sn_O O) |
---|
| 63 | normalize in absd1 |
---|
| 64 | # H |
---|
| 65 | cases (H absd1) |
---|
| 66 | | cases (not_le_Sn_O (S o)) |
---|
| 67 | normalize in prf |
---|
| 68 | # H |
---|
| 69 | cases (H prf) |
---|
| 70 | | normalize |
---|
| 71 | normalize in prf |
---|
| 72 | @ le_S_S_to_le |
---|
| 73 | assumption |
---|
| 74 | ] |
---|
| 75 | qed. |
---|
| 76 | |
---|
| 77 | definition get_index' ≝ |
---|
| 78 | λA: Type[0]. |
---|
| 79 | λn, m: nat. |
---|
| 80 | λb: Vector A (S (n + m)). |
---|
| 81 | get_index_v A (S (n + m)) b n ?. |
---|
| 82 | normalize |
---|
| 83 | // |
---|
| 84 | qed. |
---|
| 85 | |
---|
| 86 | let rec get_index_weak_v (A: Type[0]) (n: nat) |
---|
| 87 | (v: Vector A n) (m: nat) on m ≝ |
---|
| 88 | match m with |
---|
| 89 | [ O ⇒ |
---|
| 90 | match v with |
---|
| 91 | [ VEmpty ⇒ None A |
---|
| 92 | | VCons p hd tl ⇒ Some A hd |
---|
| 93 | ] |
---|
| 94 | | S o ⇒ |
---|
| 95 | match v with |
---|
| 96 | [ VEmpty ⇒ None A |
---|
| 97 | | VCons p hd tl ⇒ get_index_weak_v A p tl o |
---|
| 98 | ] |
---|
| 99 | ]. |
---|
| 100 | |
---|
| 101 | interpretation "Vector get_index" 'get_index_v v n = (get_index_v ? ? v n). |
---|
| 102 | |
---|
| 103 | let rec set_index (A: Type[0]) (n: nat) (v: Vector A n) (m: nat) (a: A) (lt: m < n) on m: Vector A n ≝ |
---|
| 104 | (match m with |
---|
| 105 | [ O ⇒ |
---|
| 106 | match v return λx.λ_. O < x → Vector A x with |
---|
| 107 | [ VEmpty ⇒ λabsd1: O < O. [[ ]] |
---|
| 108 | | VCons p hd tl ⇒ λprf1: O < S p. (a ::: tl) |
---|
| 109 | ] |
---|
| 110 | | S o ⇒ |
---|
| 111 | (match v return λx.λ_. S o < x → Vector A x with |
---|
| 112 | [ VEmpty ⇒ λprf: S o < O. [[ ]] |
---|
| 113 | | VCons p hd tl ⇒ λprf: S o < S p. hd ::: (set_index A p tl o a ?) |
---|
| 114 | ]) |
---|
| 115 | ]) lt. |
---|
| 116 | normalize in prf ⊢ %; |
---|
| 117 | /2/; |
---|
| 118 | qed. |
---|
[873] | 119 | |
---|
[475] | 120 | let rec set_index_weak (A: Type[0]) (n: nat) |
---|
| 121 | (v: Vector A n) (m: nat) (a: A) on m ≝ |
---|
| 122 | match m with |
---|
| 123 | [ O ⇒ |
---|
| 124 | match v with |
---|
| 125 | [ VEmpty ⇒ None (Vector A n) |
---|
| 126 | | VCons o hd tl ⇒ Some (Vector A n) (? (VCons A o a tl)) |
---|
| 127 | ] |
---|
| 128 | | S o ⇒ |
---|
| 129 | match v with |
---|
| 130 | [ VEmpty ⇒ None (Vector A n) |
---|
| 131 | | VCons p hd tl ⇒ |
---|
| 132 | let settail ≝ set_index_weak A p tl o a in |
---|
| 133 | match settail with |
---|
| 134 | [ None ⇒ None (Vector A n) |
---|
| 135 | | Some j ⇒ Some (Vector A n) (? (VCons A p hd j)) |
---|
| 136 | ] |
---|
| 137 | ] |
---|
| 138 | ]. |
---|
| 139 | //. |
---|
| 140 | qed. |
---|
| 141 | |
---|
| 142 | let rec drop (A: Type[0]) (n: nat) |
---|
| 143 | (v: Vector A n) (m: nat) on m ≝ |
---|
| 144 | match m with |
---|
| 145 | [ O ⇒ Some (Vector A n) v |
---|
| 146 | | S o ⇒ |
---|
| 147 | match v with |
---|
| 148 | [ VEmpty ⇒ None (Vector A n) |
---|
| 149 | | VCons p hd tl ⇒ ? (drop A p tl o) |
---|
| 150 | ] |
---|
| 151 | ]. |
---|
| 152 | //. |
---|
| 153 | qed. |
---|
| 154 | |
---|
[744] | 155 | definition head' : ∀A:Type[0]. ∀n:nat. Vector A (S n) → A ≝ |
---|
| 156 | λA,n,v. match v return λx.λ_. match x with [ O ⇒ True | _ ⇒ A ] with |
---|
| 157 | [ VEmpty ⇒ I | VCons _ hd _ ⇒ hd ]. |
---|
| 158 | |
---|
| 159 | definition tail : ∀A:Type[0]. ∀n:nat. Vector A (S n) → Vector A n ≝ |
---|
| 160 | λA,n,v. match v return λx.λ_. match x with [ O ⇒ True | S m ⇒ Vector A m ] with |
---|
| 161 | [ VEmpty ⇒ I | VCons m hd tl ⇒ tl ]. |
---|
| 162 | |
---|
| 163 | let rec split' (A: Type[0]) (m, n: nat) on m: Vector A (plus m n) → (Vector A m) × (Vector A n) ≝ |
---|
[475] | 164 | match m return λm. Vector A (plus m n) → (Vector A m) × (Vector A n) with |
---|
| 165 | [ O ⇒ λv. 〈[[ ]], v〉 |
---|
[744] | 166 | | S m' ⇒ λv. let 〈l,r〉 ≝ split' A m' n (tail ?? v) in 〈head' ?? v:::l, r〉 |
---|
| 167 | ]. |
---|
| 168 | (* Prevent undesirable unfolding. *) |
---|
| 169 | let rec split (A: Type[0]) (m, n: nat) (v:Vector A (plus m n)) on v : (Vector A m) × (Vector A n) ≝ |
---|
| 170 | split' A m n v. |
---|
[475] | 171 | |
---|
[744] | 172 | |
---|
[475] | 173 | definition head: ∀A: Type[0]. ∀n: nat. Vector A (S n) → A × (Vector A n) ≝ |
---|
| 174 | λA: Type[0]. |
---|
| 175 | λn: nat. |
---|
| 176 | λv: Vector A (S n). |
---|
| 177 | match v return λl. λ_: Vector A l. l = S n → A × (Vector A n) with |
---|
| 178 | [ VEmpty ⇒ λK. ⊥ |
---|
| 179 | | VCons o he tl ⇒ λK. 〈he, (tl⌈Vector A o ↦ Vector A n⌉)〉 |
---|
| 180 | ] (? : S ? = S ?). |
---|
| 181 | // |
---|
| 182 | [ destruct |
---|
| 183 | | lapply (injective_S … K) |
---|
| 184 | // |
---|
| 185 | ] |
---|
| 186 | qed. |
---|
| 187 | |
---|
| 188 | definition from_singl: ∀A:Type[0]. Vector A (S O) → A ≝ |
---|
| 189 | λA: Type[0]. |
---|
| 190 | λv: Vector A (S 0). |
---|
| 191 | fst … (head … v). |
---|
| 192 | |
---|
| 193 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 194 | (* Folds and builds. *) |
---|
| 195 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 196 | |
---|
| 197 | let rec fold_right (A: Type[0]) (B: Type[0]) (n: nat) |
---|
| 198 | (f: A → B → B) (x: B) (v: Vector A n) on v ≝ |
---|
| 199 | match v with |
---|
| 200 | [ VEmpty ⇒ x |
---|
| 201 | | VCons n hd tl ⇒ f hd (fold_right A B n f x tl) |
---|
| 202 | ]. |
---|
| 203 | |
---|
[697] | 204 | let rec fold_right_i (A: Type[0]) (B: nat → Type[0]) (n: nat) |
---|
| 205 | (f: ∀n. A → B n → B (S n)) (x: B 0) (v: Vector A n) on v ≝ |
---|
| 206 | match v with |
---|
| 207 | [ VEmpty ⇒ x |
---|
| 208 | | VCons n hd tl ⇒ f ? hd (fold_right_i A B n f x tl) |
---|
| 209 | ]. |
---|
| 210 | |
---|
[475] | 211 | let rec fold_right2_i (A: Type[0]) (B: Type[0]) (C: nat → Type[0]) |
---|
| 212 | (f: ∀N. A → B → C N → C (S N)) (c: C O) (n: nat) |
---|
| 213 | (v: Vector A n) (q: Vector B n) on v : C n ≝ |
---|
| 214 | (match v return λx.λ_. x = n → C n with |
---|
| 215 | [ VEmpty ⇒ |
---|
| 216 | match q return λx.λ_. O = x → C x with |
---|
| 217 | [ VEmpty ⇒ λprf: O = O. c |
---|
| 218 | | VCons o hd tl ⇒ λabsd. ⊥ |
---|
| 219 | ] |
---|
| 220 | | VCons o hd tl ⇒ |
---|
| 221 | match q return λx.λ_. S o = x → C x with |
---|
| 222 | [ VEmpty ⇒ λabsd: S o = O. ⊥ |
---|
| 223 | | VCons p hd' tl' ⇒ λprf: S o = S p. |
---|
| 224 | (f ? hd hd' (fold_right2_i A B C f c ? tl (tl'⌈Vector B p ↦ Vector B o⌉)))⌈C (S o) ↦ C (S p)⌉ |
---|
| 225 | ] |
---|
| 226 | ]) (refl ? n). |
---|
| 227 | [1,2: |
---|
| 228 | destruct |
---|
| 229 | |3,4: |
---|
| 230 | lapply (injective_S … prf) |
---|
| 231 | // |
---|
| 232 | ] |
---|
| 233 | qed. |
---|
| 234 | |
---|
| 235 | let rec fold_left (A: Type[0]) (B: Type[0]) (n: nat) |
---|
| 236 | (f: A → B → A) (x: A) (v: Vector B n) on v ≝ |
---|
| 237 | match v with |
---|
| 238 | [ VEmpty ⇒ x |
---|
[697] | 239 | | VCons n hd tl ⇒ fold_left A B n f (f x hd) tl |
---|
[475] | 240 | ]. |
---|
| 241 | |
---|
| 242 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 243 | (* Maps and zips. *) |
---|
| 244 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 245 | |
---|
| 246 | let rec map (A: Type[0]) (B: Type[0]) (n: nat) |
---|
| 247 | (f: A → B) (v: Vector A n) on v ≝ |
---|
| 248 | match v with |
---|
| 249 | [ VEmpty ⇒ [[ ]] |
---|
| 250 | | VCons n hd tl ⇒ (f hd) ::: (map A B n f tl) |
---|
| 251 | ]. |
---|
| 252 | |
---|
| 253 | let rec zip_with (A: Type[0]) (B: Type[0]) (C: Type[0]) (n: nat) |
---|
| 254 | (f: A → B → C) (v: Vector A n) (q: Vector B n) on v ≝ |
---|
| 255 | (match v return (λx.λr. x = n → Vector C x) with |
---|
| 256 | [ VEmpty ⇒ λ_. [[ ]] |
---|
| 257 | | VCons n hd tl ⇒ |
---|
| 258 | match q return (λy.λr. S n = y → Vector C (S n)) with |
---|
| 259 | [ VEmpty ⇒ ? |
---|
| 260 | | VCons m hd' tl' ⇒ |
---|
| 261 | λe: S n = S m. |
---|
| 262 | (f hd hd') ::: (zip_with A B C n f tl ?) |
---|
| 263 | ] |
---|
| 264 | ]) |
---|
| 265 | (refl ? n). |
---|
| 266 | [ #e |
---|
| 267 | destruct(e); |
---|
| 268 | | lapply (injective_S … e) |
---|
| 269 | # H |
---|
| 270 | > H |
---|
| 271 | @ tl' |
---|
| 272 | ] |
---|
| 273 | qed. |
---|
| 274 | |
---|
| 275 | definition zip ≝ |
---|
| 276 | λA, B: Type[0]. |
---|
| 277 | λn: nat. |
---|
| 278 | λv: Vector A n. |
---|
| 279 | λq: Vector B n. |
---|
[697] | 280 | zip_with A B (A × B) n (pair A B) v q. |
---|
[475] | 281 | |
---|
| 282 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 283 | (* Building vectors from scratch *) |
---|
| 284 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 285 | |
---|
| 286 | let rec replicate (A: Type[0]) (n: nat) (h: A) on n ≝ |
---|
| 287 | match n return λn. Vector A n with |
---|
| 288 | [ O ⇒ [[ ]] |
---|
| 289 | | S m ⇒ h ::: (replicate A m h) |
---|
| 290 | ]. |
---|
| 291 | |
---|
| 292 | (* DPM: fixme. Weird matita bug in base case. *) |
---|
| 293 | let rec append (A: Type[0]) (n: nat) (m: nat) |
---|
| 294 | (v: Vector A n) (q: Vector A m) on v ≝ |
---|
| 295 | match v return (λn.λv. Vector A (n + m)) with |
---|
| 296 | [ VEmpty ⇒ (? q) |
---|
| 297 | | VCons o hd tl ⇒ hd ::: (append A o m tl q) |
---|
| 298 | ]. |
---|
| 299 | # H |
---|
| 300 | assumption |
---|
| 301 | qed. |
---|
| 302 | |
---|
| 303 | notation "hvbox(l break @@ r)" |
---|
| 304 | right associative with precedence 47 |
---|
| 305 | for @{ 'vappend $l $r }. |
---|
| 306 | |
---|
| 307 | interpretation "Vector append" 'vappend v1 v2 = (append ??? v1 v2). |
---|
| 308 | |
---|
| 309 | let rec scan_left (A: Type[0]) (B: Type[0]) (n: nat) |
---|
| 310 | (f: A → B → A) (a: A) (v: Vector B n) on v ≝ |
---|
| 311 | a ::: |
---|
| 312 | (match v with |
---|
| 313 | [ VEmpty ⇒ VEmpty A |
---|
| 314 | | VCons o hd tl ⇒ scan_left A B o f (f a hd) tl |
---|
| 315 | ]). |
---|
| 316 | |
---|
| 317 | let rec scan_right (A: Type[0]) (B: Type[0]) (n: nat) |
---|
| 318 | (f: A → B → A) (b: B) (v: Vector A n) on v ≝ |
---|
| 319 | match v with |
---|
| 320 | [ VEmpty ⇒ ? |
---|
| 321 | | VCons o hd tl ⇒ f hd b :: (scan_right A B o f b tl) |
---|
| 322 | ]. |
---|
| 323 | // |
---|
| 324 | qed. |
---|
| 325 | |
---|
| 326 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 327 | (* Other manipulations. *) |
---|
| 328 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 329 | |
---|
[697] | 330 | (* At some points matita will attempt to reduce reverse with a known vector, |
---|
| 331 | which reduces the equality proof for the cast. Normalising this proof needs |
---|
[744] | 332 | to be fast enough to keep matita usable, so use plus_n_Sm_fast. *) |
---|
[697] | 333 | |
---|
| 334 | let rec revapp (A: Type[0]) (n: nat) (m:nat) |
---|
| 335 | (v: Vector A n) (acc: Vector A m) on v : Vector A (n + m) ≝ |
---|
| 336 | match v return λn'.λ_. Vector A (n' + m) with |
---|
| 337 | [ VEmpty ⇒ acc |
---|
| 338 | | VCons o hd tl ⇒ (revapp ??? tl (hd:::acc))⌈Vector A (o+S m) ↦ Vector A (S o + m)⌉ |
---|
[475] | 339 | ]. |
---|
[889] | 340 | < plus_n_Sm_fast @refl qed. |
---|
[475] | 341 | |
---|
[697] | 342 | let rec reverse (A: Type[0]) (n: nat) (v: Vector A n) on v : Vector A n ≝ |
---|
| 343 | (revapp A n 0 v [[ ]])⌈Vector A (n+0) ↦ Vector A n⌉. |
---|
| 344 | < plus_n_O @refl qed. |
---|
| 345 | |
---|
[744] | 346 | let rec pad_vector (A:Type[0]) (a:A) (n,m:nat) (v:Vector A m) on n : Vector A (n+m) ≝ |
---|
| 347 | match n return λn.Vector A (n+m) with |
---|
| 348 | [ O ⇒ v |
---|
| 349 | | S n' ⇒ a:::(pad_vector A a n' m v) |
---|
| 350 | ]. |
---|
| 351 | |
---|
[475] | 352 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 353 | (* Conversions to and from lists. *) |
---|
| 354 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 355 | |
---|
| 356 | let rec list_of_vector (A: Type[0]) (n: nat) |
---|
| 357 | (v: Vector A n) on v ≝ |
---|
| 358 | match v return λn.λv. list A with |
---|
| 359 | [ VEmpty ⇒ [] |
---|
| 360 | | VCons o hd tl ⇒ hd :: (list_of_vector A o tl) |
---|
| 361 | ]. |
---|
| 362 | |
---|
| 363 | let rec vector_of_list (A: Type[0]) (l: list A) on l ≝ |
---|
| 364 | match l return λl. Vector A (length A l) with |
---|
| 365 | [ nil ⇒ ? |
---|
| 366 | | cons hd tl ⇒ hd ::: (vector_of_list A tl) |
---|
| 367 | ]. |
---|
| 368 | normalize |
---|
| 369 | @ VEmpty |
---|
| 370 | qed. |
---|
| 371 | |
---|
| 372 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 373 | (* Rotates and shifts. *) |
---|
| 374 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 375 | |
---|
| 376 | let rec rotate_left (A: Type[0]) (n: nat) |
---|
| 377 | (m: nat) (v: Vector A n) on m: Vector A n ≝ |
---|
| 378 | match m with |
---|
| 379 | [ O ⇒ v |
---|
| 380 | | S o ⇒ |
---|
| 381 | match v with |
---|
| 382 | [ VEmpty ⇒ [[ ]] |
---|
| 383 | | VCons p hd tl ⇒ |
---|
| 384 | rotate_left A (S p) o ((append A p ? tl [[hd]])⌈Vector A (p + S O) ↦ Vector A (S p)⌉) |
---|
| 385 | ] |
---|
| 386 | ]. |
---|
| 387 | // |
---|
| 388 | qed. |
---|
| 389 | |
---|
| 390 | definition rotate_right ≝ |
---|
| 391 | λA: Type[0]. |
---|
| 392 | λn, m: nat. |
---|
| 393 | λv: Vector A n. |
---|
| 394 | reverse A n (rotate_left A n m (reverse A n v)). |
---|
| 395 | |
---|
| 396 | definition shift_left_1 ≝ |
---|
| 397 | λA: Type[0]. |
---|
| 398 | λn: nat. |
---|
| 399 | λv: Vector A (S n). |
---|
| 400 | λa: A. |
---|
| 401 | match v return λy.λ_. y = S n → Vector A y with |
---|
| 402 | [ VEmpty ⇒ λH.⊥ |
---|
| 403 | | VCons o hd tl ⇒ λH.reverse … (a::: reverse … tl) |
---|
| 404 | ] (refl ? (S n)). |
---|
| 405 | destruct. |
---|
| 406 | qed. |
---|
| 407 | |
---|
[744] | 408 | |
---|
| 409 | (* XXX this is horrible - but useful to ensure that we can normalise in the proof assistant. *) |
---|
| 410 | definition switch_bv_plus : ∀A:Type[0]. ∀n,m. Vector A (n+m) → Vector A (m+n) ≝ |
---|
[749] | 411 | λA,n,m. match commutative_plus_faster n m return λx.λ_.Vector A (n+m) → Vector A x with [ refl ⇒ λi.i ]. |
---|
[744] | 412 | |
---|
[475] | 413 | definition shift_right_1 ≝ |
---|
| 414 | λA: Type[0]. |
---|
| 415 | λn: nat. |
---|
| 416 | λv: Vector A (S n). |
---|
| 417 | λa: A. |
---|
[744] | 418 | let 〈v',dropped〉 ≝ split ? n 1 (switch_bv_plus ? 1 n v) in a:::v'. |
---|
| 419 | (* reverse … (shift_left_1 … (reverse … v) a).*) |
---|
| 420 | |
---|
| 421 | definition shift_left : ∀A:Type[0]. ∀n,m:nat. Vector A n → A → Vector A n ≝ |
---|
[475] | 422 | λA: Type[0]. |
---|
| 423 | λn, m: nat. |
---|
[744] | 424 | match nat_compare n m return λx,y.λ_. Vector A x → A → Vector A x with |
---|
| 425 | [ nat_lt _ _ ⇒ λv,a. replicate … a |
---|
| 426 | | nat_eq _ ⇒ λv,a. replicate … a |
---|
| 427 | | nat_gt d m ⇒ λv,a. let 〈v0,v'〉 ≝ split … v in switch_bv_plus … (v' @@ (replicate … a)) |
---|
| 428 | ]. |
---|
| 429 | |
---|
| 430 | (* iterate … (λx. shift_left_1 … x a) v m.*) |
---|
[475] | 431 | |
---|
| 432 | definition shift_right ≝ |
---|
| 433 | λA: Type[0]. |
---|
| 434 | λn, m: nat. |
---|
| 435 | λv: Vector A (S n). |
---|
| 436 | λa: A. |
---|
| 437 | iterate … (λx. shift_right_1 … x a) v m. |
---|
| 438 | |
---|
| 439 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 440 | (* Decidable equality. *) |
---|
| 441 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 442 | |
---|
| 443 | let rec eq_v (A: Type[0]) (n: nat) (f: A → A → bool) (b: Vector A n) (c: Vector A n) on b : bool ≝ |
---|
[726] | 444 | (match b return λx.λ_. Vector A x → bool with |
---|
| 445 | [ VEmpty ⇒ λc. |
---|
| 446 | match c return λx.λ_. match x return λ_.Type[0] with [ O ⇒ bool | _ ⇒ True ] with |
---|
| 447 | [ VEmpty ⇒ true |
---|
| 448 | | VCons p hd tl ⇒ I |
---|
| 449 | ] |
---|
| 450 | | VCons m hd tl ⇒ λc. andb (f hd (head' A m c)) (eq_v A m f tl (tail A m c)) |
---|
| 451 | ] |
---|
| 452 | ) c. |
---|
[475] | 453 | |
---|
[726] | 454 | lemma vector_inv_n: ∀A,n. ∀P:Vector A n → Type[0]. ∀v:Vector A n. |
---|
| 455 | match n return λn'. (Vector A n' → Type[0]) → Vector A n' → Type[0] with |
---|
[697] | 456 | [ O ⇒ λP.λv.P [[ ]] → P v |
---|
| 457 | | S m ⇒ λP.λv.(∀h,t. P (VCons A m h t)) → P v |
---|
| 458 | ] P v. |
---|
[873] | 459 | #A #n #P #v generalize in match P cases v normalize // |
---|
| 460 | qed. |
---|
[697] | 461 | |
---|
[726] | 462 | lemma eq_v_elim: ∀P:bool → Type[0]. ∀A,f. |
---|
| 463 | (∀Q:bool → Type[0]. ∀a,b. (a = b → Q true) → (a ≠ b → Q false) → Q (f a b)) → |
---|
[697] | 464 | ∀n,x,y. |
---|
| 465 | (x = y → P true) → |
---|
| 466 | (x ≠ y → P false) → |
---|
| 467 | P (eq_v A n f x y). |
---|
| 468 | #P #A #f #f_elim #n #x elim x |
---|
| 469 | [ #y @(vector_inv_n … y) |
---|
| 470 | normalize /2/ |
---|
| 471 | | #m #h #t #IH #y @(vector_inv_n … y) |
---|
| 472 | #h' #t' #Ht #Hf whd in ⊢ (?%) |
---|
| 473 | @(f_elim ? h h') #Eh |
---|
| 474 | [ @IH [ #Et @Ht >Eh >Et @refl | #NEt @Hf % #E' destruct (E') elim NEt /2/ ] |
---|
| 475 | | @Hf % #E' destruct (E') elim Eh /2/ |
---|
| 476 | ] |
---|
| 477 | ] qed. |
---|
| 478 | |
---|
[961] | 479 | lemma eq_v_true : ∀A,f. (∀a. f a a = true) → ∀n,v. eq_v A n f v v = true. |
---|
| 480 | #A #f #f_true #n #v elim v |
---|
| 481 | [ // |
---|
| 482 | | #m #h #t #IH whd in ⊢ (??%%) >f_true >IH @refl |
---|
| 483 | ] qed. |
---|
| 484 | |
---|
| 485 | lemma vector_neq_tail : ∀A,n,h. ∀t,t':Vector A n. h:::t≠h:::t' → t ≠ t'. |
---|
| 486 | #A #n #h #t #t' * #NE % #E @NE >E @refl |
---|
| 487 | qed. |
---|
| 488 | |
---|
| 489 | lemma eq_v_false : ∀A,f. (∀a,a'. f a a' = true → a = a') → ∀n,v,v'. v≠v' → eq_v A n f v v' = false. |
---|
| 490 | #A #f #f_true #n elim n |
---|
| 491 | [ #v #v' @(vector_inv_n ??? v) @(vector_inv_n ??? v') * #H @False_ind @H @refl |
---|
| 492 | | #m #IH #v #v' @(vector_inv_n ??? v) #h #t @(vector_inv_n ??? v') #h' #t' |
---|
| 493 | #NE normalize lapply (f_true h h') cases (f h h') // #E @IH >E in NE /2/ |
---|
| 494 | ] qed. |
---|
| 495 | |
---|
[475] | 496 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 497 | (* Subvectors. *) |
---|
| 498 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 499 | |
---|
| 500 | definition mem ≝ |
---|
| 501 | λA: Type[0]. |
---|
| 502 | λeq_a : A → A → bool. |
---|
| 503 | λn: nat. |
---|
| 504 | λl: Vector A n. |
---|
| 505 | λx: A. |
---|
| 506 | fold_right … (λy,v. (eq_a x y) ∨ v) false l. |
---|
| 507 | |
---|
[854] | 508 | |
---|
[475] | 509 | definition subvector_with ≝ |
---|
| 510 | λA: Type[0]. |
---|
| 511 | λn: nat. |
---|
| 512 | λm: nat. |
---|
| 513 | λf: A → A → bool. |
---|
| 514 | λv: Vector A n. |
---|
| 515 | λq: Vector A m. |
---|
| 516 | fold_right ? ? ? (λx, v. (mem ? f ? q x) ∧ v) true v. |
---|
| 517 | |
---|
| 518 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 519 | (* Lemmas. *) |
---|
| 520 | (* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= *) |
---|
| 521 | |
---|
| 522 | lemma map_fusion: |
---|
| 523 | ∀A, B, C: Type[0]. |
---|
| 524 | ∀n: nat. |
---|
| 525 | ∀v: Vector A n. |
---|
| 526 | ∀f: A → B. |
---|
| 527 | ∀g: B → C. |
---|
| 528 | map B C n g (map A B n f v) = map A C n (λx. g (f x)) v. |
---|
| 529 | #A #B #C #n #v #f #g |
---|
| 530 | elim v |
---|
| 531 | [ normalize |
---|
| 532 | % |
---|
| 533 | | #N #H #V #H2 |
---|
| 534 | normalize |
---|
| 535 | > H2 |
---|
| 536 | % |
---|
| 537 | ] |
---|
| 538 | qed. |
---|