1 | include "ASM/ASM.ma". |
---|
2 | include "ASM/Arithmetic.ma". |
---|
3 | include "ASM/Fetch.ma". |
---|
4 | include "ASM/Status.ma". |
---|
5 | include alias "basics/logic.ma". |
---|
6 | include alias "arithmetics/nat.ma". |
---|
7 | include "utilities/extralib.ma". |
---|
8 | include "ASM/Assembly.ma". |
---|
9 | |
---|
10 | (* Internal types *) |
---|
11 | |
---|
12 | (* label_map: identifier ↦ 〈instruction number, address〉 *) |
---|
13 | definition label_map ≝ identifier_map ASMTag (ℕ × ℕ). |
---|
14 | |
---|
15 | (* jump_expansion_policy: instruction number ↦ 〈pc, addr, jump_length〉 *) |
---|
16 | definition jump_expansion_policy ≝ BitVectorTrie (ℕ × ℕ × jump_length) 16. |
---|
17 | |
---|
18 | (* The different properties that we want/need to prove at some point *) |
---|
19 | (* Anything that's not in the program doesn't end up in the policy *) |
---|
20 | definition out_of_program_none ≝ |
---|
21 | λprefix:list labelled_instruction.λpolicy:jump_expansion_policy. |
---|
22 | ∀i.i ≥ |prefix| → i < 2^16 → lookup_opt … (bitvector_of_nat ? i) policy = None ?. |
---|
23 | |
---|
24 | (* If instruction i is a jump, then there will be something in the policy at |
---|
25 | * position i *) |
---|
26 | definition is_jump' ≝ |
---|
27 | λx:preinstruction Identifier. |
---|
28 | match x with |
---|
29 | [ JC _ ⇒ True |
---|
30 | | JNC _ ⇒ True |
---|
31 | | JZ _ ⇒ True |
---|
32 | | JNZ _ ⇒ True |
---|
33 | | JB _ _ ⇒ True |
---|
34 | | JNB _ _ ⇒ True |
---|
35 | | JBC _ _ ⇒ True |
---|
36 | | CJNE _ _ ⇒ True |
---|
37 | | DJNZ _ _ ⇒ True |
---|
38 | | _ ⇒ False |
---|
39 | ]. |
---|
40 | |
---|
41 | definition is_jump ≝ |
---|
42 | λx:labelled_instruction. |
---|
43 | let 〈label,instr〉 ≝ x in |
---|
44 | match instr with |
---|
45 | [ Instruction i ⇒ is_jump' i |
---|
46 | | Call _ ⇒ True |
---|
47 | | Jmp _ ⇒ True |
---|
48 | | _ ⇒ False |
---|
49 | ]. |
---|
50 | |
---|
51 | definition jump_in_policy ≝ |
---|
52 | λprefix:list labelled_instruction.λpolicy:jump_expansion_policy. |
---|
53 | ∀i:ℕ.i < |prefix| → |
---|
54 | (is_jump (nth i ? prefix 〈None ?, Comment []〉) ↔ |
---|
55 | ∃p,a,j.lookup_opt … (bitvector_of_nat 16 i) policy = Some ? 〈p,a,j〉). |
---|
56 | |
---|
57 | definition labels_okay ≝ |
---|
58 | λlabels:label_map.λpolicy:jump_expansion_policy. |
---|
59 | bvt_forall ?? policy (λn.λx.let 〈pc,addr_nat,i〉 ≝ x in |
---|
60 | ∃id:Identifier. |
---|
61 | \snd (lookup_def … labels id 〈0,pc〉) = addr_nat |
---|
62 | ). |
---|
63 | |
---|
64 | (* Between two policies, jumps cannot decrease *) |
---|
65 | definition jmple: jump_length → jump_length → Prop ≝ |
---|
66 | λj1.λj2. |
---|
67 | match j1 with |
---|
68 | [ short_jump ⇒ |
---|
69 | match j2 with |
---|
70 | [ short_jump ⇒ False |
---|
71 | | _ ⇒ True |
---|
72 | ] |
---|
73 | | medium_jump ⇒ |
---|
74 | match j2 with |
---|
75 | [ long_jump ⇒ True |
---|
76 | | _ ⇒ False |
---|
77 | ] |
---|
78 | | long_jump ⇒ False |
---|
79 | ]. |
---|
80 | |
---|
81 | definition jmpleq: jump_length → jump_length → Prop ≝ |
---|
82 | λj1.λj2.jmple j1 j2 ∨ j1 = j2. |
---|
83 | |
---|
84 | definition policy_increase: list labelled_instruction → jump_expansion_policy → |
---|
85 | jump_expansion_policy → Prop ≝ |
---|
86 | λprogram.λop.λp. |
---|
87 | (∀i:ℕ.i < |program| → |
---|
88 | let 〈i1,i2,oj〉 ≝ bvt_lookup ?? (bitvector_of_nat ? i) op 〈0,0,short_jump〉 in |
---|
89 | let 〈i3,i4,j〉 ≝ bvt_lookup ?? (bitvector_of_nat ? i) p 〈0,0,short_jump〉 in |
---|
90 | jmpleq oj j). |
---|
91 | |
---|
92 | (* Policy safety *) |
---|
93 | definition policy_safe: jump_expansion_policy → Prop ≝ |
---|
94 | λpolicy. |
---|
95 | bvt_forall ?? policy (λn.λx.let 〈pc_nat,addr_nat,jmp_len〉 ≝ x in |
---|
96 | match jmp_len with |
---|
97 | [ short_jump ⇒ if leb pc_nat addr_nat |
---|
98 | then le (addr_nat - pc_nat) 126 |
---|
99 | else le (pc_nat - addr_nat) 129 |
---|
100 | | medium_jump ⇒ |
---|
101 | let addr ≝ bitvector_of_nat 16 addr_nat in |
---|
102 | let pc ≝ bitvector_of_nat 16 pc_nat in |
---|
103 | let 〈fst_5_addr, rest_addr〉 ≝ split bool 5 11 addr in |
---|
104 | let 〈fst_5_pc, rest_pc〉 ≝ split bool 5 11 pc in |
---|
105 | eq_bv 5 fst_5_addr fst_5_pc = true |
---|
106 | | long_jump ⇒ True |
---|
107 | ] |
---|
108 | ). |
---|
109 | |
---|
110 | (* Definitions and theorems for the jump_length type (itself defined in Assembly) *) |
---|
111 | definition max_length: jump_length → jump_length → jump_length ≝ |
---|
112 | λj1.λj2. |
---|
113 | match j1 with |
---|
114 | [ long_jump ⇒ long_jump |
---|
115 | | medium_jump ⇒ |
---|
116 | match j2 with |
---|
117 | [ medium_jump ⇒ medium_jump |
---|
118 | | _ ⇒ long_jump |
---|
119 | ] |
---|
120 | | short_jump ⇒ |
---|
121 | match j2 with |
---|
122 | [ short_jump ⇒ short_jump |
---|
123 | | _ ⇒ long_jump |
---|
124 | ] |
---|
125 | ]. |
---|
126 | |
---|
127 | lemma dec_jmple: ∀x,y:jump_length.jmple x y + ¬(jmple x y). |
---|
128 | #x #y cases x cases y /3 by inl, inr, nmk, I/ |
---|
129 | qed. |
---|
130 | |
---|
131 | lemma jmpleq_max_length: ∀ol,nl. |
---|
132 | jmpleq ol (max_length ol nl). |
---|
133 | #ol #nl cases ol cases nl |
---|
134 | /2 by or_introl, or_intror, I/ |
---|
135 | qed. |
---|
136 | |
---|
137 | lemma dec_eq_jump_length: ∀a,b:jump_length.(a = b) + (a ≠ b). |
---|
138 | #a #b cases a cases b /2/ |
---|
139 | %2 @nmk #H destruct (H) |
---|
140 | qed. |
---|
141 | |
---|
142 | (* Labels *) |
---|
143 | definition is_label ≝ |
---|
144 | λx:labelled_instruction.λl:Identifier. |
---|
145 | let 〈lbl,instr〉 ≝ x in |
---|
146 | match lbl with |
---|
147 | [ Some l' ⇒ l' = l |
---|
148 | | _ ⇒ False |
---|
149 | ]. |
---|
150 | |
---|
151 | lemma label_does_not_occur: |
---|
152 | ∀i,p,l. |
---|
153 | is_label (nth i ? p 〈None ?, Comment [ ]〉) l → does_not_occur l p = false. |
---|
154 | #i #p #l generalize in match i; elim p |
---|
155 | [ #i >nth_nil #H @⊥ @H |
---|
156 | | #h #t #IH #i cases i -i |
---|
157 | [ cases h #hi #hp cases hi |
---|
158 | [ normalize #H @⊥ @H |
---|
159 | | #l' #Heq whd in ⊢ (??%?); change with (eq_identifier ? l' l) in match (instruction_matches_identifier ??); |
---|
160 | whd in Heq; >Heq |
---|
161 | >eq_identifier_refl / by refl/ |
---|
162 | ] |
---|
163 | | #i #H whd in match (does_not_occur ??); |
---|
164 | whd in match (instruction_matches_identifier ??); |
---|
165 | cases h #hi #hp cases hi normalize nodelta |
---|
166 | [ @(IH i) @H |
---|
167 | | #l' @eq_identifier_elim |
---|
168 | [ normalize / by / |
---|
169 | | normalize #_ @(IH i) @H |
---|
170 | ] |
---|
171 | ] |
---|
172 | ] |
---|
173 | ] |
---|
174 | qed. |
---|
175 | |
---|
176 | definition add_instruction_size: ℕ → jump_length → pseudo_instruction → ℕ ≝ |
---|
177 | λpc.λjmp_len.λinstr. |
---|
178 | let bv_pc ≝ bitvector_of_nat 16 pc in |
---|
179 | let ilist ≝ expand_pseudo_instruction_safe (λx.bv_pc) bv_pc jmp_len ? instr in |
---|
180 | let bv: list (BitVector 8) ≝ match ilist with |
---|
181 | [ None ⇒ (* this shouldn't happen *) [ ] |
---|
182 | | Some l ⇒ flatten … (map … assembly1 l) |
---|
183 | ] in |
---|
184 | pc + (|bv|). |
---|
185 | @(λx.bv_pc) |
---|
186 | qed. |
---|
187 | |
---|
188 | (* The function that creates the label-to-address map *) |
---|
189 | definition create_label_map: ∀program:list labelled_instruction. |
---|
190 | ∀policy:jump_expansion_policy. |
---|
191 | (Σlabels:label_map. |
---|
192 | ∀i:ℕ.lt i (|program|) → |
---|
193 | ∀l.occurs_exactly_once l program → |
---|
194 | is_label (nth i ? program 〈None ?, Comment [ ]〉) l → |
---|
195 | ∃a.lookup … labels l = Some ? 〈i,a〉 |
---|
196 | ) ≝ |
---|
197 | λprogram.λpolicy. |
---|
198 | let 〈final_pc, final_labels〉 ≝ |
---|
199 | foldl_strong (option Identifier × pseudo_instruction) |
---|
200 | (λprefix.ℕ × (Σlabels. |
---|
201 | ∀i:ℕ.lt i (|prefix|) → |
---|
202 | ∀l.occurs_exactly_once l prefix → |
---|
203 | is_label (nth i ? prefix 〈None ?, Comment [ ]〉) l → |
---|
204 | ∃a.lookup … labels l = Some ? 〈i,a〉) |
---|
205 | ) |
---|
206 | program |
---|
207 | (λprefix.λx.λtl.λprf.λacc. |
---|
208 | let 〈pc,labels〉 ≝ acc in |
---|
209 | let 〈label,instr〉 ≝ x in |
---|
210 | let new_labels ≝ |
---|
211 | match label with |
---|
212 | [ None ⇒ labels |
---|
213 | | Some l ⇒ add … labels l 〈|prefix|, pc〉 |
---|
214 | ] in |
---|
215 | let 〈i1,i2,jmp_len〉 ≝ bvt_lookup ?? (bitvector_of_nat 16 (|prefix|)) policy 〈0, 0, long_jump〉 in |
---|
216 | 〈add_instruction_size pc jmp_len instr, new_labels〉 |
---|
217 | ) 〈0, empty_map …〉 in |
---|
218 | final_labels. |
---|
219 | [ #i >append_length >commutative_plus #Hi normalize in Hi; cases (le_to_or_lt_eq … Hi) -Hi; |
---|
220 | [ #Hi #l normalize nodelta; cases label normalize nodelta |
---|
221 | [ >occurs_exactly_once_None #Hocc >(nth_append_first ? ? prefix ? ? (le_S_S_to_le ? ? Hi)) #Hl |
---|
222 | lapply (pi2 … labels) #Hacc elim (Hacc i (le_S_S_to_le … Hi) l Hocc Hl) #addr #Haddr |
---|
223 | % [ @addr | @Haddr ] |
---|
224 | | #l' #Hocc #Hl lapply (occurs_exactly_once_Some_stronger … Hocc) -Hocc; |
---|
225 | @eq_identifier_elim #Heq #Hocc |
---|
226 | [ normalize in Hocc; |
---|
227 | >(nth_append_first ? ? prefix ? ? (le_S_S_to_le … Hi)) in Hl; #Hl |
---|
228 | @⊥ @(absurd … Hocc) |
---|
229 | | normalize nodelta lapply (pi2 … labels) #Hacc elim (Hacc i (le_S_S_to_le … Hi) l Hocc ?) |
---|
230 | [ #addr #Haddr % [ @addr | <Haddr @lookup_add_miss /2/ ] |
---|
231 | | >(nth_append_first ? ? prefix ? ? (le_S_S_to_le … Hi)) in Hl; / by / |
---|
232 | ] |
---|
233 | ] |
---|
234 | >(label_does_not_occur i … Hl) normalize nodelta @nmk / by / |
---|
235 | ] |
---|
236 | | #Hi #l #Hocc >(injective_S … Hi) >nth_append_second |
---|
237 | [ <minus_n_n #Hl normalize in Hl; normalize nodelta cases label in Hl; |
---|
238 | [ normalize nodelta #H @⊥ @H |
---|
239 | | #l' normalize nodelta #Heq % [ @pc | <Heq normalize nodelta @lookup_add_hit ] |
---|
240 | ] |
---|
241 | | @le_n |
---|
242 | ] |
---|
243 | ] |
---|
244 | | #i #Hi #l #Hl @⊥ @Hl |
---|
245 | ] |
---|
246 | qed. |
---|
247 | |
---|
248 | definition select_reljump_length: label_map → ℕ → Identifier → ℕ ×jump_length ≝ |
---|
249 | λlabels.λpc.λlbl. |
---|
250 | let 〈n, addr〉 ≝ lookup_def … labels lbl 〈0, pc〉 in |
---|
251 | if leb pc addr (* forward jump *) |
---|
252 | then if leb (addr - pc) 126 |
---|
253 | then 〈addr, short_jump〉 |
---|
254 | else 〈addr, long_jump〉 |
---|
255 | else if leb (pc - addr) 129 |
---|
256 | then 〈addr, short_jump〉 |
---|
257 | else 〈addr, long_jump〉. |
---|
258 | |
---|
259 | definition select_call_length: label_map → ℕ → Identifier → ℕ × jump_length ≝ |
---|
260 | λlabels.λpc_nat.λlbl. |
---|
261 | let pc ≝ bitvector_of_nat 16 pc_nat in |
---|
262 | let addr_nat ≝ (\snd (lookup_def ? ? labels lbl 〈0, pc_nat〉)) in |
---|
263 | let addr ≝ bitvector_of_nat 16 addr_nat in |
---|
264 | let 〈fst_5_addr, rest_addr〉 ≝ split ? 5 11 addr in |
---|
265 | let 〈fst_5_pc, rest_pc〉 ≝ split ? 5 11 pc in |
---|
266 | if eq_bv ? fst_5_addr fst_5_pc |
---|
267 | then 〈addr_nat, medium_jump〉 |
---|
268 | else 〈addr_nat, long_jump〉. |
---|
269 | |
---|
270 | definition select_jump_length: label_map → ℕ → Identifier → ℕ × jump_length ≝ |
---|
271 | λlabels.λpc.λlbl. |
---|
272 | let 〈n, addr〉 ≝ lookup_def … labels lbl 〈0, pc〉 in |
---|
273 | if leb pc addr |
---|
274 | then if leb (addr - pc) 126 |
---|
275 | then 〈addr, short_jump〉 |
---|
276 | else select_call_length labels pc lbl |
---|
277 | else if leb (pc - addr) 129 |
---|
278 | then 〈addr, short_jump〉 |
---|
279 | else select_call_length labels pc lbl. |
---|
280 | |
---|
281 | definition jump_expansion_step_instruction: label_map → ℕ → |
---|
282 | preinstruction Identifier → option (ℕ × jump_length) ≝ |
---|
283 | λlabels.λpc.λi. |
---|
284 | match i with |
---|
285 | [ JC j ⇒ Some ? (select_reljump_length labels pc j) |
---|
286 | | JNC j ⇒ Some ? (select_reljump_length labels pc j) |
---|
287 | | JZ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
288 | | JNZ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
289 | | JB _ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
290 | | JBC _ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
291 | | JNB _ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
292 | | CJNE _ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
293 | | DJNZ _ j ⇒ Some ? (select_reljump_length labels pc j) |
---|
294 | | _ ⇒ None ? |
---|
295 | ]. |
---|
296 | |
---|
297 | lemma dec_is_jump: ∀x.(is_jump x) + (¬is_jump x). |
---|
298 | #x cases x #l #i cases i |
---|
299 | [#id cases id |
---|
300 | [1,2,3,6,7,33,34: |
---|
301 | #x #y %2 whd in match (is_jump ?); /2 by nmk/ |
---|
302 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: |
---|
303 | #x %2 whd in match (is_jump ?); /2 by nmk/ |
---|
304 | |35,36,37: %2 whd in match (is_jump ?); /2 by nmk/ |
---|
305 | |9,10,14,15: #x %1 / by I/ |
---|
306 | |11,12,13,16,17: #x #y %1 / by I/ |
---|
307 | ] |
---|
308 | |2,3: #x %2 /2 by nmk/ |
---|
309 | |4,5: #x %1 / by I/ |
---|
310 | |6: #x #y %2 /2 by nmk/ |
---|
311 | ] |
---|
312 | qed. |
---|
313 | |
---|
314 | (* these should be moved to BitVector at some point, and proven *) |
---|
315 | lemma bitvector_of_nat_ok: |
---|
316 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y) → x = y. |
---|
317 | #n elim n -n |
---|
318 | [ #x #y #Hx #Hy #Heq <(le_n_O_to_eq ? (le_S_S_to_le ?? Hx)) <(le_n_O_to_eq ? (le_S_S_to_le ?? Hy)) @refl |
---|
319 | | #n #Hind #x #y #Hx #Hy #Heq cases daemon (* XXX *) |
---|
320 | ] |
---|
321 | qed. |
---|
322 | |
---|
323 | lemma bitvector_of_nat_abs: |
---|
324 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → x ≠ y → ¬eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y). |
---|
325 | #n #x #y #Hx #Hy #Heq @notb_elim |
---|
326 | lapply (refl ? (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y))) |
---|
327 | cases (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y)) in ⊢ (???% → %); |
---|
328 | [ #H @⊥ @(absurd ?? Heq) @(bitvector_of_nat_ok n x y Hx Hy) >H / by I/ |
---|
329 | | #H / by I/ |
---|
330 | ] |
---|
331 | qed. |
---|
332 | |
---|
333 | lemma jump_not_in_policy: ∀prefix:list labelled_instruction. |
---|
334 | ∀policy:(Σp:jump_expansion_policy. |
---|
335 | out_of_program_none prefix p ∧ jump_in_policy prefix p). |
---|
336 | ∀i:ℕ.i < |prefix| → |
---|
337 | iff (¬is_jump (nth i ? prefix 〈None ?, Comment []〉)) |
---|
338 | (lookup_opt … (bitvector_of_nat 16 i) policy = None ?). |
---|
339 | #prefix #policy #i #Hi @conj |
---|
340 | [ #Hnotjmp lapply (refl ? (lookup_opt … (bitvector_of_nat 16 i) policy)) |
---|
341 | cases (lookup_opt … (bitvector_of_nat 16 i) policy) in ⊢ (???% → ?); |
---|
342 | [ #H @H |
---|
343 | | #x cases x -x #x #z cases x -x #x #y #H @⊥ @(absurd ? ? Hnotjmp) @(proj2 ?? (proj2 ?? (pi2 ?? policy) i Hi)) |
---|
344 | @(ex_intro ?? x (ex_intro ?? y (ex_intro ?? z H))) |
---|
345 | ] |
---|
346 | | #Hnone @nmk #Hj lapply (proj1 ?? (proj2 ?? (pi2 ?? policy) i Hi) Hj) |
---|
347 | #H elim H -H; #x #H elim H -H; #y #H elim H -H; #z #H >H in Hnone; #abs destruct (abs) |
---|
348 | ] |
---|
349 | qed. |
---|
350 | |
---|
351 | (* these two obviously belong somewhere else *) |
---|
352 | lemma pi1_eq: ∀A:Type[0].∀P:A->Prop.∀s1:Σa1:A.P a1.∀s2:Σa2:A.P a2. |
---|
353 | s1 = s2 → (pi1 ?? s1) = (pi1 ?? s2). |
---|
354 | #A #P #s1 #s2 / by / |
---|
355 | qed. |
---|
356 | |
---|
357 | lemma Some_eq: |
---|
358 | ∀T:Type[0].∀x,y:T. Some T x = Some T y → x = y. |
---|
359 | #T #x #y #H @option_destruct_Some @H |
---|
360 | qed. |
---|
361 | |
---|
362 | (* The first step of the jump expansion: everything to short. |
---|
363 | * The third condition of the dependent type implies jump_in_policy; |
---|
364 | * I've left it in for convenience of type-checking. *) |
---|
365 | definition jump_expansion_start: |
---|
366 | ∀program:(Σl:list labelled_instruction.|l| < 2^16). |
---|
367 | Σpolicy:jump_expansion_policy. |
---|
368 | out_of_program_none program policy ∧ |
---|
369 | jump_in_policy program policy ∧ |
---|
370 | ∀i.i < |program| → is_jump (nth i ? program 〈None ?, Comment []〉) → |
---|
371 | lookup_opt … (bitvector_of_nat 16 i) policy = Some ? 〈0,0,short_jump〉 ≝ |
---|
372 | λprogram. |
---|
373 | foldl_strong (option Identifier × pseudo_instruction) |
---|
374 | (λprefix.Σpolicy:jump_expansion_policy. |
---|
375 | out_of_program_none prefix policy ∧ |
---|
376 | jump_in_policy prefix policy ∧ |
---|
377 | ∀i.i < |prefix| → is_jump (nth i ? prefix 〈None ?, Comment []〉) → |
---|
378 | lookup_opt … (bitvector_of_nat 16 i) policy = Some ? 〈0,0,short_jump〉) |
---|
379 | program |
---|
380 | (λprefix.λx.λtl.λprf.λpolicy. |
---|
381 | let 〈label,instr〉 ≝ x in |
---|
382 | match instr with |
---|
383 | [ Instruction i ⇒ match i with |
---|
384 | [ JC _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
385 | | JNC _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
386 | | JZ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
387 | | JNZ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
388 | | JB _ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
389 | | JNB _ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
390 | | JBC _ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
391 | | CJNE _ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
392 | | DJNZ _ _ ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
393 | | _ ⇒ (pi1 … policy) |
---|
394 | ] |
---|
395 | | Call c ⇒ bvt_insert (ℕ×ℕ×jump_length) 16 (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
396 | | Jmp j ⇒ bvt_insert … (bitvector_of_nat 16 (|prefix|)) 〈0,0,short_jump〉 policy |
---|
397 | | _ ⇒ (pi1 ?? policy) |
---|
398 | ] |
---|
399 | ) (Stub ? ?). |
---|
400 | [1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,35,36,37,38,39,40,41,42: |
---|
401 | @conj |
---|
402 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
403 | @conj |
---|
404 | #i >append_length <commutative_plus #Hi normalize in Hi; |
---|
405 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
406 | #Hi2 cases (le_to_or_lt_eq … Hi) -Hi; #Hi @(proj1 ?? (proj1 ?? (pi2 ?? policy)) i) |
---|
407 | [1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109,113,117,121: |
---|
408 | @le_S_to_le @le_S_to_le @Hi |
---|
409 | |2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98,102,106,110,114,118,122: |
---|
410 | @Hi2 |
---|
411 | |3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115,119,123: |
---|
412 | <Hi @le_n_Sn |
---|
413 | |4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124: |
---|
414 | @Hi2 |
---|
415 | ] |
---|
416 | ] |
---|
417 | cases (le_to_or_lt_eq … Hi) -Hi; #Hi |
---|
418 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
419 | >(nth_append_first ? ? prefix ? ? (le_S_S_to_le … Hi)) |
---|
420 | @(proj2 ?? (proj1 ?? (pi2 ?? policy)) i (le_S_S_to_le … Hi)) |
---|
421 | ] |
---|
422 | @conj >(injective_S … Hi) |
---|
423 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
424 | >(nth_append_second ? ? prefix ? ? (le_n (|prefix|))) <minus_n_n #H @⊥ @H |
---|
425 | ] |
---|
426 | #H elim H; -H; #t1 #H elim H; -H #t2 #H elim H; -H; #t3 #H |
---|
427 | >(proj1 ?? (proj1 ?? (pi2 ?? policy)) (|prefix|) (le_n (|prefix|)) ?) in H; |
---|
428 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
429 | #H destruct (H) |
---|
430 | ] |
---|
431 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm @le_S_S |
---|
432 | @le_plus_n_r |
---|
433 | ] |
---|
434 | #i >append_length <commutative_plus #Hi normalize in Hi; cases (le_to_or_lt_eq … Hi) |
---|
435 | -Hi; #Hi |
---|
436 | [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61: |
---|
437 | #Hj @(proj2 ?? (pi2 ?? policy) i (le_S_S_to_le … Hi)) |
---|
438 | >(nth_append_first ?? prefix ?? (le_S_S_to_le ?? Hi)) in Hj; / by / |
---|
439 | ] |
---|
440 | >(injective_S … Hi) >(nth_append_second ?? prefix ?? (le_n (|prefix|))) <minus_n_n |
---|
441 | #H @⊥ @H |
---|
442 | |2,3,26,27,28,29,30,31,32,33,34: @conj |
---|
443 | [1,3,5,7,9,11,13,15,17,19,21: @conj |
---|
444 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
445 | #i >append_length <commutative_plus #Hi #Hi2 normalize in Hi; >lookup_opt_insert_miss |
---|
446 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
447 | @(proj1 ?? (proj1 ?? (pi2 ?? policy)) i (le_S_to_le … Hi) Hi2) |
---|
448 | ] |
---|
449 | >eq_bv_sym @bitvector_of_nat_abs |
---|
450 | [1,4,7,10,13,16,19,22,25,28,31: |
---|
451 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm @le_S_S |
---|
452 | @le_plus_n_r |
---|
453 | |2,5,8,11,14,17,20,23,26,29,32: @Hi2 |
---|
454 | |3,6,9,12,15,18,21,24,27,30,33: @lt_to_not_eq @Hi |
---|
455 | ] |
---|
456 | ] |
---|
457 | #i >append_length <commutative_plus #Hi normalize in Hi; cases (le_to_or_lt_eq … Hi) |
---|
458 | -Hi #Hi |
---|
459 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
460 | >(nth_append_first ?? prefix ?? (le_S_S_to_le … Hi)) >lookup_opt_insert_miss |
---|
461 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
462 | @(proj2 ?? (proj1 ?? (pi2 ?? policy)) i (le_S_S_to_le … Hi)) |
---|
463 | ] |
---|
464 | @bitvector_of_nat_abs |
---|
465 | [3,6,9,12,15,18,21,24,27,30,33: @(lt_to_not_eq … (le_S_S_to_le … Hi)) |
---|
466 | |1,4,7,10,13,16,19,22,25,28,31: @(transitive_lt ??? (le_S_S_to_le ?? Hi)) |
---|
467 | ] |
---|
468 | @(transitive_lt … (pi2 ?? program)) |
---|
469 | >prf >append_length normalize <plus_n_Sm @le_S_S @le_plus_n_r |
---|
470 | ] |
---|
471 | @conj >(injective_S … Hi) #H |
---|
472 | [2,4,6,8,10,12,14,16,18,20,22: |
---|
473 | >(nth_append_second ?? prefix ?? (le_n (|prefix|))) <minus_n_n / by I/ |
---|
474 | ] |
---|
475 | @(ex_intro ?? 0 (ex_intro ?? 0 (ex_intro ?? short_jump (lookup_opt_insert_hit ?? 16 ? policy)))) |
---|
476 | ] |
---|
477 | #i >append_length <commutative_plus #Hi normalize in Hi; cases (le_to_or_lt_eq … Hi) |
---|
478 | -Hi #Hi |
---|
479 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
480 | >(nth_append_first ?? prefix ?? (le_S_S_to_le … Hi)) #Hj >lookup_opt_insert_miss |
---|
481 | [1,3,5,7,9,11,13,15,17,19,21: |
---|
482 | @(proj2 ?? (pi2 ?? policy) i (le_S_S_to_le … Hi) Hj) |
---|
483 | ] |
---|
484 | @bitvector_of_nat_abs |
---|
485 | [3,6,9,12,15,18,21,24,27,30,33: @(lt_to_not_eq … (le_S_S_to_le … Hi)) |
---|
486 | |1,4,7,10,13,16,19,22,25,28,31: @(transitive_lt ??? (le_S_S_to_le ?? Hi)) |
---|
487 | ] |
---|
488 | @(transitive_lt … (pi2 ?? program)) |
---|
489 | >prf >append_length normalize <plus_n_Sm @le_S_S @le_plus_n_r |
---|
490 | ] |
---|
491 | #_ >(injective_S … Hi) @lookup_opt_insert_hit |
---|
492 | |@conj |
---|
493 | [@conj |
---|
494 | [ #i #Hi / by refl/ |
---|
495 | | whd #i #Hi @⊥ @(absurd (i < 0) Hi (not_le_Sn_O ?)) |
---|
496 | ] |
---|
497 | | #i #Hi >nth_nil #Hj @⊥ @Hj |
---|
498 | ] |
---|
499 | qed. |
---|
500 | |
---|
501 | definition policy_equal_int ≝ |
---|
502 | λprogram:list labelled_instruction.λp1,p2:jump_expansion_policy. |
---|
503 | ∀n:ℕ.n < |program| → |
---|
504 | let 〈i1,i2,j1〉 ≝ bvt_lookup … (bitvector_of_nat 16 n) p1 〈0,0,short_jump〉 in |
---|
505 | let 〈i3,i4,j2〉 ≝ bvt_lookup … (bitvector_of_nat 16 n) p2 〈0,0,short_jump〉 in |
---|
506 | j1 = j2. |
---|
507 | |
---|
508 | definition nec_plus_ultra ≝ |
---|
509 | λprogram:list labelled_instruction.λp:jump_expansion_policy. |
---|
510 | ¬(∀i.i < |program| → \snd (bvt_lookup … (bitvector_of_nat 16 i) p 〈0,0,short_jump〉) = long_jump). |
---|
511 | |
---|
512 | (* One step in the search for a jump expansion fixpoint. *) |
---|
513 | definition jump_expansion_step: ∀program:(Σl:list labelled_instruction.|l| < 2^16). |
---|
514 | ∀labels:(Σlm:label_map.∀i:ℕ.lt i (|program|) → |
---|
515 | ∀l.occurs_exactly_once l program → |
---|
516 | is_label (nth i ? program 〈None ?, Comment [ ]〉) l → |
---|
517 | ∃a.lookup … lm l = Some ? 〈i,a〉). |
---|
518 | ∀old_policy:(Σpolicy. |
---|
519 | out_of_program_none program policy ∧ jump_in_policy program policy). |
---|
520 | (Σx:bool × ℕ × (option jump_expansion_policy). |
---|
521 | let 〈changed,pc,y〉 ≝ x in |
---|
522 | match y with |
---|
523 | [ None ⇒ pc > 2^16 ∧ nec_plus_ultra program old_policy |
---|
524 | | Some p ⇒ out_of_program_none program p ∧ labels_okay labels p ∧ |
---|
525 | jump_in_policy program p ∧ |
---|
526 | policy_increase program old_policy p ∧ |
---|
527 | policy_safe p ∧ |
---|
528 | (changed = false → policy_equal_int program old_policy p) |
---|
529 | ]) |
---|
530 | ≝ |
---|
531 | λprogram.λlabels.λold_policy. |
---|
532 | let 〈final_changed, final_pc, final_policy〉 ≝ |
---|
533 | foldl_strong (option Identifier × pseudo_instruction) |
---|
534 | (λprefix.Σx:bool × ℕ × jump_expansion_policy. |
---|
535 | let 〈changed,pc,policy〉 ≝ x in |
---|
536 | out_of_program_none prefix policy ∧ labels_okay labels policy ∧ |
---|
537 | jump_in_policy prefix policy ∧ |
---|
538 | policy_increase prefix old_policy policy ∧ |
---|
539 | policy_safe policy ∧ |
---|
540 | (changed = false → policy_equal_int prefix old_policy policy)) |
---|
541 | program |
---|
542 | (λprefix.λx.λtl.λprf.λacc. |
---|
543 | let 〈changed, pc, policy〉 ≝ acc in |
---|
544 | let 〈label,instr〉 ≝ x in |
---|
545 | (* let old_jump_length ≝ lookup_opt ? ? (bitvector_of_nat 16 (|prefix|)) old_policy in *) |
---|
546 | let add_instr ≝ |
---|
547 | match instr with |
---|
548 | [ Instruction i ⇒ jump_expansion_step_instruction labels pc i |
---|
549 | | Call c ⇒ Some ? (select_call_length labels pc c) |
---|
550 | | Jmp j ⇒ Some ? (select_jump_length labels pc j) |
---|
551 | | _ ⇒ None ? |
---|
552 | ] in |
---|
553 | let 〈ignore,old_length〉 ≝ bvt_lookup … (bitvector_of_nat 16 (|prefix|)) old_policy 〈0, 0, short_jump〉 in |
---|
554 | match add_instr with |
---|
555 | [ None ⇒ (* i.e. it's not a jump *) |
---|
556 | 〈changed, add_instruction_size pc long_jump instr, policy〉 |
---|
557 | | Some z ⇒ let 〈addr,ai〉 ≝ z in |
---|
558 | let new_length ≝ max_length old_length ai in |
---|
559 | 〈match dec_eq_jump_length new_length old_length with |
---|
560 | [ inl _ ⇒ changed |
---|
561 | | inr _ ⇒ true], add_instruction_size pc new_length instr, insert … (bitvector_of_nat 16 (|prefix|)) 〈pc, addr, new_length〉 policy〉 |
---|
562 | ] |
---|
563 | ) 〈false, 0, Stub ? ?〉 in |
---|
564 | if geb final_pc 2^16 then |
---|
565 | 〈final_changed,final_pc,None ?〉 |
---|
566 | else |
---|
567 | 〈final_changed,final_pc,Some jump_expansion_policy final_policy〉. |
---|
568 | [ normalize nodelta @conj |
---|
569 | [ @leb_true_to_le @p2 |
---|
570 | | @nmk #Hfull (* XXX *) cases daemon |
---|
571 | ] |
---|
572 | | normalize nodelta lapply p generalize in match (foldl_strong ?????); * #x #H #H2 |
---|
573 | >H2 in H; >p1 normalize nodelta // |
---|
574 | | lapply (pi2 ?? acc) >p >p1 normalize nodelta #Hpolicy |
---|
575 | @conj [ @conj [ @conj [ @conj [ @conj |
---|
576 | [ (* out_of_policy_none *) |
---|
577 | #i >append_length <commutative_plus #Hi normalize in Hi; |
---|
578 | #Hi2 >lookup_opt_insert_miss |
---|
579 | [ @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy)))) i (le_S_to_le … Hi)) @Hi2 |
---|
580 | | >eq_bv_sym @bitvector_of_nat_abs |
---|
581 | [ @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
582 | @le_S_S @le_plus_n_r |
---|
583 | | @Hi2 |
---|
584 | | @lt_to_not_eq @Hi |
---|
585 | ] |
---|
586 | ] |
---|
587 | | (* labels_okay *) |
---|
588 | @lookup_forall #i cases i -i #i cases i -i #p #a #j #n (*lapply (refl ? add_instr) |
---|
589 | cases (lookup ??? old_policy ?); #x cases x -x #p1 #p2 #p3 |
---|
590 | cases add_instr in ⊢ (???% → %); |
---|
591 | [ #Hai normalize nodelta #Hl |
---|
592 | elim (forall_lookup … (proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))))) ? n Hl) |
---|
593 | #i #Hi @(ex_intro ?? i Hi) |
---|
594 | | #x cases x -x #np #nl #Hai normalize nodelta *) #Hl |
---|
595 | elim (insert_lookup_opt ?? 〈p,a,j〉 ???? Hl) -Hl #Hl |
---|
596 | [ elim (forall_lookup … (proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))))) ? n Hl) |
---|
597 | #i #Hi @(ex_intro ?? i Hi) |
---|
598 | | (*whd in match add_instr in Hai; cases instr in Hai;*) normalize nodelta |
---|
599 | normalize nodelta in p4; cases instr in p4; |
---|
600 | [2,3: #x #abs normalize nodelta in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
601 | |6: #x #y #abs normalize nodelta in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
602 | |1: #pi cases pi |
---|
603 | [35,36,37: #abs normalize in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
604 | |1,2,3,6,7,33,34: #x #y #abs normalize in abs; lapply (jmeq_to_eq ??? abs) |
---|
605 | #H destruct (H) |
---|
606 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: #x #abs normalize in abs; |
---|
607 | lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
608 | |9,10,14,15: #id normalize nodelta whd in match (jump_expansion_step_instruction ???); |
---|
609 | whd in match (select_reljump_length ???); >p5 |
---|
610 | lapply (refl ? (lookup_def ?? labels id 〈0,pc〉)) |
---|
611 | cases (lookup_def ?? labels id 〈0,pc〉) in ⊢ (???% → %); #q1 #q2 |
---|
612 | normalize nodelta #H |
---|
613 | >(pair_eq1 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
614 | >(pair_eq2 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) lapply (refl ? (leb pc q2)) |
---|
615 | cases (leb pc q2) in ⊢ (???% → %); #Hle1 |
---|
616 | [1,3,5,7: lapply (refl ? (leb (q2-pc) 126)) cases (leb (q2-pc) 126) in ⊢ (???% → %); |
---|
617 | |2,4,6,8: lapply (refl ? (leb (pc-q2) 129)) cases (leb (pc-q2) 129) in ⊢ (???% → %); |
---|
618 | ] |
---|
619 | #Hle2 normalize nodelta #Hli @(ex_intro ?? id) >H |
---|
620 | <(pair_eq1 ?????? (Some_eq ??? Hli)) @refl |
---|
621 | |11,12,13,16,17: #x #id normalize nodelta whd in match (jump_expansion_step_instruction ???); |
---|
622 | whd in match (select_reljump_length ???); >p5 |
---|
623 | lapply (refl ? (lookup_def ?? labels id 〈0,pc〉)) |
---|
624 | cases (lookup_def ?? labels id 〈0,pc〉) in ⊢ (???% → %); #q1 #q2 |
---|
625 | normalize nodelta #H |
---|
626 | >(pair_eq1 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
627 | >(pair_eq2 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) lapply (refl ? (leb pc q2)) |
---|
628 | cases (leb pc q2) in ⊢ (???% → %); #Hle1 |
---|
629 | [1,3,5,7,9: lapply (refl ? (leb (q2-pc) 126)) cases (leb (q2-pc) 126) in ⊢ (???% → %); |
---|
630 | |2,4,6,8,10: lapply (refl ? (leb (pc-q2) 129)) cases (leb (pc-q2) 129) in ⊢ (???% → %); |
---|
631 | ] |
---|
632 | #Hle2 normalize nodelta #Hli @(ex_intro ?? id) >H |
---|
633 | <(pair_eq1 ?????? (Some_eq ??? Hli)) @refl |
---|
634 | ] |
---|
635 | |4,5: #id normalize nodelta whd in match (select_jump_length ???); |
---|
636 | whd in match (select_call_length ???); >p5 |
---|
637 | lapply (refl ? (lookup_def ?? labels id 〈0,pc〉)) |
---|
638 | cases (lookup_def ?? labels id 〈0,pc〉) in ⊢ (???% → %); #q1 #q2 |
---|
639 | normalize nodelta #H |
---|
640 | [1: cases (leb pc q2) |
---|
641 | [ cases (leb (q2-pc) 126) | cases (leb (pc-q2) 129) ] |
---|
642 | [1,3: normalize nodelta #H2 >(pair_eq1 ?????? (Some_eq ??? H2)) in H; |
---|
643 | #Hli @(ex_intro ?? id) lapply (proj2 ?? Hl) |
---|
644 | #H >(pair_eq1 ?????? (pair_eq1 ?????? H)) |
---|
645 | >(pair_eq2 ?????? (pair_eq1 ?????? H)) >Hli @refl] |
---|
646 | ] |
---|
647 | cases (split ? 5 11 (bitvector_of_nat 16 q2)) #n1 #n2 |
---|
648 | cases (split ? 5 11 (bitvector_of_nat 16 pc)) #m1 #m2 |
---|
649 | normalize nodelta cases (eq_bv ? n1 m1) |
---|
650 | normalize nodelta #H2 >(pair_eq1 ?????? (Some_eq ??? H2)) in H; #H |
---|
651 | @(ex_intro ?? id) lapply (proj2 ?? Hl) #H2 |
---|
652 | >(pair_eq1 ?????? (pair_eq1 ?????? H2)) >(pair_eq2 ?????? (pair_eq1 ?????? H2)) |
---|
653 | >H @refl |
---|
654 | ] |
---|
655 | ] |
---|
656 | ] |
---|
657 | | (* jump_in_policy *) |
---|
658 | #i #Hi cases (le_to_or_lt_eq … Hi) -Hi; |
---|
659 | [ >append_length <commutative_plus #Hi normalize in Hi; |
---|
660 | >(nth_append_first ?? prefix ??(le_S_S_to_le ?? Hi)) @conj |
---|
661 | [ #Hj lapply (proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))) i (le_S_S_to_le … Hi)) |
---|
662 | #Hacc elim (proj1 ?? Hacc Hj) #h #n elim n -n #n #H elim H -H #j #Hj |
---|
663 | @(ex_intro ?? h (ex_intro ?? n (ex_intro ?? j ?))) whd in match (snd ???); |
---|
664 | >lookup_opt_insert_miss [ @Hj | @bitvector_of_nat_abs ] |
---|
665 | [3: @(lt_to_not_eq i (|prefix|)) @(le_S_S_to_le … Hi) |
---|
666 | |1: @(transitive_lt ??? (le_S_S_to_le ?? Hi)) |
---|
667 | ] |
---|
668 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
669 | @le_S_S @le_plus_n_r |
---|
670 | | lapply (proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))) i (le_S_S_to_le … Hi)) #Hacc |
---|
671 | #H elim H -H; #h #H elim H -H; #n #H elim H -H #j |
---|
672 | #Hl @(proj2 ?? Hacc) @(ex_intro ?? h (ex_intro ?? n (ex_intro ?? j ?))) |
---|
673 | <Hl @sym_eq @lookup_opt_insert_miss @bitvector_of_nat_abs |
---|
674 | [3: @lt_to_not_eq @(le_S_S_to_le … Hi) |
---|
675 | |1: @(transitive_lt ??? (le_S_S_to_le ?? Hi)) |
---|
676 | ] |
---|
677 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
678 | @le_S_S @le_plus_n_r |
---|
679 | ] |
---|
680 | | >append_length <commutative_plus #Hi normalize in Hi; >(injective_S … Hi) |
---|
681 | >(nth_append_second ?? prefix ?? (le_n (|prefix|))) |
---|
682 | <minus_n_n whd in match (nth ????); normalize nodelta in p4; cases instr in p4; |
---|
683 | [1: #pi | 2,3: #x | 4,5: #id | 6: #x #y] #Hinstr @conj normalize nodelta |
---|
684 | [3,5,11: #H @⊥ @H (* instr is not a jump *) |
---|
685 | |4,6,12: normalize nodelta in Hinstr; lapply (jmeq_to_eq ??? Hinstr) |
---|
686 | #H destruct (H) |
---|
687 | |7,9: (* instr is a jump *) #_ @(ex_intro ?? pc) |
---|
688 | @(ex_intro ?? addr) @(ex_intro ?? (max_length old_length ai)) |
---|
689 | @lookup_opt_insert_hit |
---|
690 | |8,10: #_ / by I/ |
---|
691 | |1,2: cases pi in Hinstr; |
---|
692 | [35,36,37: #Hinstr #H @⊥ @H |
---|
693 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: #x #Hinstr #H @⊥ @H |
---|
694 | |1,2,3,6,7,33,34: #x #y #Hinstr #H @⊥ @H |
---|
695 | |9,10,14,15: #id #Hinstr #_ |
---|
696 | @(ex_intro ?? pc) @(ex_intro ?? addr) @(ex_intro ?? (max_length old_length ai)) |
---|
697 | @lookup_opt_insert_hit |
---|
698 | |11,12,13,16,17: #x #id #Hinstr #_ |
---|
699 | @(ex_intro ?? pc) @(ex_intro ?? addr) @(ex_intro ?? (max_length old_length ai)) |
---|
700 | @lookup_opt_insert_hit |
---|
701 | |72,73,74: #Hinstr lapply (jmeq_to_eq ??? Hinstr) #H normalize in H; destruct (H) |
---|
702 | |41,42,45,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69: #x #Hinstr |
---|
703 | lapply (jmeq_to_eq ??? Hinstr) #H normalize in H; destruct (H) |
---|
704 | |38,39,40,43,44,70,71: #x #y #Hinstr lapply (jmeq_to_eq ??? Hinstr) #H |
---|
705 | normalize in H; destruct (H) |
---|
706 | |46,47,51,52: #id #Hinstr #_ / by I/ |
---|
707 | |48,49,50,53,54: #x #id #Hinstr #_ / by I/ |
---|
708 | ] |
---|
709 | ] |
---|
710 | ] |
---|
711 | ] |
---|
712 | | (* policy increase *) |
---|
713 | #i >append_length >commutative_plus #Hi normalize in Hi; |
---|
714 | cases (le_to_or_lt_eq … Hi) -Hi; #Hi |
---|
715 | [ >lookup_insert_miss |
---|
716 | [ @(proj2 ?? (proj1 ?? (proj1 ?? Hpolicy)) i (le_S_S_to_le … Hi)) |
---|
717 | | @bitvector_of_nat_abs |
---|
718 | [3: @lt_to_not_eq @(le_S_S_to_le … Hi) |
---|
719 | |1: @(transitive_lt ??? (le_S_S_to_le … Hi)) |
---|
720 | ] |
---|
721 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
722 | @le_S_S @le_plus_n_r |
---|
723 | ] |
---|
724 | | >(injective_S … Hi) >p3 >lookup_insert_hit normalize nodelta |
---|
725 | @pair_elim #x #y #_ @jmpleq_max_length |
---|
726 | ] |
---|
727 | ] |
---|
728 | | (* policy_safe *) |
---|
729 | @lookup_forall #x cases x -x #x cases x -x #p #a #j #n normalize nodelta #Hl |
---|
730 | elim (insert_lookup_opt ?? 〈p,a,j〉 ???? Hl) -Hl #Hl |
---|
731 | [ @(forall_lookup … (proj2 ?? (proj1 ?? Hpolicy)) ? n Hl) |
---|
732 | | normalize nodelta in p4; cases instr in p4; |
---|
733 | [2,3: #x #abs normalize in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
734 | |6: #x #y #abs normalize in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
735 | |1: #pi cases pi normalize nodelta |
---|
736 | [35,36,37: #abs normalize in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
737 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: |
---|
738 | #x #abs @⊥ normalize in abs; lapply (jmeq_to_eq ??? abs) #H destruct (H) |
---|
739 | |1,2,3,6,7,33,34: #x #y #abs @⊥ normalize in abs; lapply (jmeq_to_eq ??? abs) #H |
---|
740 | destruct (H) |
---|
741 | |9,10,14,15: #id >p5 whd in match (jump_expansion_step_instruction ???); |
---|
742 | whd in match (select_reljump_length ???); |
---|
743 | cases (lookup_def ?? labels id 〈0,pc〉) #q1 #q2 normalize nodelta |
---|
744 | >(pair_eq1 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
745 | >(pair_eq2 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) lapply (refl ? (leb pc q2)) |
---|
746 | cases (leb pc q2) in ⊢ (???% → %); #Hle1 |
---|
747 | [1,3,5,7: lapply (refl ? (leb (q2-pc) 126)) cases (leb (q2-pc) 126) in ⊢ (???% → %); |
---|
748 | |2,4,6,8: lapply (refl ? (leb (pc-q2) 129)) cases (leb (pc-q2) 129) in ⊢ (???% → %); |
---|
749 | ] |
---|
750 | #Hle2 normalize nodelta #Hli |
---|
751 | <(pair_eq1 ?????? (Some_eq ??? Hli)) >Hle1 |
---|
752 | >(pair_eq2 ?????? (proj2 ?? Hl)) <(pair_eq2 ?????? (Some_eq ??? Hli)) |
---|
753 | cases old_length |
---|
754 | [1,7,13,19,25,31,37,43: @(leb_true_to_le … Hle2) |
---|
755 | ] normalize @I (* much faster than / by I/, strangely enough *) |
---|
756 | |11,12,13,16,17: #x #id >p5 whd in match (jump_expansion_step_instruction ???); |
---|
757 | whd in match (select_reljump_length ???); |
---|
758 | cases (lookup_def ?? labels id 〈0,pc〉) #q1 #q2 normalize nodelta |
---|
759 | >(pair_eq1 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
760 | >(pair_eq2 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) lapply (refl ? (leb pc q2)) |
---|
761 | cases (leb pc q2) in ⊢ (???% → %); #Hle1 |
---|
762 | [1,3,5,7,9: lapply (refl ? (leb (q2-pc) 126)) cases (leb (q2-pc) 126) in ⊢ (???% → %); |
---|
763 | |2,4,6,8,10: lapply (refl ? (leb (pc-q2) 129)) cases (leb (pc-q2) 129) in ⊢ (???% → %); |
---|
764 | ] |
---|
765 | #Hle2 normalize nodelta #Hli |
---|
766 | <(pair_eq1 ?????? (Some_eq ??? Hli)) >Hle1 >(pair_eq2 ?????? (proj2 ?? Hl)) |
---|
767 | <(pair_eq2 ?????? (Some_eq ??? Hli)) |
---|
768 | cases old_length |
---|
769 | [1,7,13,19,25,31,37,43,49,55: @(leb_true_to_le … Hle2) |
---|
770 | ] normalize @I (* vide supra *) |
---|
771 | ] |
---|
772 | |4,5: #id >p5 normalize nodelta whd in match (select_jump_length ???); |
---|
773 | whd in match (select_call_length ???); cases (lookup_def ?? labels id 〈0,pc〉) |
---|
774 | #q1 #q2 normalize nodelta |
---|
775 | >(pair_eq1 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
776 | >(pair_eq2 ?????? (pair_eq1 ?????? (proj2 ?? Hl))) |
---|
777 | [1: lapply (refl ? (leb pc q2)) cases (leb pc q2) in ⊢ (???% → %); #Hle1 |
---|
778 | [ lapply (refl ? (leb (q2-pc) 126)) cases (leb (q2-pc) 126) in ⊢ (???% → %); |
---|
779 | | lapply (refl ? (leb (pc-q2) 129)) cases (leb (pc-q2) 129) in ⊢ (???% → %); |
---|
780 | ] |
---|
781 | #Hle2 normalize nodelta |
---|
782 | ] |
---|
783 | [2,4,5: lapply (refl ? (split ? 5 11 (bitvector_of_nat ? q2))) |
---|
784 | cases (split ??? (bitvector_of_nat ? q2)) in ⊢ (???% → %); #x1 #x2 #Hle3 |
---|
785 | lapply (refl ? (split ? 5 11 (bitvector_of_nat ? pc))) |
---|
786 | cases (split ??? (bitvector_of_nat ? pc)) in ⊢ (???% → %); #y1 #y2 #Hle4 |
---|
787 | normalize nodelta lapply (refl ? (eq_bv 5 x1 y1)) |
---|
788 | cases (eq_bv 5 x1 y1) in ⊢ (???% → %); #Hle5 |
---|
789 | ] |
---|
790 | #Hli <(pair_eq1 ?????? (Some_eq ??? Hli)) >(pair_eq2 ?????? (proj2 ?? Hl)) |
---|
791 | <(pair_eq2 ?????? (Some_eq ??? Hli)) |
---|
792 | cases old_length |
---|
793 | [2,8,14: >Hle3 @Hle5 |
---|
794 | |19,22: >Hle1 @(leb_true_to_le … Hle2) |
---|
795 | ] normalize @I (* here too *) |
---|
796 | ] |
---|
797 | ] |
---|
798 | ] |
---|
799 | | (* changed *) |
---|
800 | cases (dec_eq_jump_length (max_length old_length ai) old_length) normalize nodelta |
---|
801 | [ #Hml #Hc #i #Hi cases (le_to_or_lt_eq … Hi) -Hi >append_length >commutative_plus #Hi |
---|
802 | normalize in Hi; |
---|
803 | [ >lookup_insert_miss |
---|
804 | [ @((proj2 ?? Hpolicy) Hc i (le_S_S_to_le … Hi)) |
---|
805 | | @bitvector_of_nat_abs |
---|
806 | [3: @lt_to_not_eq @(le_S_S_to_le … Hi) |
---|
807 | |1: @(transitive_lt ??? (le_S_S_to_le … Hi)) |
---|
808 | ] |
---|
809 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
810 | @le_S_S @le_plus_n_r |
---|
811 | ] |
---|
812 | | >(injective_S … Hi) >p3 >lookup_insert_hit normalize nodelta |
---|
813 | @pair_elim #x #y #_ @(sym_eq ??? Hml) |
---|
814 | ] |
---|
815 | | #_ #H destruct (H) |
---|
816 | ] |
---|
817 | ] |
---|
818 | | (* Case where add_instr = None *) normalize nodelta lapply (pi2 ?? acc) >p >p1 |
---|
819 | normalize nodelta #Hpolicy |
---|
820 | @conj [ @conj [ @conj [ @conj [ @conj |
---|
821 | [ (* out_of_program_none *) #i >append_length >commutative_plus #Hi normalize in Hi; |
---|
822 | #Hi2 @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy)))) i (le_S_to_le ?? Hi) Hi2) |
---|
823 | | (* labels_okay *) @lookup_forall #x cases x -x #x cases x #p #a #j #lbl #Hl normalize nodelta |
---|
824 | elim (forall_lookup … (proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))))) ? lbl Hl) |
---|
825 | #id #Hid @(ex_intro … id Hid) |
---|
826 | ] |
---|
827 | | (* jump_in_policy *) #i >append_length >commutative_plus #Hi normalize in Hi; |
---|
828 | elim (le_to_or_lt_eq … Hi) -Hi #Hi |
---|
829 | [ >(nth_append_first ?? prefix ?? (le_S_S_to_le ?? Hi)) |
---|
830 | @(proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy))) i (le_S_S_to_le ?? Hi)) |
---|
831 | | >(injective_S … Hi) @conj |
---|
832 | [ >(nth_append_second ?? prefix ?? (le_n (|prefix|))) <minus_n_n whd in match (nth ????); |
---|
833 | normalize nodelta in p4; cases instr in p4; |
---|
834 | [ #pi cases pi |
---|
835 | [1,2,3,6,7,33,34: #x #y #_ #H @⊥ @H |
---|
836 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: #x #_ #H @⊥ @H |
---|
837 | |9,10,14,15: #id (* normalize segfaults here *) normalize nodelta |
---|
838 | whd in match (jump_expansion_step_instruction ???); |
---|
839 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
840 | |11,12,13,16,17: #x #id normalize nodelta |
---|
841 | whd in match (jump_expansion_step_instruction ???); |
---|
842 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
843 | |35,36,37: #_ #H @⊥ @H |
---|
844 | ] |
---|
845 | |2,3: #x #_ #H @⊥ @H |
---|
846 | |4,5: #id normalize nodelta #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
847 | |6: #x #id #_ #H @⊥ @H |
---|
848 | ] |
---|
849 | | #H elim H -H #p #H elim H -H #a #H elim H -H #j #H |
---|
850 | >(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy)))) (|prefix|) (le_n (|prefix|)) ?) in H; |
---|
851 | [ #H destruct (H) |
---|
852 | | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
853 | @le_S_S @le_plus_n_r |
---|
854 | ] |
---|
855 | ] |
---|
856 | ] |
---|
857 | ] |
---|
858 | | (* policy_increase *) #i >append_length >commutative_plus #Hi normalize in Hi; |
---|
859 | elim (le_to_or_lt_eq … Hi) -Hi #Hi |
---|
860 | [ @(proj2 ?? (proj1 ?? (proj1 ?? Hpolicy)) i (le_S_S_to_le … Hi)) |
---|
861 | | >(injective_S … Hi) >lookup_opt_lookup_miss |
---|
862 | [ >lookup_opt_lookup_miss |
---|
863 | [ normalize nodelta %2 @refl |
---|
864 | | @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy)))) (|prefix|) (le_n (|prefix|)) ?) |
---|
865 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
866 | @le_S_S @le_plus_n_r |
---|
867 | ] |
---|
868 | | @(proj1 ?? (jump_not_in_policy (pi1 … program) old_policy (|prefix|) ?)) >prf |
---|
869 | [ >append_length normalize <plus_n_Sm @le_S_S @le_plus_n_r |
---|
870 | | >(nth_append_second ?? prefix ?? (le_n (|prefix|))) <minus_n_n >p2 |
---|
871 | whd in match (nth ????); normalize nodelta in p4; cases instr in p4; |
---|
872 | [ #pi cases pi |
---|
873 | [1,2,3,6,7,33,34: #x #y #_ normalize /2 by nmk/ |
---|
874 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: #x #_ normalize /2 by nmk/ |
---|
875 | |9,10,14,15: #id (* normalize segfaults here *) normalize nodelta |
---|
876 | whd in match (jump_expansion_step_instruction ???); |
---|
877 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
878 | |11,12,13,16,17: #x #id normalize nodelta |
---|
879 | whd in match (jump_expansion_step_instruction ???); |
---|
880 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
881 | |35,36,37: #_ normalize /2 by nmk/ |
---|
882 | ] |
---|
883 | |2,3: #x #_ normalize /2 by nmk/ |
---|
884 | |4,5: #id normalize nodelta #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
885 | |6: #x #id #_ normalize /2 by nmk/ |
---|
886 | ] |
---|
887 | ] |
---|
888 | ] |
---|
889 | ] |
---|
890 | ] |
---|
891 | | (* policy_safe *) @lookup_forall #x cases x -x #x cases x -x #p #a #j #n #Hl |
---|
892 | @(forall_lookup … (proj2 ?? (proj1 ?? Hpolicy)) ? n Hl) |
---|
893 | ] |
---|
894 | | (* changed *) #Hc #i >append_length >commutative_plus #Hi normalize in Hi; |
---|
895 | elim (le_to_or_lt_eq … Hi) -Hi #Hi |
---|
896 | [ @((proj2 ?? Hpolicy) Hc i (le_S_S_to_le … Hi)) |
---|
897 | | >(injective_S … Hi) >lookup_opt_lookup_miss |
---|
898 | [ >lookup_opt_lookup_miss |
---|
899 | [ normalize nodelta @refl |
---|
900 | | @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? Hpolicy)))) (|prefix|) (le_n (|prefix|)) ?) |
---|
901 | @(transitive_lt … (pi2 ?? program)) >prf >append_length normalize <plus_n_Sm |
---|
902 | @le_S_S @le_plus_n_r |
---|
903 | ] |
---|
904 | | @(proj1 ?? (jump_not_in_policy (pi1 … program) old_policy (|prefix|) ?)) >prf |
---|
905 | [ >append_length normalize <plus_n_Sm @le_S_S @le_plus_n_r |
---|
906 | | >(nth_append_second ?? prefix ?? (le_n (|prefix|))) <minus_n_n >p2 |
---|
907 | whd in match (nth ????); normalize nodelta in p4; cases instr in p4; |
---|
908 | [ #pi cases pi |
---|
909 | [1,2,3,6,7,33,34: #x #y #_ normalize /2 by nmk/ |
---|
910 | |4,5,8,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32: #x #_ normalize /2 by nmk/ |
---|
911 | |9,10,14,15: #id (* normalize segfaults here *) normalize nodelta |
---|
912 | whd in match (jump_expansion_step_instruction ???); |
---|
913 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
914 | |11,12,13,16,17: #x #id normalize nodelta |
---|
915 | whd in match (jump_expansion_step_instruction ???); |
---|
916 | #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
917 | |35,36,37: #_ normalize /2 by nmk/ |
---|
918 | ] |
---|
919 | |2,3: #x #_ normalize /2 by nmk/ |
---|
920 | |4,5: #id normalize nodelta #H lapply (jmeq_to_eq ??? H) #H2 destruct (H2) |
---|
921 | |6: #x #id #_ normalize /2 by nmk/ |
---|
922 | ] |
---|
923 | ] |
---|
924 | ] |
---|
925 | ] |
---|
926 | ] |
---|
927 | | @conj [ @conj [ @conj [ @conj [ @conj |
---|
928 | [ #i #Hi // |
---|
929 | | // |
---|
930 | ] |
---|
931 | | #i #Hi @conj [ >nth_nil #H @⊥ @H | #H elim H #x #H1 elim H1 #y #H2 elim H2 #z #H3 |
---|
932 | normalize in H3; destruct (H3) ] |
---|
933 | ] |
---|
934 | | #i #Hi @⊥ @(absurd (i<0)) [ @Hi | @(not_le_Sn_O) ] |
---|
935 | ] |
---|
936 | | // |
---|
937 | ] |
---|
938 | | #_ #i #Hi @⊥ @(absurd (i < 0)) [ @Hi | @not_le_Sn_O ] |
---|
939 | ] |
---|
940 | qed. |
---|
941 | |
---|
942 | (* this might be replaced by a coercion: (∀x.A x → B x) → Σx.A x → Σx.B x *) |
---|
943 | (* definition weaken_policy: |
---|
944 | ∀program,op. |
---|
945 | option (Σp:jump_expansion_policy. |
---|
946 | And (And (And (And (out_of_program_none program p) |
---|
947 | (labels_okay (create_label_map program op) p)) |
---|
948 | (jump_in_policy program p)) (policy_increase program op p)) |
---|
949 | (policy_safe p)) → |
---|
950 | option (Σp:jump_expansion_policy.And (out_of_program_none program p) |
---|
951 | (jump_in_policy program p)) ≝ |
---|
952 | λprogram.λop.λx. |
---|
953 | match x return λ_.option (Σp.And (out_of_program_none program p) (jump_in_policy program p)) with |
---|
954 | [ None ⇒ None ? |
---|
955 | | Some z ⇒ Some ? (mk_Sig ?? (pi1 ?? z) ?) |
---|
956 | ]. |
---|
957 | @conj |
---|
958 | [ @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (pi2 ?? z))))) |
---|
959 | | @(proj2 ?? (proj1 ?? (proj1 ?? (pi2 ?? z)))) |
---|
960 | ] |
---|
961 | qed. *) |
---|
962 | |
---|
963 | (* This function executes n steps from the starting point. *) |
---|
964 | (*let rec jump_expansion_internal (program: Σl:list labelled_instruction.lt (|l|) 2^16) |
---|
965 | (n: ℕ) on n:(Σx:bool × ℕ × (option jump_expansion_policy). |
---|
966 | let 〈ch,pc,y〉 ≝ x in |
---|
967 | match y with |
---|
968 | [ None ⇒ pc > 2^16 |
---|
969 | | Some p ⇒ And (out_of_program_none program p) (jump_in_policy program p) |
---|
970 | ]) ≝ |
---|
971 | match n with |
---|
972 | [ O ⇒ 〈0,Some ? (pi1 … (jump_expansion_start program))〉 |
---|
973 | | S m ⇒ let 〈ch,pc,z〉 as p1 ≝ (pi1 ?? (jump_expansion_internal program m)) in |
---|
974 | match z return λx. z=x → Σa:bool × ℕ × (option jump_expansion_policy).? with |
---|
975 | [ None ⇒ λp2.〈pc,None ?〉 |
---|
976 | | Some op ⇒ λp2.pi1 … (jump_expansion_step program (create_label_map program op) «op,?») |
---|
977 | ] (refl … z) |
---|
978 | ].*) |
---|
979 | |
---|
980 | let rec jump_expansion_internal (program: Σl:list labelled_instruction.lt (|l|) 2^16) (n: ℕ) |
---|
981 | on n:(Σx:bool × ℕ × (option jump_expansion_policy). |
---|
982 | let 〈c,pc,y〉 ≝ x in |
---|
983 | match y with |
---|
984 | [ None ⇒ pc > 2^16 |
---|
985 | | Some p ⇒ And (out_of_program_none program p) (jump_in_policy program p) |
---|
986 | ]) ≝ |
---|
987 | match n with |
---|
988 | [ O ⇒ 〈true,0,Some ? (pi1 ?? (jump_expansion_start program))〉 |
---|
989 | | S m ⇒ let 〈ch,pc,z〉 as p1 ≝ (pi1 ?? (jump_expansion_internal program m)) in |
---|
990 | match z return λx. z=x → Σa:bool × ℕ × (option jump_expansion_policy).? with |
---|
991 | [ None ⇒ λp2.〈false,pc,None ?〉 |
---|
992 | | Some op ⇒ λp2.if ch |
---|
993 | then pi1 ?? (jump_expansion_step program (create_label_map program op) «op,?») |
---|
994 | else (jump_expansion_internal program m) |
---|
995 | ] (refl … z) |
---|
996 | ]. |
---|
997 | [ normalize nodelta @(proj1 ?? (pi2 ?? (jump_expansion_start program))) |
---|
998 | | lapply (pi2 ?? (jump_expansion_internal program m)) <p1 >p2 normalize nodelta / by / |
---|
999 | |3: lapply (pi2 ?? (jump_expansion_internal program m)) <p1 >p2 normalize nodelta / by / |
---|
1000 | | normalize nodelta cases (jump_expansion_step program (create_label_map program op) «op,?») |
---|
1001 | #p cases p -p #p cases p -p #p #q #r cases r normalize nodelta |
---|
1002 | [ #H @(proj1 ?? H) |
---|
1003 | | #j #H @conj |
---|
1004 | [ @(proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? (proj1 ?? H))))) |
---|
1005 | | @(proj2 ?? (proj1 ?? (proj1 ?? (proj1 ?? H)))) |
---|
1006 | ] |
---|
1007 | ] |
---|
1008 | ] |
---|
1009 | qed. |
---|
1010 | |
---|
1011 | lemma pe_int_refl: ∀program.reflexive ? (policy_equal_int program). |
---|
1012 | #program whd #x whd #n #Hn |
---|
1013 | cases (bvt_lookup … (bitvector_of_nat ? n) x 〈0,0,short_jump〉) |
---|
1014 | #y cases y -y #y #z normalize nodelta @refl |
---|
1015 | qed. |
---|
1016 | |
---|
1017 | lemma pe_int_sym: ∀program.symmetric ? (policy_equal_int program). |
---|
1018 | #program whd #x #y #Hxy whd #n #Hn |
---|
1019 | lapply (Hxy n Hn) cases (bvt_lookup … (bitvector_of_nat ? n) x 〈0,0,short_jump〉) |
---|
1020 | #z cases z -z #x1 #x2 #x3 |
---|
1021 | cases (bvt_lookup … (bitvector_of_nat ? n) y 〈0,0,short_jump〉) |
---|
1022 | #z cases z -z #y1 #y2 #y3 normalize nodelta // |
---|
1023 | qed. |
---|
1024 | |
---|
1025 | lemma pe_int_trans: ∀program.transitive ? (policy_equal_int program). |
---|
1026 | #program whd #x #y #z whd in match (policy_equal_int ???); whd in match (policy_equal_int ?y ?); |
---|
1027 | whd in match (policy_equal_int ? x z); #Hxy #Hyz #n #Hn lapply (Hxy n Hn) -Hxy |
---|
1028 | lapply (Hyz n Hn) -Hyz cases (bvt_lookup … (bitvector_of_nat ? n) x 〈0,0,short_jump〉) |
---|
1029 | #z cases z -z #x1 #x2 #x3 |
---|
1030 | cases (bvt_lookup … (bitvector_of_nat ? n) y 〈0,0,short_jump〉) #z cases z -z |
---|
1031 | #y1 #y2 #y3 |
---|
1032 | cases (bvt_lookup … (bitvector_of_nat ? n) z 〈0,0,short_jump〉) #z cases z -z |
---|
1033 | #z1 #z2 #z3 normalize nodelta // |
---|
1034 | qed. |
---|
1035 | |
---|
1036 | definition policy_equal ≝ |
---|
1037 | λprogram:list labelled_instruction.λp1,p2:option jump_expansion_policy. |
---|
1038 | match p1 with |
---|
1039 | [ Some x1 ⇒ match p2 with |
---|
1040 | [ Some x2 ⇒ policy_equal_int program x1 x2 |
---|
1041 | | _ ⇒ False |
---|
1042 | ] |
---|
1043 | | None ⇒ p2 = None ? |
---|
1044 | ]. |
---|
1045 | |
---|
1046 | lemma pe_refl: ∀program.reflexive ? (policy_equal program). |
---|
1047 | #program whd #x whd cases x |
---|
1048 | [ // |
---|
1049 | | #y @pe_int_refl |
---|
1050 | ] |
---|
1051 | qed. |
---|
1052 | |
---|
1053 | lemma pe_sym: ∀program.symmetric ? (policy_equal program). |
---|
1054 | #program whd #x #y #Hxy whd cases y in Hxy; |
---|
1055 | [ cases x |
---|
1056 | [ // |
---|
1057 | | #x' #H @⊥ @(absurd ? H) /2 by nmk/ |
---|
1058 | ] |
---|
1059 | | #y' cases x |
---|
1060 | [ #H @⊥ @(absurd ? H) whd in match (policy_equal ???); @nmk #H destruct (H) |
---|
1061 | | #x' #H @pe_int_sym @H |
---|
1062 | ] |
---|
1063 | ] |
---|
1064 | qed. |
---|
1065 | |
---|
1066 | lemma pe_trans: ∀program.transitive ? (policy_equal program). |
---|
1067 | #program whd #x #y #z cases x |
---|
1068 | [ #Hxy #Hyz >Hxy in Hyz; // |
---|
1069 | | #x' cases y |
---|
1070 | [ #H @⊥ @(absurd ? H) /2 by nmk/ |
---|
1071 | | #y' cases z |
---|
1072 | [ #_ #H @⊥ @(absurd ? H) /2 by nmk/ |
---|
1073 | | #z' @pe_int_trans |
---|
1074 | ] |
---|
1075 | ] |
---|
1076 | ] |
---|
1077 | qed. |
---|
1078 | |
---|
1079 | definition step_none: ∀program.∀n. |
---|
1080 | (\snd (pi1 ?? (jump_expansion_internal program n))) = None ? → |
---|
1081 | ∀k.(\snd (pi1 ?? (jump_expansion_internal program (n+k)))) = None ?. |
---|
1082 | #program #n lapply (refl ? (jump_expansion_internal program n)) |
---|
1083 | cases (jump_expansion_internal program n) in ⊢ (???% → %); |
---|
1084 | #x1 cases x1 #p1 #j1 -x1; #H1 #Heqj #Hj #k elim k |
---|
1085 | [ <plus_n_O >Heqj @Hj |
---|
1086 | | #k' -k <plus_n_Sm whd in match (jump_expansion_internal program (S (n+k'))); |
---|
1087 | lapply (refl ? (jump_expansion_internal program (n+k'))) |
---|
1088 | cases (jump_expansion_internal program (n+k')) in ⊢ (???% → % → %); |
---|
1089 | #x2 cases x2 -x2 #x2 cases x2 -x2 #c2 #p2 #j2 normalize nodelta #H #Heqj2 |
---|
1090 | cases j2 in H Heqj2; |
---|
1091 | [ #H #Heqj2 #_ whd in match (jump_expansion_internal ??); |
---|
1092 | >Heqj2 normalize nodelta @refl |
---|
1093 | | #x #H #Heqj2 #abs destruct (abs) |
---|
1094 | ] |
---|
1095 | ] |
---|
1096 | qed. |
---|
1097 | |
---|
1098 | lemma pe_step: ∀program:(Σl:list labelled_instruction.|l| < 2^16). |
---|
1099 | ∀n.policy_equal program (\snd (pi1 ?? (jump_expansion_internal program n))) |
---|
1100 | (\snd (pi1 ?? (jump_expansion_internal program (S n)))) → |
---|
1101 | policy_equal program (\snd (pi1 ?? (jump_expansion_internal program (S n)))) |
---|
1102 | (\snd (pi1 ?? (jump_expansion_internal program (S (S n))))). |
---|
1103 | #program #n #Heq |
---|
1104 | cases daemon (* XXX *) |
---|
1105 | qed. |
---|
1106 | |
---|
1107 | (* this is in the stdlib, but commented out, why? *) |
---|
1108 | theorem plus_Sn_m1: ∀n,m:nat. S m + n = m + S n. |
---|
1109 | #n (elim n) normalize /2 by S_pred/ qed. |
---|
1110 | |
---|
1111 | lemma equal_remains_equal: ∀program:(Σl:list labelled_instruction.|l| < 2^16).∀n:ℕ. |
---|
1112 | policy_equal program (\snd (pi1 … (jump_expansion_internal program n))) |
---|
1113 | (\snd (pi1 … (jump_expansion_internal program (S n)))) → |
---|
1114 | ∀k.k ≥ n → policy_equal program (\snd (pi1 … (jump_expansion_internal program n))) |
---|
1115 | (\snd (pi1 … (jump_expansion_internal program k))). |
---|
1116 | #program #n #Heq #k #Hk elim (le_plus_k … Hk); #z #H >H -H -Hk -k; |
---|
1117 | lapply Heq -Heq; lapply n -n; elim z -z; |
---|
1118 | [ #n #Heq <plus_n_O @pe_refl |
---|
1119 | | #z #Hind #n #Heq <plus_Sn_m1 whd in match (plus (S n) z); |
---|
1120 | @(pe_trans … (\snd (pi1 … (jump_expansion_internal program (S n))))) |
---|
1121 | [ @Heq |
---|
1122 | | @Hind @pe_step @Heq |
---|
1123 | ] |
---|
1124 | ] |
---|
1125 | qed. |
---|
1126 | |
---|
1127 | (* this number monotonically increases over iterations, maximum 2*|program| *) |
---|
1128 | let rec measure_int (program: list labelled_instruction) (policy: jump_expansion_policy) (acc: ℕ) |
---|
1129 | on program: ℕ ≝ |
---|
1130 | match program with |
---|
1131 | [ nil ⇒ acc |
---|
1132 | | cons h t ⇒ match (\snd (bvt_lookup ?? (bitvector_of_nat ? (|t|)) policy 〈0,00 |
---|
1133 | ,short_jump〉)) with |
---|
1134 | [ long_jump ⇒ measure_int t policy (acc + 2) |
---|
1135 | | medium_jump ⇒ measure_int t policy (acc + 1) |
---|
1136 | | _ ⇒ measure_int t policy acc |
---|
1137 | ] |
---|
1138 | ]. |
---|
1139 | |
---|
1140 | lemma measure_plus: ∀program.∀policy.∀x,d:ℕ. |
---|
1141 | measure_int program policy (x+d) = measure_int program policy x + d. |
---|
1142 | #program #policy #x #d generalize in match x; -x elim d |
---|
1143 | [ // |
---|
1144 | | -d; #d #Hind elim program |
---|
1145 | [ / by refl/ |
---|
1146 | | #h #t #Hd #x whd in match (measure_int ???); whd in match (measure_int ?? x); |
---|
1147 | cases (\snd (lookup … (bitvector_of_nat ? (|t|)) policy 〈0,0,short_jump〉)) |
---|
1148 | [ normalize nodelta @Hd |
---|
1149 | |2,3: normalize nodelta >associative_plus >(commutative_plus (S d) ?) <associative_plus |
---|
1150 | @Hd |
---|
1151 | ] |
---|
1152 | ] |
---|
1153 | ] |
---|
1154 | qed. |
---|
1155 | |
---|
1156 | lemma measure_le: ∀program.∀policy. |
---|
1157 | measure_int program policy 0 ≤ 2*|program|. |
---|
1158 | #program #policy elim program |
---|
1159 | [ normalize @le_n |
---|
1160 | | #h #t #Hind whd in match (measure_int ???); |
---|
1161 | cases (\snd (lookup ?? (bitvector_of_nat ? (|t|)) policy 〈0,0,short_jump〉)) |
---|
1162 | [ normalize nodelta @(transitive_le ??? Hind) /2 by monotonic_le_times_r/ |
---|
1163 | |2,3: normalize nodelta >measure_plus <times_n_Sm >(commutative_plus 2 ?) |
---|
1164 | @le_plus [1,3: @Hind |2,4: // ] |
---|
1165 | ] |
---|
1166 | ] |
---|
1167 | qed. |
---|
1168 | |
---|
1169 | lemma measure_incr_or_equal: ∀program:Σl:list labelled_instruction.|l|<2^16. |
---|
1170 | ∀policy:Σp:jump_expansion_policy. |
---|
1171 | out_of_program_none program p ∧ jump_in_policy program p. |
---|
1172 | ∀l.|l| ≤ |program| → ∀acc:ℕ. |
---|
1173 | match \snd (jump_expansion_step program (create_label_map program policy) policy) with |
---|
1174 | [ None ⇒ True |
---|
1175 | | Some p ⇒ measure_int l policy acc ≤ measure_int l p acc |
---|
1176 | ]. |
---|
1177 | #program #policy #l elim l -l; |
---|
1178 | [ #Hp #acc cases (jump_expansion_step ???) #pi1 cases pi1 #p #q -pi1; cases q [ // | #x #_ @le_n ] |
---|
1179 | | #h #t #Hind #Hp #acc |
---|
1180 | lapply (refl ? (jump_expansion_step program (create_label_map program policy) policy)) |
---|
1181 | cases (jump_expansion_step ???) in ⊢ (???% → %); #pi1 cases pi1 -pi1 #pi1 cases pi1 |
---|
1182 | #p #q #r -pi1; cases r |
---|
1183 | [ // |
---|
1184 | | #x normalize nodelta #Hx #Hjeq lapply (proj2 ?? (proj1 ?? (proj1 ?? Hx)) (|t|) Hp) |
---|
1185 | whd in match (measure_int ???); whd in match (measure_int ? x ?); |
---|
1186 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) policy 〈0,0,short_jump〉) |
---|
1187 | #z cases z -z #x1 #x2 #x3 |
---|
1188 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) x 〈0,0,short_jump〉) |
---|
1189 | #z cases z -z #y1 #y2 #y3 |
---|
1190 | normalize nodelta #Hj cases Hj |
---|
1191 | [ cases x3 cases y3 |
---|
1192 | [1,4,5,7,8,9: #H @⊥ @H |
---|
1193 | |2,3,6: #_ normalize nodelta |
---|
1194 | [1,2: @(transitive_le ? (measure_int t x acc)) |
---|
1195 | |3: @(transitive_le ? (measure_int t x (acc+1))) |
---|
1196 | ] |
---|
1197 | [2,4,5,6: >measure_plus [1,2: @le_plus_n_r] >measure_plus @le_plus / by le_n/] |
---|
1198 | >Hjeq in Hind; #Hind @Hind @(transitive_le … Hp) @le_n_Sn |
---|
1199 | ] |
---|
1200 | | #Heq >Heq cases y3 normalize nodelta |
---|
1201 | [2,3: >measure_plus >measure_plus @le_plus / by le_n/] |
---|
1202 | >Hjeq in Hind; #Hind @Hind @(transitive_le … Hp) @le_n_Sn |
---|
1203 | ] |
---|
1204 | ] |
---|
1205 | ] |
---|
1206 | qed. |
---|
1207 | |
---|
1208 | (* these lemmas seem superfluous, but not sure how *) |
---|
1209 | lemma bla: ∀a,b:ℕ.a + a = b + b → a = b. |
---|
1210 | #a elim a |
---|
1211 | [ normalize #b // |
---|
1212 | | -a #a #Hind #b cases b [ /2 by le_n_O_to_eq/ | -b #b normalize |
---|
1213 | <plus_n_Sm <plus_n_Sm #H |
---|
1214 | >(Hind b (injective_S ?? (injective_S ?? H))) // ] |
---|
1215 | ] |
---|
1216 | qed. |
---|
1217 | |
---|
1218 | lemma sth_not_s: ∀x.x ≠ S x. |
---|
1219 | #x cases x |
---|
1220 | [ // | #y // ] |
---|
1221 | qed. |
---|
1222 | |
---|
1223 | lemma measure_full: ∀program.∀policy. |
---|
1224 | measure_int program policy 0 = 2*|program| → ∀i.i<|program| → |
---|
1225 | (\snd (bvt_lookup ?? (bitvector_of_nat ? i) policy 〈0,0,short_jump〉)) = long_jump. |
---|
1226 | #program #policy elim program |
---|
1227 | [ #Hm #i #Hi @⊥ @(absurd … Hi) @not_le_Sn_O |
---|
1228 | | #h #t #Hind #Hm #i #Hi cut (measure_int t policy 0 = 2*|t|) |
---|
1229 | [ whd in match (measure_int ???) in Hm; |
---|
1230 | cases (\snd (lookup … (bitvector_of_nat ? (|t|)) policy 〈0,0,short_jump〉)) in Hm; |
---|
1231 | normalize nodelta |
---|
1232 | [ #H @⊥ @(absurd ? (measure_le t policy)) >H @lt_to_not_le /2 by lt_plus, le_n/ |
---|
1233 | | >measure_plus >commutative_plus #H @⊥ @(absurd ? (measure_le t policy)) |
---|
1234 | <(plus_to_minus … (sym_eq … H)) @lt_to_not_le normalize |
---|
1235 | >(commutative_plus (|t|) 0) <plus_O_n <minus_n_O |
---|
1236 | >plus_n_Sm @le_n |
---|
1237 | | >measure_plus <times_n_Sm >commutative_plus #H lapply (injective_plus_r … H) // |
---|
1238 | ] |
---|
1239 | | #Hmt cases (le_to_or_lt_eq … Hi) -Hi; |
---|
1240 | [ #Hi @(Hind Hmt i (le_S_S_to_le … Hi)) |
---|
1241 | | #Hi >(injective_S … Hi) whd in match (measure_int ???) in Hm; |
---|
1242 | cases (\snd (lookup … (bitvector_of_nat ? (|t|)) policy 〈0,0,short_jump〉)) in Hm; |
---|
1243 | normalize nodelta |
---|
1244 | [ >Hmt normalize <plus_n_O >(commutative_plus (|t|) (S (|t|))) |
---|
1245 | >plus_n_Sm #H @⊥ @(absurd ? (bla ?? H)) @sth_not_s |
---|
1246 | | >measure_plus >Hmt normalize <plus_n_O >commutative_plus normalize |
---|
1247 | #H @⊥ @(absurd ? (injective_plus_r … (injective_S ?? H))) @sth_not_s |
---|
1248 | | #_ // |
---|
1249 | ] |
---|
1250 | ]] |
---|
1251 | ] |
---|
1252 | qed. |
---|
1253 | |
---|
1254 | lemma measure_special: ∀program:(Σl:list labelled_instruction.|l| < 2^16). |
---|
1255 | ∀policy:Σp:jump_expansion_policy. |
---|
1256 | out_of_program_none program p ∧ jump_in_policy program p. |
---|
1257 | match (\snd (pi1 ?? (jump_expansion_step program (create_label_map program policy) policy))) with |
---|
1258 | [ None ⇒ True |
---|
1259 | | Some p ⇒ measure_int program policy 0 = measure_int program p 0 → policy_equal_int program policy p ]. |
---|
1260 | #program #policy lapply (refl ? (pi1 ?? (jump_expansion_step program (create_label_map program policy) policy))) |
---|
1261 | cases (jump_expansion_step program (create_label_map program policy) policy) in ⊢ (???% → %); |
---|
1262 | #p cases p -p #p cases p -p #ch #pc #pol normalize nodelta cases pol |
---|
1263 | [ // |
---|
1264 | | #p normalize nodelta #Hpol #eqpol lapply (le_n (|program|)) |
---|
1265 | @(list_ind ? (λx.|x| ≤ |pi1 ?? program| → |
---|
1266 | measure_int x policy 0 = measure_int x p 0 → |
---|
1267 | policy_equal_int x policy p) ?? (pi1 ?? program)) |
---|
1268 | [ #_ #_ #i #Hi @⊥ @(absurd ? Hi) @not_le_Sn_O |
---|
1269 | | #h #t #Hind #Hp #Hm #i #Hi cases (le_to_or_lt_eq … Hi) -Hi; |
---|
1270 | [ #Hi @Hind |
---|
1271 | [ @(transitive_le … Hp) // |
---|
1272 | | whd in match (measure_int ???) in Hm; whd in match (measure_int ? p ?) in Hm; |
---|
1273 | lapply (proj2 ?? (proj1 ?? (proj1 ?? Hpol)) (|t|) Hp) |
---|
1274 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) ? 〈0,0,short_jump〉) in Hm; |
---|
1275 | #x cases x -x #x1 #x2 #x3 |
---|
1276 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) ? 〈0,0,short_jump〉); |
---|
1277 | #y cases y -y #y1 #y2 #y3 |
---|
1278 | cases x3 cases y3 normalize nodelta |
---|
1279 | [1: #H #_ @H |
---|
1280 | |2,3: >measure_plus #H #_ @⊥ @(absurd ? (eq_plus_S_to_lt … H)) @le_to_not_lt |
---|
1281 | lapply (measure_incr_or_equal program policy t ? 0) |
---|
1282 | [1,3: @(transitive_le … Hp) @le_n_Sn ] >eqpol / by / |
---|
1283 | |4,7,8: #_ #H elim H #H2 [1,3,5: @⊥ @H2 |2,4,6: destruct (H2) ] |
---|
1284 | |5: >measure_plus >measure_plus >commutative_plus >(commutative_plus ? 1) |
---|
1285 | #H #_ @(injective_plus_r … H) |
---|
1286 | |6: >measure_plus >measure_plus |
---|
1287 | change with (1+1) in match (2); >assoc_plus1 >(commutative_plus 1 (measure_int ???)) |
---|
1288 | #H #_ @⊥ @(absurd ? (eq_plus_S_to_lt … H)) @le_to_not_lt @monotonic_le_plus_l |
---|
1289 | lapply (measure_incr_or_equal program policy t ? 0) |
---|
1290 | [ @(transitive_le … Hp) @le_n_Sn ] >eqpol / by / |
---|
1291 | |9: >measure_plus >measure_plus >commutative_plus >(commutative_plus ? 2) |
---|
1292 | #H #_ @(injective_plus_r … H) |
---|
1293 | ] |
---|
1294 | | @(le_S_S_to_le … Hi) |
---|
1295 | ] |
---|
1296 | | #Hi >(injective_S … Hi) whd in match (measure_int ???) in Hm; |
---|
1297 | whd in match (measure_int ? p ?) in Hm; |
---|
1298 | lapply (proj2 ?? (proj1 ?? (proj1 ?? Hpol)) (|t|) Hp) |
---|
1299 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) ? 〈0,0,short_jump〉) in |
---|
1300 | Hm; |
---|
1301 | #x cases x -x #x1 #x2 #x3 |
---|
1302 | cases (bvt_lookup ?? (bitvector_of_nat ? (|t|)) ? 〈0,0,short_jump〉); |
---|
1303 | #y cases y -y #y1 #y2 #y3 |
---|
1304 | normalize nodelta cases x3 cases y3 normalize nodelta |
---|
1305 | [1,5,9: #_ #_ // |
---|
1306 | |4,7,8: #_ #H elim H #H2 [1,3,5: @⊥ @H2 |2,4,6: destruct (H2) ] |
---|
1307 | |2,3: >measure_plus #H #_ @⊥ @(absurd ? (eq_plus_S_to_lt … H)) @le_to_not_lt |
---|
1308 | lapply (measure_incr_or_equal program policy t ? 0) |
---|
1309 | [1,3: @(transitive_le … Hp) @le_n_Sn ] >eqpol / by / |
---|
1310 | |6: >measure_plus >measure_plus |
---|
1311 | change with (1+1) in match (2); >assoc_plus1 >(commutative_plus 1 (measure_int ???)) |
---|
1312 | #H #_ @⊥ @(absurd ? (eq_plus_S_to_lt … H)) @le_to_not_lt @monotonic_le_plus_l |
---|
1313 | lapply (measure_incr_or_equal program policy t ? 0) |
---|
1314 | [ @(transitive_le … Hp) @le_n_Sn ] >eqpol / by / |
---|
1315 | ] |
---|
1316 | ] |
---|
1317 | ] |
---|
1318 | qed. |
---|
1319 | |
---|
1320 | lemma le_to_eq_plus: ∀n,z. |
---|
1321 | n ≤ z → ∃k.z = n + k. |
---|
1322 | #n #z elim z |
---|
1323 | [ #H cases (le_to_or_lt_eq … H) |
---|
1324 | [ #H2 @⊥ @(absurd … H2) @not_le_Sn_O |
---|
1325 | | #H2 @(ex_intro … 0) >H2 // |
---|
1326 | ] |
---|
1327 | | #z' #Hind #H cases (le_to_or_lt_eq … H) |
---|
1328 | [ #H' elim (Hind (le_S_S_to_le … H')) #k' #H2 @(ex_intro … (S k')) |
---|
1329 | >H2 >plus_n_Sm // |
---|
1330 | | #H' @(ex_intro … 0) >H' // |
---|
1331 | ] |
---|
1332 | ] |
---|
1333 | qed. |
---|
1334 | |
---|
1335 | lemma measure_zero: ∀l.∀program:Σl:list labelled_instruction.|l| < 2^16. |
---|
1336 | |l| ≤ |program| → measure_int l (jump_expansion_start program) 0 = 0. |
---|
1337 | #l #program elim l |
---|
1338 | [ // |
---|
1339 | | #h #t #Hind #Hp whd in match (measure_int ???); |
---|
1340 | cases (dec_is_jump (nth (|t|) ? program 〈None ?, Comment []〉)) #Hj |
---|
1341 | [ >(lookup_opt_lookup_hit … (proj2 ?? (pi2 ?? (jump_expansion_start program)) (|t|) ? Hj) 〈0,0,short_jump〉) |
---|
1342 | [ normalize nodelta @Hind @le_S_to_le ] |
---|
1343 | @Hp |
---|
1344 | | >(lookup_opt_lookup_miss … (proj1 ?? (jump_not_in_policy program (pi1 ?? (jump_expansion_start program)) (|t|) ?) Hj) 〈0,0,short_jump〉) |
---|
1345 | [ normalize nodelta @Hind @le_S_to_le @Hp |
---|
1346 | | @Hp |
---|
1347 | | % |
---|
1348 | [ @(proj1 ?? (proj1 ?? (pi2 ?? (jump_expansion_start program)))) |
---|
1349 | | @(proj2 ?? (proj1 ?? (pi2 ?? (jump_expansion_start program)))) |
---|
1350 | ] |
---|
1351 | ] |
---|
1352 | ] |
---|
1353 | ] |
---|
1354 | qed. |
---|
1355 | |
---|
1356 | (* the actual computation of the fixpoint *) |
---|
1357 | definition je_fixpoint: ∀program:(Σl:list labelled_instruction.|l| < 2^16). |
---|
1358 | Σp:option jump_expansion_policy.∃n.∀k.n < k → |
---|
1359 | policy_equal program (\snd (pi1 ?? (jump_expansion_internal program k))) p. |
---|
1360 | #program @(\snd (pi1 ?? (jump_expansion_internal program (2*|program|)))) |
---|
1361 | cases (dec_bounded_exists (λk.policy_equal (pi1 ?? program) |
---|
1362 | (\snd (pi1 ?? (jump_expansion_internal program k))) |
---|
1363 | (\snd (pi1 ?? (jump_expansion_internal program (S k))))) ? (2*|program|)) |
---|
1364 | [ #Hex elim Hex -Hex #x #Hx @(ex_intro … x) #k #Hk |
---|
1365 | @pe_trans |
---|
1366 | [ @(\snd (pi1 ?? (jump_expansion_internal program x))) |
---|
1367 | | @pe_sym @equal_remains_equal |
---|
1368 | [ @(proj2 ?? Hx) |
---|
1369 | | @le_S_S_to_le @le_S @Hk |
---|
1370 | ] |
---|
1371 | | @equal_remains_equal |
---|
1372 | [ @(proj2 ?? Hx) |
---|
1373 | | @le_S_S_to_le @le_S @(proj1 ?? Hx) |
---|
1374 | ] |
---|
1375 | ] |
---|
1376 | | #Hnex lapply (not_exists_forall … Hnex) -Hnex; #Hfa @(ex_intro … (2*|program|)) #k #Hk |
---|
1377 | @pe_sym @equal_remains_equal |
---|
1378 | [ lapply (refl ? (jump_expansion_internal program (2*|program|))) |
---|
1379 | cases (jump_expansion_internal program (2*|program|)) in ⊢ (???% → %); |
---|
1380 | #x cases x -x #x cases x #Fch #Fpc #Fpol normalize nodelta #HFpol cases Fpol in HFpol; |
---|
1381 | [ (* if we're at None in 2*|program|, we're at None in S 2*|program| too *) |
---|
1382 | #HFpol #EQ whd in match (jump_expansion_internal ??); >EQ |
---|
1383 | normalize nodelta // |
---|
1384 | | #Fp #HFp #EQ whd in match (jump_expansion_internal ??); |
---|
1385 | >EQ normalize nodelta |
---|
1386 | lapply (refl ? (jump_expansion_step program (create_label_map program Fp) «Fp,?»)) |
---|
1387 | [ @HFp |
---|
1388 | | lapply (measure_full program Fp ?) |
---|
1389 | [ @le_to_le_to_eq |
---|
1390 | [ @measure_le |
---|
1391 | | (* XXX *) cases daemon |
---|
1392 | ] |
---|
1393 | | #Hfull cases (jump_expansion_step program (create_label_map program Fp) «Fp,?») in ⊢ (???% → %); |
---|
1394 | #x cases x -x #x cases x -x #Gch #Gpc #Gpol cases Gpol normalize nodelta |
---|
1395 | [ #H #EQ2 @⊥ @(absurd ?? (proj2 ?? H)) @Hfull |
---|
1396 | | #Gp #HGp #EQ2 cases Fch |
---|
1397 | [ normalize nodelta #i #Hi |
---|
1398 | lapply (refl ? (lookup ?? (bitvector_of_nat 16 i) Fp 〈0,0,short_jump〉)) |
---|
1399 | cases (lookup ?? (bitvector_of_nat 16 i) Fp 〈0,0,short_jump〉) in ⊢ (???% → %); |
---|
1400 | #x cases x -x #p #a #j normalize nodelta #H |
---|
1401 | lapply (proj2 ?? (proj1 ?? (proj1 ?? HGp)) i Hi) lapply (Hfull i Hi) >H |
---|
1402 | #H2 >H2 normalize nodelta cases (lookup ?? (bitvector_of_nat 16 i) Gp 〈0,0,short_jump\rangle) |
---|
1403 | #x cases x -x #p #a #j' cases j' normalize nodelta #H elim H -H #H |
---|
1404 | [1,3: @⊥ @H |
---|
1405 | |2,4: destruct (H) |
---|
1406 | |5,6: @refl |
---|
1407 | ] |
---|
1408 | | normalize nodelta /2 by pe_int_refl/ |
---|
1409 | ] |
---|
1410 | ] |
---|
1411 | ] |
---|
1412 | ] |
---|
1413 | ] |
---|
1414 | | @le_S_S_to_le @le_S @Hk |
---|
1415 | ] |
---|
1416 | | #n cases (jump_expansion_internal program n) cases (jump_expansion_internal program (S n)) |
---|
1417 | #x cases x -x #x cases x -x #nch #npc #npol normalize nodelta #Hnpol |
---|
1418 | #x cases x -x #x cases x -x #Sch #Scp #Spol normalize nodelta #HSpol |
---|
1419 | cases npol in Hnpol; cases Spol in HSpol; |
---|
1420 | [ #Hnpol #HSpol %1 // |
---|
1421 | |2,3: #x #Hnpol #HSpol %2 @nmk whd in match (policy_equal ???); // |
---|
1422 | #H destruct (H) |
---|
1423 | |4: #np #Hnp #Sp #HSp whd in match (policy_equal ???); @dec_bounded_forall #m |
---|
1424 | cases (bvt_lookup ?? (bitvector_of_nat 16 m) ? 〈0,0,short_jump〉) |
---|
1425 | #x cases x -x #x1 #x2 #x3 |
---|
1426 | cases (bvt_lookup ?? (bitvector_of_nat ? m) ? 〈0,0,short_jump〉) |
---|
1427 | #y cases y -y #y1 #y2 #y3 normalize nodelta |
---|
1428 | @dec_eq_jump_length |
---|
1429 | ] |
---|
1430 | ] |
---|
1431 | qed. |
---|
1432 | |
---|
1433 | (* Take a policy of 〈pc, addr, jump_length〉 tuples, and transform it into |
---|
1434 | * a map from pc to jump_length. This cannot be done earlier because the pc |
---|
1435 | * changes between iterations. *) |
---|
1436 | let rec transform_policy (n: nat) policy (acc: BitVectorTrie jump_length 16) on n: |
---|
1437 | BitVectorTrie jump_length 16 ≝ |
---|
1438 | match n with |
---|
1439 | [ O ⇒ acc |
---|
1440 | | S n' ⇒ |
---|
1441 | match lookup_opt … (bitvector_of_nat 16 n') policy with |
---|
1442 | [ None ⇒ transform_policy n' policy acc |
---|
1443 | | Some x ⇒ let 〈pc,length〉 ≝ x in |
---|
1444 | transform_policy n' policy (insert … pc length acc) |
---|
1445 | ] |
---|
1446 | ]. |
---|
1447 | |
---|
1448 | (* The glue between Policy and Assembly. *) |
---|
1449 | definition jump_expansion': |
---|
1450 | ∀program:preamble × (Σl:list labelled_instruction.|l| < 2^16). |
---|
1451 | ∀lookup_labels.policy_type lookup_labels ≝ |
---|
1452 | λprogram.λlookup_labels.λpc. |
---|
1453 | let policy ≝ |
---|
1454 | transform_policy (|\snd program|) (pi1 … (je_fixpoint (\snd program))) (Stub ??) in |
---|
1455 | (* here we must use jump_length_ok *) |
---|
1456 | bvt_lookup ? ? pc policy long_jump. |
---|
1457 | /2 by Stub, mk_Sig/ |
---|
1458 | qed. |
---|