[980] | 1 | include "ASM/Util.ma". |
---|
[1062] | 2 | include "ASM/JMCoercions.ma". |
---|
[980] | 3 | |
---|
| 4 | let rec foldl_strong_internal |
---|
| 5 | (A: Type[0]) (P: list A → Type[0]) (l: list A) |
---|
| 6 | (H: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd])) |
---|
| 7 | (prefix: list A) (suffix: list A) (acc: P prefix) on suffix: |
---|
| 8 | l = prefix @ suffix → P(prefix @ suffix) ≝ |
---|
| 9 | match suffix return λl'. l = prefix @ l' → P (prefix @ l') with |
---|
| 10 | [ nil ⇒ λprf. ? |
---|
| 11 | | cons hd tl ⇒ λprf. ? |
---|
| 12 | ]. |
---|
| 13 | [ > (append_nil ?) |
---|
| 14 | @ acc |
---|
| 15 | | applyS (foldl_strong_internal A P l H (prefix @ [hd]) tl ? ?) |
---|
| 16 | [ @ (H prefix hd tl prf acc) |
---|
| 17 | | applyS prf |
---|
| 18 | ] |
---|
| 19 | ] |
---|
| 20 | qed. |
---|
| 21 | |
---|
| 22 | definition foldl_strong ≝ |
---|
| 23 | λA: Type[0]. |
---|
| 24 | λP: list A → Type[0]. |
---|
| 25 | λl: list A. |
---|
| 26 | λH: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd]). |
---|
| 27 | λacc: P [ ]. |
---|
| 28 | foldl_strong_internal A P l H [ ] l acc (refl …). |
---|
| 29 | |
---|
[990] | 30 | let rec foldr_strong_internal |
---|
| 31 | (A:Type[0]) |
---|
| 32 | (P: list A → Type[0]) |
---|
| 33 | (l: list A) |
---|
| 34 | (H: ∀prefix,hd,tl. l = prefix @ [hd] @ tl → P tl → P (hd::tl)) |
---|
| 35 | (prefix: list A) (suffix: list A) (acc: P [ ]) on suffix : l = prefix@suffix → P suffix ≝ |
---|
| 36 | match suffix return λl'. l = prefix @ l' → P (l') with |
---|
| 37 | [ nil ⇒ λprf. acc |
---|
| 38 | | cons hd tl ⇒ λprf. H prefix hd tl prf (foldr_strong_internal A P l H (prefix @ [hd]) tl acc ?) ]. |
---|
| 39 | applyS prf |
---|
| 40 | qed. |
---|
| 41 | |
---|
| 42 | lemma foldr_strong: |
---|
| 43 | ∀A:Type[0]. |
---|
| 44 | ∀P: list A → Type[0]. |
---|
| 45 | ∀l: list A. |
---|
| 46 | ∀H: ∀prefix,hd,tl. l = prefix @ [hd] @ tl → P tl → P (hd::tl). |
---|
| 47 | ∀acc:P [ ]. P l |
---|
| 48 | ≝ λA,P,l,H,acc. foldr_strong_internal A P l H [ ] l acc (refl …). |
---|
| 49 | |
---|
[980] | 50 | lemma pair_destruct: ∀A,B,a1,a2,b1,b2. pair A B a1 a2 = 〈b1,b2〉 → a1=b1 ∧ a2=b2. |
---|
| 51 | #A #B #a1 #a2 #b1 #b2 #EQ destruct /2/ |
---|
| 52 | qed. |
---|