[697] | 1 | include "basics/types.ma". |
---|
[698] | 2 | include "ASM/BitVector.ma". |
---|
[475] | 3 | |
---|
| 4 | inductive BitVectorTrie (A: Type[0]): nat → Type[0] ≝ |
---|
| 5 | Leaf: A → BitVectorTrie A O |
---|
| 6 | | Node: ∀n: nat. BitVectorTrie A n → BitVectorTrie A n → BitVectorTrie A (S n) |
---|
| 7 | | Stub: ∀n: nat. BitVectorTrie A n. |
---|
| 8 | |
---|
[1006] | 9 | let rec fold (A, B: Type[0]) (n: nat) (f: BitVector n → A → B → B) |
---|
| 10 | (t: BitVectorTrie A n) (b: B) on t: B ≝ |
---|
| 11 | (match t return λx.λ_.x = n → B with |
---|
| 12 | [ Leaf l ⇒ λ_.f (zero ?) l b |
---|
| 13 | | Node h l r ⇒ λK. |
---|
| 14 | fold A B h (λx.f ((VCons ? h false x)⌈(S h) ↦ n⌉)) l |
---|
| 15 | (fold A B h (λx.f ((VCons ? h true x)⌈(S h) ↦ n⌉)) r b) |
---|
| 16 | | Stub _ ⇒ λ_.b |
---|
| 17 | ]) (refl ? n). |
---|
| 18 | @K |
---|
| 19 | qed. |
---|
[782] | 20 | |
---|
[1424] | 21 | lemma Sm_leq_n_m_leq_n: |
---|
| 22 | ∀m, n: nat. |
---|
| 23 | S m ≤ n → m ≤ n. |
---|
| 24 | #m #n /2/ |
---|
| 25 | qed. |
---|
| 26 | |
---|
| 27 | let rec bvtfold_aux |
---|
| 28 | (a, b: Type[0]) (f: BitVector 16 → a → b → b) (seed: b) (n: nat) |
---|
| 29 | on n: n ≤ 16 → BitVectorTrie a n → BitVector (16 - n) → b ≝ |
---|
| 30 | match n return λn: nat. n ≤ 16 → BitVectorTrie a n → BitVector (16 - n) → b with |
---|
| 31 | [ O ⇒ λinvariant: 0 ≤ 16. λtrie: BitVectorTrie a 0. λpath: BitVector 16. |
---|
| 32 | match trie return λx: nat. λtrie': BitVectorTrie a x. ∀prf: x = 0. b with |
---|
| 33 | [ Leaf l ⇒ λproof. f path l seed |
---|
| 34 | | Stub s ⇒ λproof. seed |
---|
| 35 | | Node n' l r ⇒ λabsrd. ⊥ |
---|
| 36 | ] (refl … 0) |
---|
| 37 | | S n' ⇒ λinvariant: S n' ≤ 16. λtrie: BitVectorTrie a (S n'). λpath: BitVector (16 - S n'). |
---|
| 38 | match trie return λx: nat. λtrie': BitVectorTrie a x. ∀prf: x = S n'. b with |
---|
| 39 | [ Leaf l ⇒ λabsrd. ⊥ |
---|
| 40 | | Stub s ⇒ λproof. seed |
---|
| 41 | | Node n'' l r ⇒ λproof. |
---|
| 42 | bvtfold_aux a b f (bvtfold_aux a b f seed n' ? (l⌈BitVectorTrie a n'' ↦ BitVectorTrie a n'⌉) ((false:::path)⌈S (16 - S n') ↦ 16 - n'⌉)) n' ? (r⌈BitVectorTrie a n'' ↦ BitVectorTrie a n'⌉) ((true:::path)⌈S (16 - S n') ↦ 16 - n'⌉) |
---|
| 43 | ] (refl … (S n')) |
---|
| 44 | ]. |
---|
| 45 | [ 1, 2: destruct(absrd) |
---|
| 46 | | 3,8: >minus_S_S <minus_Sn_m // @le_S_S_to_le // |
---|
| 47 | | 4,7: destruct(proof) % |
---|
| 48 | | 5,6: @Sm_leq_n_m_leq_n // ] |
---|
| 49 | qed. |
---|
| 50 | |
---|
[1006] | 51 | (* these two can probably be generalized w/r/t the second type and |
---|
| 52 | * some sort of equality relationship *) |
---|
| 53 | lemma fold_eq: |
---|
| 54 | ∀A: Type[0]. |
---|
| 55 | ∀n: nat. |
---|
| 56 | ∀f. |
---|
| 57 | ∀t. |
---|
| 58 | ∀P, Q: Prop. |
---|
| 59 | (P → Q) → (∀a,t',P,Q.(P → Q) → f a t' P → f a t' Q) → fold A ? n f t P → fold A ? n f t Q. |
---|
| 60 | #A #n #f #t #P #Q #H |
---|
[1516] | 61 | generalize in match (refl ? n); generalize in match H; -H; generalize in match Q; -Q; generalize in match P; -P; |
---|
| 62 | elim t in f ⊢ (? → ? → ? → ???% → ? → ???%%%? → ???%%%?); |
---|
[1006] | 63 | [ #a #f #P #Q #HPQ #_ #Hf #HP whd in HP; whd @(Hf (zero 0) a P Q HPQ HP) |
---|
| 64 | | #h #l #r #Hl #Hr #f #P #Q #HPQ #_ #Hf #HP normalize normalize in HP; @(Hl ? (fold A Prop h (λx.f (true:::x)) r P) (fold A Prop h (λx.f (true:::x)) r Q) ? (refl ? h) ?) |
---|
| 65 | [ @(Hr ? P Q HPQ (refl ? h) ?) |
---|
| 66 | #a #t' #X #Y #HXY #Hff @(Hf (true:::a) t' X Y HXY Hff) |
---|
| 67 | | #a #t' #X #Y #HXY #Hff @(Hf (false:::a) t' X Y HXY Hff) ] |
---|
| 68 | | #h #f #P #Q #HPQ #_ #Hf #HP whd in HP; whd @(HPQ HP) ] |
---|
| 69 | @HP |
---|
| 70 | qed. |
---|
| 71 | |
---|
| 72 | lemma fold_init: |
---|
| 73 | ∀A:Type[0]. |
---|
| 74 | ∀n:nat. |
---|
| 75 | ∀f. |
---|
| 76 | ∀t. |
---|
| 77 | ∀P: Prop. |
---|
| 78 | (∀a,t',P.f a t' P → P) → fold A Prop n f t P → P. |
---|
[1516] | 79 | #A #n #f #t #P #H generalize in match (refl ? n); generalize in match H; -H; generalize in match P; -P; |
---|
| 80 | elim t in f ⊢ (? → ? → ???% → ???%%%? → ?); -t |
---|
[1006] | 81 | [ #a #f #P #Hf #_ normalize @(Hf [[]]) |
---|
| 82 | | #h #l #r #Hl #Hr #f #P #Hf #_ normalize #HP @(Hr (λx.f (true:::x))) |
---|
| 83 | [ #a #t' #X @(Hf (true:::a) t' X) | @(refl ? h) | @(Hl (λx.f (false:::x))) |
---|
| 84 | [ #a #t' #X @(Hf (false:::a) t' X) | @(refl ? h) | @HP ] |
---|
| 85 | ] |
---|
| 86 | | #h #f #P #Hf #_ normalize // |
---|
[1424] | 87 | |
---|
| 88 | |
---|
[1006] | 89 | ] |
---|
| 90 | qed. |
---|
[1609] | 91 | |
---|
[1006] | 92 | definition forall |
---|
| 93 | ≝ |
---|
| 94 | λA.λn.λt:BitVectorTrie A n.λP.fold ? ? ? (λk.λa.λacc.(P k a) ∧ acc) t True. |
---|
[1609] | 95 | |
---|
| 96 | alias id "bvt_forall" = "cic:/matita/cerco/ASM/BitVectorTrie/forall.def(4)". |
---|
| 97 | |
---|
[1006] | 98 | lemma forall_nodel: |
---|
| 99 | ∀A:Type[0]. |
---|
| 100 | ∀n:nat. |
---|
| 101 | ∀l,r. |
---|
| 102 | ∀P:BitVector (S n) → A → Prop. |
---|
| 103 | forall A (S n) (Node ? n l r) P → forall A n l (λx.λa.P (false:::x) a). |
---|
| 104 | #A #n #l #r #P #Hl |
---|
| 105 | whd @(fold_eq A n ? ? (fold A ? n (λk.λa.λacc.P (true:::k) a∧acc) r True) True) |
---|
| 106 | [ // |
---|
| 107 | | #n #t' #X #Y #HXY #HX %1 |
---|
| 108 | [ @(proj1 ? ? HX) | @HXY @(proj2 ? ? HX) ] |
---|
[1516] | 109 | | whd in Hl; @Hl ] |
---|
[1006] | 110 | qed. |
---|
| 111 | |
---|
| 112 | lemma forall_noder: |
---|
| 113 | ∀A:Type[0]. |
---|
| 114 | ∀n:nat. |
---|
| 115 | ∀l,r. |
---|
| 116 | ∀P:BitVector (S n) → A → Prop. |
---|
| 117 | forall A (S n) (Node ? n l r) P → forall A n r (λx.λa.P (true:::x) a). |
---|
| 118 | #A #n #l #r #P #Hr |
---|
| 119 | whd @(fold_init A n (λk.λa.λacc.P (false:::k) a∧acc) l) |
---|
| 120 | [ #n #t' #P #HP @(proj2 ? ? HP) |
---|
| 121 | | @Hr |
---|
| 122 | ] |
---|
| 123 | qed. |
---|
| 124 | |
---|
[1044] | 125 | lemma forall_node: |
---|
| 126 | ∀A.∀n.∀l,r.∀P:BitVector (S n) → A → Prop. |
---|
| 127 | forall A n l (λx.λa.P (false:::x) a) → forall A n r (λx.λa.P (true:::x) a) → |
---|
| 128 | forall A (S n) (Node ? n l r) P. |
---|
| 129 | #A #n #l #r #P #Hl #Hr |
---|
| 130 | normalize @(fold_eq … True) |
---|
| 131 | [ #_ @Hr |
---|
| 132 | | #x #t' #X #Y #HXY #HP %1 [ @(proj1 … HP) | @HXY @(proj2 … HP) ] |
---|
| 133 | | @Hl |
---|
| 134 | ] |
---|
| 135 | qed. |
---|
| 136 | |
---|
[726] | 137 | let rec lookup_opt (A: Type[0]) (n: nat) |
---|
| 138 | (b: BitVector n) (t: BitVectorTrie A n) on t |
---|
| 139 | : option A ≝ |
---|
| 140 | (match t return λx.λ_. BitVector x → option A with |
---|
| 141 | [ Leaf l ⇒ λ_.Some ? l |
---|
| 142 | | Node h l r ⇒ λb. lookup_opt A ? (tail … b) (if head' … b then r else l) |
---|
| 143 | | Stub _ ⇒ λ_.None ? |
---|
| 144 | ]) b. |
---|
[1052] | 145 | |
---|
[1931] | 146 | alias id "bvt_lookup_opt" = "cic:/matita/cerco/ASM/BitVectorTrie/lookup_opt.fix(0,3,2)". |
---|
| 147 | |
---|
[1052] | 148 | definition member ≝ |
---|
| 149 | λA. |
---|
| 150 | λn. |
---|
| 151 | λb: BitVector n. |
---|
| 152 | λt: BitVectorTrie A n. |
---|
| 153 | match lookup_opt A n b t with |
---|
| 154 | [ None ⇒ false |
---|
| 155 | | _ ⇒ true |
---|
| 156 | ]. |
---|
| 157 | |
---|
| 158 | definition member_p ≝ |
---|
| 159 | λA. |
---|
| 160 | λn. |
---|
| 161 | λb: BitVector n. |
---|
| 162 | λt: BitVectorTrie A n. |
---|
| 163 | match lookup_opt A n b t with |
---|
| 164 | [ None ⇒ False |
---|
| 165 | | _ ⇒ True |
---|
| 166 | ]. |
---|
[1006] | 167 | |
---|
| 168 | lemma forall_lookup: |
---|
| 169 | ∀A. |
---|
| 170 | ∀n. |
---|
| 171 | ∀t:BitVectorTrie A n. |
---|
| 172 | ∀P:BitVector n → A → Prop. |
---|
| 173 | forall A n t P → ∀a:A.∀b.lookup_opt A n b t = Some ? a → P b a. |
---|
[1516] | 174 | #A #n #t #P generalize in match (refl ? n); elim t in P ⊢ (???% → ??%%? → ? → ? → ??(??%%%)? → ?); |
---|
[1006] | 175 | [ #x #f #_ #Hf #a #b whd in Hf; #Hb normalize in Hb; destruct >(BitVector_O b) @(proj1 ? ? Hf) |
---|
| 176 | | #h #l #r #Hl #Hr #f #_ #Hf #a #b #Hb cases (BitVector_Sn h b) |
---|
| 177 | #hd #bla elim bla -bla #tl #Htl >Htl in Hb; #Hb cases hd in Hb; |
---|
| 178 | [ #Hb normalize in Hb; @(Hr (λx.λa.f (true:::x) a) (refl ? h)) |
---|
| 179 | [ @(forall_noder A h l r f Hf) |
---|
| 180 | | @Hb |
---|
| 181 | ] |
---|
| 182 | | #Hb normalize in Hb; @(Hl (λx.λa.f (false:::x) a) (refl ? h)) |
---|
| 183 | [ @(forall_nodel A h l r f Hf) |
---|
| 184 | | @Hb |
---|
| 185 | ] |
---|
| 186 | ] |
---|
| 187 | | #n #f #_ #Hf #a #b #Hb normalize in Hb; destruct |
---|
| 188 | qed. |
---|
[726] | 189 | |
---|
[1044] | 190 | lemma lookup_forall: |
---|
| 191 | ∀A:Type[0].∀n.∀t:BitVectorTrie A n.∀P:BitVector n → A → Prop. |
---|
| 192 | (∀a:A.∀b:BitVector n.lookup_opt A n b t = Some ? a → P b a) → forall A n t P. |
---|
| 193 | #A #n #t elim t |
---|
| 194 | [ #x #P #HP normalize %1 [ @HP normalize @refl | // ] |
---|
| 195 | | #h #l #r #Hl #Hr #P #HP @forall_node |
---|
| 196 | [ @Hl #a #b #Hlookup @HP normalize @Hlookup |
---|
| 197 | | @Hr #a #b #Hlookup @HP normalize @Hlookup |
---|
| 198 | ] |
---|
| 199 | | #n #P #HP normalize // |
---|
| 200 | ] |
---|
| 201 | qed. |
---|
| 202 | |
---|
[475] | 203 | let rec lookup (A: Type[0]) (n: nat) |
---|
| 204 | (b: BitVector n) (t: BitVectorTrie A n) (a: A) on b |
---|
| 205 | : A ≝ |
---|
| 206 | (match b return λx.λ_. x = n → A with |
---|
| 207 | [ VEmpty ⇒ |
---|
| 208 | (match t return λx.λ_. O = x → A with |
---|
| 209 | [ Leaf l ⇒ λ_.l |
---|
| 210 | | Node h l r ⇒ λK.⊥ |
---|
| 211 | | Stub s ⇒ λ_.a |
---|
| 212 | ]) |
---|
| 213 | | VCons o hd tl ⇒ |
---|
| 214 | match t return λx.λ_. (S o) = x → A with |
---|
| 215 | [ Leaf l ⇒ λK.⊥ |
---|
| 216 | | Node h l r ⇒ |
---|
| 217 | match hd with |
---|
| 218 | [ true ⇒ λK. lookup A h (tl⌈o ↦ h⌉) r a |
---|
| 219 | | false ⇒ λK. lookup A h (tl⌈o ↦ h⌉) l a |
---|
| 220 | ] |
---|
| 221 | | Stub s ⇒ λ_. a] |
---|
| 222 | ]) (refl ? n). |
---|
| 223 | [1,2: |
---|
| 224 | destruct |
---|
| 225 | |*: |
---|
| 226 | @ injective_S |
---|
| 227 | // |
---|
| 228 | ] |
---|
| 229 | qed. |
---|
| 230 | |
---|
[1474] | 231 | alias id "bvt_lookup" = "cic:/matita/cerco/ASM/BitVectorTrie/lookup.fix(0,2,5)". |
---|
| 232 | |
---|
[475] | 233 | let rec prepare_trie_for_insertion (A: Type[0]) (n: nat) (b: BitVector n) (a:A) on b : BitVectorTrie A n ≝ |
---|
| 234 | match b with |
---|
| 235 | [ VEmpty ⇒ Leaf A a |
---|
| 236 | | VCons o hd tl ⇒ |
---|
| 237 | match hd with |
---|
| 238 | [ true ⇒ Node A o (Stub A o) (prepare_trie_for_insertion A o tl a) |
---|
| 239 | | false ⇒ Node A o (prepare_trie_for_insertion A o tl a) (Stub A o) |
---|
| 240 | ] |
---|
| 241 | ]. |
---|
| 242 | |
---|
| 243 | let rec insert (A: Type[0]) (n: nat) (b: BitVector n) (a: A) on b: BitVectorTrie A n → BitVectorTrie A n ≝ |
---|
| 244 | (match b with |
---|
| 245 | [ VEmpty ⇒ λ_. Leaf A a |
---|
| 246 | | VCons o hd tl ⇒ λt. |
---|
| 247 | match t return λy.λ_. S o = y → BitVectorTrie A (S o) with |
---|
| 248 | [ Leaf l ⇒ λprf.⊥ |
---|
| 249 | | Node p l r ⇒ λprf. |
---|
| 250 | match hd with |
---|
| 251 | [ true ⇒ Node A o (l⌈p ↦ o⌉) (insert A o tl a (r⌈p ↦ o⌉)) |
---|
| 252 | | false ⇒ Node A o (insert A o tl a (l⌈p ↦ o⌉)) (r⌈p ↦ o⌉) |
---|
| 253 | ] |
---|
| 254 | | Stub p ⇒ λprf. (prepare_trie_for_insertion A ? (hd:::tl) a) |
---|
| 255 | ] (refl ? (S o)) |
---|
| 256 | ]). |
---|
| 257 | [ destruct |
---|
| 258 | |*: |
---|
| 259 | @ injective_S |
---|
| 260 | // |
---|
| 261 | ] |
---|
[761] | 262 | qed. |
---|
[1034] | 263 | |
---|
[1553] | 264 | alias id "bvt_insert" = "cic:/matita/cerco/ASM/BitVectorTrie/insert.fix(0,2,5)". |
---|
| 265 | |
---|
[761] | 266 | let rec update (A: Type[0]) (n: nat) (b: BitVector n) (a: A) on b: BitVectorTrie A n → option (BitVectorTrie A n) ≝ |
---|
| 267 | (match b with |
---|
| 268 | [ VEmpty ⇒ λt. match t return λy.λ_. O = y → option (BitVectorTrie A O) with |
---|
| 269 | [ Leaf _ ⇒ λ_. Some ? (Leaf A a) |
---|
| 270 | | Stub _ ⇒ λ_. None ? |
---|
| 271 | | Node _ _ _ ⇒ λprf. ⊥ |
---|
| 272 | ] (refl ? O) |
---|
| 273 | | VCons o hd tl ⇒ λt. |
---|
| 274 | match t return λy.λ_. S o = y → option (BitVectorTrie A (S o)) with |
---|
| 275 | [ Leaf l ⇒ λprf.⊥ |
---|
| 276 | | Node p l r ⇒ λprf. |
---|
| 277 | match hd with |
---|
| 278 | [ true ⇒ option_map ?? (λv. Node A o (l⌈p ↦ o⌉) v) (update A o tl a (r⌈p ↦ o⌉)) |
---|
| 279 | | false ⇒ option_map ?? (λv. Node A o v (r⌈p ↦ o⌉)) (update A o tl a (l⌈p ↦ o⌉)) |
---|
| 280 | ] |
---|
| 281 | | Stub p ⇒ λprf. None ? |
---|
| 282 | ] (refl ? (S o)) |
---|
| 283 | ]). |
---|
| 284 | [ 1,2: destruct |
---|
| 285 | |*: |
---|
| 286 | @ injective_S @sym_eq @prf |
---|
| 287 | ] |
---|
| 288 | qed. |
---|
[779] | 289 | |
---|
| 290 | let rec merge (A: Type[0]) (n: nat) (b: BitVectorTrie A n) on b: BitVectorTrie A n → BitVectorTrie A n ≝ |
---|
| 291 | match b return λx. λ_. BitVectorTrie A x → BitVectorTrie A x with |
---|
| 292 | [ Stub _ ⇒ λc. c |
---|
| 293 | | Leaf l ⇒ λc. match c with [ Leaf a ⇒ Leaf ? a | _ ⇒ Leaf ? l ] |
---|
| 294 | | Node p l r ⇒ |
---|
| 295 | λc. |
---|
| 296 | (match c return λx. λ_. x = (S p) → BitVectorTrie A (S p) with |
---|
| 297 | [ Node p' l' r' ⇒ λprf. Node ? ? (merge ?? l (l'⌈p' ↦ p⌉)) (merge ?? r (r'⌈p' ↦ p⌉)) |
---|
| 298 | | Stub _ ⇒ λprf. Node ? p l r |
---|
| 299 | | Leaf _ ⇒ λabsd. ? |
---|
| 300 | ] (refl ? (S p))) |
---|
| 301 | ]. |
---|
| 302 | [1: |
---|
| 303 | destruct(absd) |
---|
| 304 | |2,3: |
---|
| 305 | @ injective_S |
---|
| 306 | assumption |
---|
| 307 | ] |
---|
| 308 | qed. |
---|
[985] | 309 | |
---|
| 310 | lemma BitVectorTrie_O: |
---|
| 311 | ∀A:Type[0].∀v:BitVectorTrie A 0.(∃w. v ≃ Leaf A w) ∨ v ≃ Stub A 0. |
---|
[1516] | 312 | #A #v generalize in match (refl … O); cases v in ⊢ (??%? → (?(??(λ_.?%%??)))(?%%??)); |
---|
[985] | 313 | [ #w #_ %1 %[@w] % |
---|
[990] | 314 | | #n #l #r #abs @⊥ destruct(abs) |
---|
[985] | 315 | | #n #EQ %2 >EQ %] |
---|
| 316 | qed. |
---|
| 317 | |
---|
| 318 | lemma BitVectorTrie_Sn: |
---|
| 319 | ∀A:Type[0].∀n.∀v:BitVectorTrie A (S n).(∃l,r. v ≃ Node A n l r) ∨ v ≃ Stub A (S n). |
---|
[1516] | 320 | #A #n #v generalize in match (refl … (S n)); cases v in ⊢ (??%? → (?(??(λ_.??(λ_.?%%??))))%); |
---|
[990] | 321 | [ #m #abs @⊥ destruct(abs) |
---|
[985] | 322 | | #m #l #r #EQ %1 <(injective_S … EQ) %[@l] %[@r] // |
---|
| 323 | | #m #EQ %2 // ] |
---|
| 324 | qed. |
---|
| 325 | |
---|
| 326 | lemma lookup_prepare_trie_for_insertion_hit: |
---|
| 327 | ∀A:Type[0].∀a,v:A.∀n.∀b:BitVector n. |
---|
| 328 | lookup … b (prepare_trie_for_insertion … b v) a = v. |
---|
| 329 | #A #a #v #n #b elim b // #m #hd #tl #IH cases hd normalize // |
---|
| 330 | qed. |
---|
| 331 | |
---|
| 332 | lemma lookup_insert_hit: |
---|
| 333 | ∀A:Type[0].∀a,v:A.∀n.∀b:BitVector n.∀t:BitVectorTrie A n. |
---|
| 334 | lookup … b (insert … b v t) a = v. |
---|
| 335 | #A #a #v #n #b elim b -b -n // |
---|
| 336 | #n #hd #tl #IH #t cases(BitVectorTrie_Sn … t) |
---|
| 337 | [ * #l * #r #JMEQ >JMEQ cases hd normalize // |
---|
| 338 | | #JMEQ >JMEQ cases hd normalize @lookup_prepare_trie_for_insertion_hit ] |
---|
| 339 | qed. |
---|
| 340 | |
---|
| 341 | lemma lookup_prepare_trie_for_insertion_miss: |
---|
| 342 | ∀A:Type[0].∀a,v:A.∀n.∀c,b:BitVector n. |
---|
| 343 | (notb (eq_bv ? b c)) → lookup … b (prepare_trie_for_insertion … c v) a = a. |
---|
| 344 | #A #a #v #n #c elim c |
---|
| 345 | [ #b >(BitVector_O … b) normalize #abs @⊥ // |
---|
| 346 | | #m #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ |
---|
| 347 | cases hd cases hd' normalize |
---|
| 348 | [2,3: #_ cases tl' // |
---|
| 349 | |*: change with (bool_to_Prop (notb (eq_bv ???)) → ?) /2/ ]] |
---|
| 350 | qed. |
---|
| 351 | |
---|
| 352 | lemma lookup_insert_miss: |
---|
| 353 | ∀A:Type[0].∀a,v:A.∀n.∀c,b:BitVector n.∀t:BitVectorTrie A n. |
---|
| 354 | (notb (eq_bv ? b c)) → lookup … b (insert … c v t) a = lookup … b t a. |
---|
| 355 | #A #a #v #n #c elim c -c -n |
---|
[1516] | 356 | [ #b #t #DIFF @⊥ whd in DIFF; >(BitVector_O … b) in DIFF; // |
---|
[985] | 357 | | #n #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ |
---|
| 358 | #t cases(BitVectorTrie_Sn … t) |
---|
| 359 | [ * #l * #r #JMEQ >JMEQ cases hd cases hd' #H normalize in H; |
---|
[1521] | 360 | [1,4: change with (bool_to_Prop (notb (eq_bv ???))) in H; ] normalize // @IH // |
---|
[985] | 361 | | #JMEQ >JMEQ cases hd cases hd' #H normalize in H; |
---|
[1521] | 362 | [1,4: change with (bool_to_Prop (notb (eq_bv ???))) in H; ] normalize |
---|
[985] | 363 | [3,4: cases tl' // | *: @lookup_prepare_trie_for_insertion_miss //]]] |
---|
| 364 | qed. |
---|
[1034] | 365 | |
---|
| 366 | lemma lookup_stub: |
---|
| 367 | ∀A.∀n.∀b.∀a. |
---|
| 368 | lookup A n b (Stub A ?) a = a. |
---|
[1516] | 369 | #A #n #b #a cases n in b ⊢ (??(??%%%?)?); |
---|
[1034] | 370 | [ #b >(BitVector_O b) normalize @refl |
---|
| 371 | | #h #b cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb >Hb cases hd |
---|
| 372 | [ normalize @refl |
---|
| 373 | | normalize @refl |
---|
| 374 | ] |
---|
| 375 | ] |
---|
| 376 | qed. |
---|
| 377 | |
---|
[1393] | 378 | lemma lookup_opt_lookup_miss: |
---|
[1524] | 379 | ∀A:Type[0].∀n:nat.∀b:BitVector n.∀t:BitVectorTrie A n. |
---|
[1393] | 380 | lookup_opt A n b t = None A → ∀x.lookup A n b t x = x. |
---|
[1524] | 381 | #A #n #b #t generalize in match (refl ? n); elim t in b ⊢ (???% → ??(??%%%)? → ? → ?); |
---|
[1393] | 382 | [ #a #B #_ #H #x normalize in H; >(BitVector_O B) normalize destruct |
---|
| 383 | | #h #l #r #Hl #Hr #b #_ #H #x cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb |
---|
| 384 | >Hb >Hb in H; cases hd |
---|
| 385 | [ normalize #Hlookup @(Hr ? (refl ? h)) @Hlookup |
---|
| 386 | | normalize #Hlookup @(Hl ? (refl ? h)) @Hlookup |
---|
| 387 | ] |
---|
| 388 | | #n #B #_ #H #x @lookup_stub |
---|
| 389 | ] |
---|
| 390 | qed. |
---|
| 391 | |
---|
| 392 | lemma lookup_opt_lookup_hit: |
---|
| 393 | ∀A:Type[0].∀n:nat.∀b:BitVector n.∀t:BitVectorTrie A n.∀a:A. |
---|
[1034] | 394 | lookup_opt A n b t = Some A a → ∀x.lookup A n b t x = a. |
---|
[1516] | 395 | #A #n #b #t #a generalize in match (refl ? n); elim t in b ⊢ (???% → ??(??%%%)? → ? → ?); |
---|
[1034] | 396 | [ #a #B #_ #H #x normalize in H; >(BitVector_O B) normalize destruct @refl |
---|
[1393] | 397 | | #h #l #r #Hl #Hr #b #_ #H #x cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb |
---|
[1034] | 398 | >Hb >Hb in H; cases hd |
---|
| 399 | [ normalize #Hlookup @(Hr ? (refl ? h)) @Hlookup |
---|
| 400 | | normalize #Hlookup @(Hl ? (refl ? h)) @Hlookup |
---|
| 401 | ] |
---|
| 402 | | #n #B #_ #H #x normalize in H; destruct |
---|
| 403 | ] |
---|
| 404 | qed. |
---|
| 405 | |
---|
[1393] | 406 | lemma lookup_lookup_opt_hit: |
---|
[1074] | 407 | ∀A.∀n.∀b.∀t.∀x,a. |
---|
| 408 | lookup A n b t x = a → x ≠ a → lookup_opt A n b t = Some A a. |
---|
[1516] | 409 | #A #n #b #t #x #a generalize in match (refl ? n); elim t in b ⊢ (???% → ? → ?); |
---|
[1074] | 410 | [ #z #B #_ #H #Hx >(BitVector_O B) in H; normalize #H >H @refl |
---|
| 411 | | #h #l #r #Hl #Hr #B #_ #H #Hx cases (BitVector_Sn h B) #hd #X elim X; -X #tl #HB |
---|
| 412 | >HB >HB in H; cases hd |
---|
| 413 | [ normalize #H >(Hr tl (refl ? h) H Hx) @refl |
---|
| 414 | | normalize #H >(Hl tl (refl ? h) H Hx) @refl |
---|
| 415 | ] |
---|
| 416 | | #n #B #_ #H #Hx cases B in H; |
---|
| 417 | [ normalize #Hx' | #n' #b #v normalize #Hx' ] |
---|
| 418 | @⊥ @(absurd (eq ? x a)) [1,3: @Hx' |2,4: @Hx ] |
---|
| 419 | ] |
---|
| 420 | qed. |
---|
| 421 | |
---|
[1553] | 422 | lemma lookup_opt_lookup: |
---|
| 423 | ∀A,n,b,t1,t2,x. |
---|
| 424 | lookup_opt A n b t1 = lookup_opt A n b t2 → lookup A n b t1 x = lookup A n b t2 x. |
---|
| 425 | #A #n #b #t1 #t2 #x lapply (refl ? (lookup_opt A n b t2)) |
---|
| 426 | cases (lookup_opt A n b t2) in ⊢ (???% → %); |
---|
| 427 | [ #H2 #H1 >(lookup_opt_lookup_miss … H1) >(lookup_opt_lookup_miss … H2) // |
---|
| 428 | | #y #H2 #H1 >(lookup_opt_lookup_hit … y H1) >(lookup_opt_lookup_hit … y H2) // |
---|
| 429 | ] |
---|
| 430 | qed. |
---|
| 431 | |
---|
[1034] | 432 | lemma lookup_opt_prepare_trie_for_insertion_hit: |
---|
| 433 | ∀A:Type[0].∀v:A.∀n.∀b:BitVector n. |
---|
| 434 | lookup_opt … b (prepare_trie_for_insertion … b v) = Some A v. |
---|
| 435 | #A #v #n #b elim b // #m #hd #tl #IH cases hd normalize // |
---|
| 436 | qed. |
---|
| 437 | |
---|
[1070] | 438 | lemma lookup_opt_prepare_trie_for_insertion_miss: |
---|
| 439 | ∀A:Type[0].∀v:A.∀n.∀c,b:BitVector n. |
---|
| 440 | (notb (eq_bv ? b c)) → lookup_opt … b (prepare_trie_for_insertion … c v) = None ?. |
---|
| 441 | #A #v #n #c elim c |
---|
| 442 | [ #b >(BitVector_O … b) normalize #abs @⊥ // |
---|
| 443 | | #m #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ |
---|
| 444 | cases hd cases hd' normalize |
---|
| 445 | [2,3: #_ cases tl' // |
---|
| 446 | |*: change with (bool_to_Prop (notb (eq_bv ???)) → ?) @IH ]] |
---|
| 447 | qed. |
---|
| 448 | |
---|
[1034] | 449 | lemma lookup_opt_insert_hit: |
---|
| 450 | ∀A:Type[0].∀v:A.∀n.∀b:BitVector n.∀t:BitVectorTrie A n. |
---|
| 451 | lookup_opt … b (insert … b v t) = Some A v. |
---|
[1516] | 452 | #A #v #n #b #t elim t in b ⊢ (??(??%%%)?); |
---|
[1034] | 453 | [ #x #b >(BitVector_O b) normalize @refl |
---|
| 454 | | #h #l #r #Hl #Hr #b cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb >Hb cases hd |
---|
| 455 | [ normalize @Hr |
---|
| 456 | | normalize @Hl |
---|
| 457 | ] |
---|
[1516] | 458 | | #n' #b cases n' in b ⊢ ?; |
---|
[1034] | 459 | [ #b >(BitVector_O b) normalize @refl |
---|
| 460 | | #m #b cases (BitVector_Sn m b) #hd #X elim X -X; #tl #Hb >Hb cases hd |
---|
| 461 | normalize @lookup_opt_prepare_trie_for_insertion_hit |
---|
| 462 | ] |
---|
| 463 | ] |
---|
| 464 | qed. |
---|
[1070] | 465 | |
---|
| 466 | lemma lookup_opt_insert_miss: |
---|
| 467 | ∀A:Type[0].∀v:A.∀n.∀c,b:BitVector n.∀t:BitVectorTrie A n. |
---|
| 468 | (notb (eq_bv ? b c)) → lookup_opt … b (insert … c v t) = lookup_opt … b t. |
---|
| 469 | #A #v #n #c elim c -c -n |
---|
[1516] | 470 | [ #b #t #DIFF @⊥ whd in DIFF; >(BitVector_O … b) in DIFF; // |
---|
[1070] | 471 | | #n #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ |
---|
| 472 | #t cases(BitVectorTrie_Sn … t) |
---|
| 473 | [ * #l * #r #JMEQ >JMEQ cases hd cases hd' #H normalize in H; |
---|
[1521] | 474 | [1,4: change with (bool_to_Prop (notb (eq_bv ???))) in H; ] normalize // @IH // |
---|
[1070] | 475 | | #JMEQ >JMEQ cases hd cases hd' #H normalize in H; |
---|
[1521] | 476 | [1,4: change with (bool_to_Prop (notb (eq_bv ???))) in H; ] normalize |
---|
[1070] | 477 | [3,4: cases tl' // | *: @lookup_opt_prepare_trie_for_insertion_miss //]]] |
---|
| 478 | qed. |
---|
| 479 | |
---|
[1479] | 480 | lemma insert_lookup_opt: |
---|
| 481 | ∀A:Type[0].∀v,a:A.∀n.∀c,b:BitVector n.∀t:BitVectorTrie A n. |
---|
[1632] | 482 | lookup_opt … b (insert … c v t) = Some A a → lookup_opt … b t = Some A a ∨ (b = c ∧ a = v). |
---|
[1479] | 483 | #A #v #a #n #c elim c -c; -n; |
---|
[1632] | 484 | [ #b #t #Hl normalize in Hl; %2 destruct (Hl) @conj [ @BitVector_O | @refl ] |
---|
[1479] | 485 | | #n #hd #tl #Hind #b cases (BitVector_Sn … b) #hd' * #tl' #Heq >Heq |
---|
| 486 | #t cases (BitVectorTrie_Sn … t) |
---|
| 487 | [ * #l * #r #Heq2 >Heq2 cases hd cases hd' #H normalize in H; normalize |
---|
[1632] | 488 | [1,4: cases (Hind tl' ? H) #Hi2 [1,3: %1 @Hi2 |2,4: %2 @conj |
---|
| 489 | [1,3: >(proj1 ?? Hi2) @refl |
---|
| 490 | |2,4: @(proj2 ?? Hi2) ] ] |
---|
[1479] | 491 | |2,3: %1 @H |
---|
| 492 | ] |
---|
| 493 | | #Heq2 >Heq2 cases hd cases hd' #H normalize in H; normalize |
---|
[1516] | 494 | [1,4: lapply (refl ? (eq_bv ? tl' tl)) cases (eq_bv ? tl' tl) in ⊢ (???% → %); #Heq3 |
---|
[1632] | 495 | [1,3: >(eq_bv_eq … Heq3) in H; >lookup_opt_prepare_trie_for_insertion_hit #X destruct (X) %2 /2 by pair_destruct/ |
---|
[1516] | 496 | |2,4: >(lookup_opt_prepare_trie_for_insertion_miss) in H; |
---|
[1479] | 497 | [1,3: #X %1 // |
---|
| 498 | |2,4: >Heq3 // |
---|
| 499 | ] |
---|
| 500 | ] |
---|
| 501 | |2,3: destruct (H) |
---|
| 502 | ] |
---|
| 503 | qed. |
---|
| 504 | |
---|
[1034] | 505 | lemma forall_insert_inv1: |
---|
| 506 | ∀A.∀n.∀b.∀a.∀t.∀P. |
---|
| 507 | forall A n (insert A n b a t) P → P b a. |
---|
| 508 | #A #n #b #a #t #P #H @(forall_lookup ? ? (insert A n b a t)) |
---|
| 509 | [ @H |
---|
| 510 | | >(lookup_opt_insert_hit A ? n b) @(refl ? (Some A a)) |
---|
| 511 | ] |
---|
| 512 | qed. |
---|
| 513 | |
---|
| 514 | lemma forall_insert_inv2a: |
---|
| 515 | ∀A:Type[0].∀n:nat.∀b.∀a.∀t.∀P. |
---|
| 516 | lookup_opt A n b t = (None A) → forall A n (insert A n b a t) P → forall A n t P. |
---|
[1516] | 517 | #A #n #b #a #t generalize in match (refl ? n); elim t in b ⊢ (???% → ? → ??(??%%%)? → ??%%% → ??%%%); |
---|
[1034] | 518 | [ #x #b #_ #P >(BitVector_O b) normalize #H destruct |
---|
| 519 | | #h #l #r #Hl #Hr #b #_ #P cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb >Hb cases hd #Hlookup #H |
---|
| 520 | [ normalize in H; normalize |
---|
| 521 | @(fold_eq … (fold A ? ? (λx.λa0.λacc.P (true:::x) a0∧acc) (insert … tl a r) True) … H) |
---|
| 522 | [ #Hfold @(Hr tl (refl ? h) ? Hlookup Hfold) |
---|
| 523 | | #x #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ?HP)) ] |
---|
| 524 | ] |
---|
| 525 | | normalize in H; normalize |
---|
| 526 | @(fold_eq … True) |
---|
| 527 | [ #_ @(fold_init A h (λx.λa0.λacc.P (false:::x) a0 ∧ acc) (insert A h tl a l)) |
---|
| 528 | [ #z #t' #X #HX @(proj2 ? ? HX) |
---|
| 529 | | @H ] |
---|
| 530 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 531 | | @(Hl tl (refl ? h) ? Hlookup) normalize |
---|
| 532 | @(fold_eq … (fold A ? ? (λx.λa0.λacc.P (true:::x) a0∧acc) r True)) |
---|
| 533 | [ // |
---|
| 534 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 535 | | @H |
---|
| 536 | ] |
---|
| 537 | ] |
---|
| 538 | ] |
---|
| 539 | | #n #b #_ #P #Hlookup #Hf normalize // ] |
---|
[1393] | 540 | qed. |
---|
[1034] | 541 | |
---|
| 542 | lemma forall_insert_inv2b: |
---|
| 543 | ∀A:Type[0].∀n:nat.∀b:BitVector n.∀a:A.∀t.∀P:(BitVector n → A → Prop). |
---|
| 544 | (∀x.(lookup_opt A n b t = Some A x) → P b x) → forall A n (insert A n b a t) P → forall A n t P. |
---|
[1516] | 545 | #A #n #b #a #t generalize in match (refl ? n); elim t in b ⊢ (???% → % → ? → ??%%% → ?); |
---|
[1034] | 546 | [ #x #b #_ #P >(BitVector_O b) normalize #HP #Hf %1 [ @HP @refl | @(proj2 ? ? Hf) ] |
---|
| 547 | | #h #l #r #Hl #Hr #b #_ cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb >Hb cases hd #P #HP #Hf |
---|
| 548 | [ normalize in Hf; normalize |
---|
| 549 | @(fold_eq … (fold A ? ? (λx.λa0.λacc.P (true:::x) a0∧acc) (insert … tl a r) True) … Hf) |
---|
| 550 | [ #Hfold @(Hr tl (refl ? h) ? HP Hfold) |
---|
| 551 | | #x #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 552 | ] |
---|
| 553 | | normalize in H; normalize |
---|
| 554 | @(fold_eq … True) |
---|
| 555 | [ #_ @(fold_init A h (λx.λa0.λacc.P (false:::x) a0 ∧ acc) (insert A h tl a l)) |
---|
| 556 | [ #z #t' #X #HX @(proj2 ? ? HX) |
---|
| 557 | | @Hf ] |
---|
| 558 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 559 | | @(Hl tl (refl ? h) ? HP) normalize |
---|
| 560 | @(fold_eq … (fold A ? ? (λx.λa0.λacc.P (true:::x) a0∧acc) r True)) |
---|
| 561 | [ // |
---|
| 562 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 563 | | @Hf |
---|
| 564 | ] |
---|
| 565 | ] |
---|
| 566 | ] |
---|
| 567 | | #n #b #_ #P #Hlookup #Hf normalize // ] |
---|
[1038] | 568 | qed. |
---|
| 569 | |
---|
| 570 | lemma forall_prepare_tree_for_insertion: |
---|
| 571 | ∀A:Type[0].∀h:nat.∀b:BitVector h.∀a:A.∀P. |
---|
| 572 | P b a → |
---|
| 573 | forall A h (prepare_trie_for_insertion A h b a) P. |
---|
| 574 | #A #h #b elim b |
---|
| 575 | [ #a #P #HP normalize %1 [ @HP | // ] |
---|
| 576 | | #h #x #tl #Ha #a #P cases x #HP normalize @Ha @HP |
---|
| 577 | ] |
---|
| 578 | qed. |
---|
| 579 | |
---|
| 580 | lemma forall_insert: |
---|
| 581 | ∀A:Type[0].∀n:nat.∀b:BitVector n.∀a:A.∀t.∀P. |
---|
| 582 | forall A n t P → P b a → forall A n (insert A n b a t) P. |
---|
[1516] | 583 | #A #n #b #a #t generalize in match (refl ? n); elim t in b ⊢ (???% → % → ??%%% → %%? → ??%%%); |
---|
[1038] | 584 | [ #x #b #_ #P >(BitVector_O b) normalize #H1 #H2 /2/ |
---|
| 585 | | #h #l #r #Hl #Hr #b #_ cases (BitVector_Sn h b) #hd #X elim X -X; #tl #Hb >Hb cases hd #P #Hf #HP |
---|
| 586 | [ normalize in Hf; normalize |
---|
| 587 | @(fold_eq A … (fold A … (λx.λa0.λacc.P (true:::x) a0∧acc) r True) … Hf) |
---|
| 588 | [ #Hp @(Hr tl (refl ? h) ? Hp HP) |
---|
| 589 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 590 | ] |
---|
| 591 | | normalize in Hf; normalize |
---|
| 592 | @(fold_eq … True) |
---|
| 593 | [ #_ @(fold_init A h (λx.λa0.λacc.P (false:::x) a0∧acc) l) |
---|
| 594 | [ #z #t' #X #HX @(proj2 ? ? HX) |
---|
| 595 | | @Hf ] |
---|
| 596 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 597 | | @(Hl tl (refl ? h) ? ? HP) |
---|
| 598 | normalize @(fold_eq … (fold A ? ? (λx.λa0.λacc.P (true:::x) a0∧acc) r True)) |
---|
| 599 | [ // |
---|
| 600 | | #z #t' #X #Y #HXY #HP %1 [ @(proj1 ? ? HP) | @(HXY (proj2 ? ? HP)) ] |
---|
| 601 | | @Hf |
---|
| 602 | ] |
---|
| 603 | ] |
---|
| 604 | ] |
---|
[1516] | 605 | | #n #b #_ elim b in t ⊢ (% → ? → ? → ??%%%); |
---|
[1038] | 606 | [ #b #P #Hf #HP normalize %1 [ @HP | // ] |
---|
| 607 | | #h #hd #tl #H #b #P #Hf cases hd #HP normalize @(forall_prepare_tree_for_insertion A h tl a ? HP) |
---|
| 608 | ] |
---|
| 609 | ] |
---|
[1393] | 610 | qed. |
---|
[1316] | 611 | |
---|
| 612 | lemma update_fail : ∀A,n,b,a,t. |
---|
| 613 | update A n b a t = None ? → |
---|
| 614 | lookup_opt A n b t = None ?. |
---|
| 615 | #A #n elim n |
---|
| 616 | [ #b @(vector_inv_n … b) #a #t cases (BitVectorTrie_O … t) |
---|
| 617 | [ * #x #E >E normalize #NE destruct |
---|
| 618 | | #E >E normalize // |
---|
| 619 | ] |
---|
| 620 | | #m #IH #b @(vector_inv_n … b) #hd #tl #a #t cases (BitVectorTrie_Sn … t) |
---|
[1516] | 621 | [ * #t1 * #t2 #E >E cases hd whd in ⊢ (??%? → ??%?); |
---|
[1316] | 622 | #X lapply (option_map_none … X) @IH |
---|
| 623 | | #E >E normalize // |
---|
| 624 | ] |
---|
| 625 | ] qed. |
---|
| 626 | |
---|
| 627 | lemma update_lookup_opt_same : ∀A,n,b,a,t,t'. |
---|
| 628 | update A n b a t = Some ? t' → |
---|
| 629 | lookup_opt A n b t' = Some ? a. |
---|
| 630 | #A #n elim n |
---|
| 631 | [ #b #a #t #t' @(vector_inv_n … b) |
---|
| 632 | cases (BitVectorTrie_O … t) |
---|
| 633 | [ * #x #E >E normalize #E' destruct @refl |
---|
| 634 | | #E >E normalize #E' destruct |
---|
| 635 | ] |
---|
| 636 | | #m #IH #b #a #t #t' |
---|
| 637 | @(vector_inv_n … b) #bhd #btl |
---|
| 638 | cases (BitVectorTrie_Sn … t) |
---|
| 639 | [ * #t1 * #t2 #E' >E' |
---|
[1516] | 640 | whd in ⊢ (??%? → ??%?); cases bhd #U |
---|
[1316] | 641 | cases (option_map_some ????? U) |
---|
| 642 | #tn' * #U' #E'' <E'' |
---|
[1516] | 643 | whd in ⊢ (??%?); whd in ⊢ (??(???%%)?); |
---|
[1316] | 644 | @(IH … U') |
---|
| 645 | | #E >E normalize #E' destruct |
---|
| 646 | ] |
---|
| 647 | ] qed. |
---|
| 648 | |
---|
| 649 | lemma update_lookup_opt_other : ∀A,n,b,a,t,t'. |
---|
| 650 | update A n b a t = Some ? t' → |
---|
| 651 | ∀b'. b ≠ b' → |
---|
| 652 | lookup_opt A n b' t = lookup_opt A n b' t'. |
---|
| 653 | #A #n elim n |
---|
| 654 | [ #b #a #t #t' #E #b' |
---|
| 655 | @(vector_inv_n … b) @(vector_inv_n … b') |
---|
| 656 | * #NE cases (NE (refl ??)) |
---|
| 657 | | #m #IH #b #a #t #t' |
---|
| 658 | @(vector_inv_n … b) #bhd #btl |
---|
| 659 | cases (BitVectorTrie_Sn … t) |
---|
[1516] | 660 | [ * #t1 * #t2 #E >E whd in ⊢ (??%? → ?); cases bhd |
---|
[1316] | 661 | #U cases (option_map_some ????? U) #tn' * #U' #E' <E' |
---|
| 662 | #b' @(vector_inv_n … b') #bhd' #btl' |
---|
| 663 | cases bhd' |
---|
| 664 | [ 2,3: #_ @refl |
---|
[1516] | 665 | | *: #NE whd in ⊢ (??%%); whd in ⊢ (??(???%%)(???%%)); |
---|
| 666 | @(IH … U') % #E'' >E'' in NE; * #H @H @refl |
---|
[1316] | 667 | ] |
---|
[1516] | 668 | | #E >E whd in ⊢ (??%? → ?); #NE destruct |
---|
[1316] | 669 | ] |
---|
[1524] | 670 | ] qed. |
---|