source: src/ASM/AssemblyProof.ma @ 901

Last change on this file since 901 was 901, checked in by sacerdot, 9 years ago

Second main lemma proved.

File size: 53.8 KB
Line 
1include "ASM/Assembly.ma".
2include "ASM/Interpret.ma".
3
4(* RUSSEL **)
5
6include "basics/jmeq.ma".
7
8notation > "hvbox(a break ≃ b)"
9  non associative with precedence 45
10for @{ 'jmeq ? $a ? $b }.
11
12notation < "hvbox(term 46 a break maction (≃) (≃\sub(t,u)) term 46 b)"
13  non associative with precedence 45
14for @{ 'jmeq $t $a $u $b }.
15
16interpretation "john major's equality" 'jmeq t x u y = (jmeq t x u y).
17
18lemma eq_to_jmeq:
19  ∀A: Type[0].
20  ∀x, y: A.
21    x = y → x ≃ y.
22  //
23qed.
24
25definition inject : ∀A.∀P:A → Prop.∀a.∀p:P a.Σx:A.P x ≝ λA,P,a,p. dp … a p.
26definition eject : ∀A.∀P: A → Prop.(Σx:A.P x) → A ≝ λA,P,c.match c with [ dp w p ⇒ w].
27
28coercion inject nocomposites: ∀A.∀P:A → Prop.∀a.∀p:P a.Σx:A.P x ≝ inject on a:? to Σx:?.?.
29coercion eject nocomposites: ∀A.∀P:A → Prop.∀c:Σx:A.P x.A ≝ eject on _c:Σx:?.? to ?.
30
31axiom VOID: Type[0].
32axiom assert_false: VOID.
33definition bigbang: ∀A:Type[0].False → VOID → A.
34 #A #abs cases abs
35qed.
36
37coercion bigbang nocomposites: ∀A:Type[0].False → ∀v:VOID.A ≝ bigbang on _v:VOID to ?.
38
39lemma sig2: ∀A.∀P:A → Prop. ∀p:Σx:A.P x. P (eject … p).
40 #A #P #p cases p #w #q @q
41qed.
42
43lemma jmeq_to_eq: ∀A:Type[0]. ∀x,y:A. x≃y → x=y.
44 #A #x #y #JMEQ @(jmeq_elim ? x … JMEQ) %
45qed.
46
47coercion jmeq_to_eq: ∀A:Type[0]. ∀x,y:A. ∀p:x≃y.x=y ≝ jmeq_to_eq on _p:?≃? to ?=?.
48
49(* END RUSSELL **)
50
51let rec foldl_strong_internal
52  (A: Type[0]) (P: list A → Type[0]) (l: list A)
53  (H: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd]))
54  (prefix: list A) (suffix: list A) (acc: P prefix) on suffix:
55    l = prefix @ suffix → P(prefix @ suffix) ≝
56  match suffix return λl'. l = prefix @ l' → P (prefix @ l') with
57  [ nil ⇒ λprf. ?
58  | cons hd tl ⇒ λprf. ?
59  ].
60  [ > (append_nil ?)
61    @ acc
62  | applyS (foldl_strong_internal A P l H (prefix @ [hd]) tl ? ?)
63    [ @ (H prefix hd tl prf acc)
64    | applyS prf
65    ]
66  ]
67qed.
68
69definition foldl_strong ≝
70  λA: Type[0].
71  λP: list A → Type[0].
72  λl: list A.
73  λH: ∀prefix. ∀hd. ∀tl. l = prefix @ [hd] @ tl → P prefix → P (prefix @ [hd]).
74  λacc: P [ ].
75    foldl_strong_internal A P l H [ ] l acc (refl …).
76
77definition bit_elim: ∀P: bool → bool. bool ≝
78  λP.
79    P true ∧ P false.
80
81let rec bitvector_elim_internal
82  (n: nat) (P: BitVector n → bool) (m: nat) on m: m ≤ n → BitVector (n - m) → bool ≝
83  match m return λm. m ≤ n → BitVector (n - m) → bool with
84  [ O    ⇒ λprf1. λprefix. P ?
85  | S n' ⇒ λprf2. λprefix. bit_elim (λbit. bitvector_elim_internal n P n' ? ?)
86  ].
87  [ applyS prefix
88  | letin res ≝ (bit ::: prefix)
89    < (minus_S_S ? ?)
90    > (minus_Sn_m ? ?)
91    [ @ res
92    | @ prf2
93    ]
94  | /2/
95  ].
96qed.
97
98definition bitvector_elim ≝
99  λn: nat.
100  λP: BitVector n → bool.
101    bitvector_elim_internal n P n ? ?.
102  [ @ (le_n ?)
103  | < (minus_n_n ?)
104    @ [[ ]]
105  ]
106qed.
107
108axiom vector_associative_append:
109  ∀A: Type[0].
110  ∀n, m, o:  nat.
111  ∀v: Vector A n.
112  ∀q: Vector A m.
113  ∀r: Vector A o.
114    ((v @@ q) @@ r)
115    ≃
116    (v @@ (q @@ r)).
117       
118lemma vector_cons_append:
119  ∀A: Type[0].
120  ∀n: nat.
121  ∀e: A.
122  ∀v: Vector A n.
123    e ::: v = [[ e ]] @@ v.
124  # A # N # E # V
125  elim V
126  [ normalize %
127  | # NN # AA # VV # IH
128    normalize
129    %
130  ]
131qed.
132
133lemma super_rewrite2:
134 ∀A:Type[0].∀n,m.∀v1: Vector A n.∀v2: Vector A m.
135  ∀P: ∀m. Vector A m → Prop.
136   n=m → v1 ≃ v2 → P n v1 → P m v2.
137 #A #n #m #v1 #v2 #P #EQ <EQ in v2; #V #JMEQ >JMEQ //
138qed.
139
140lemma mem_middle_vector:
141  ∀A: Type[0].
142  ∀m, o: nat.
143  ∀eq: A → A → bool.
144  ∀reflex: ∀a. eq a a = true.
145  ∀p: Vector A m.
146  ∀a: A.
147  ∀r: Vector A o.
148    mem A eq ? (p@@(a:::r)) a = true.
149  # A # M # O # EQ # REFLEX # P # A
150  elim P
151  [ normalize
152    > (REFLEX A)
153    normalize
154    # H
155    %
156  | # NN # AA # PP # IH
157    normalize
158    cases (EQ A AA) //
159     @ IH
160  ]
161qed.
162
163lemma mem_monotonic_wrt_append:
164  ∀A: Type[0].
165  ∀m, o: nat.
166  ∀eq: A → A → bool.
167  ∀reflex: ∀a. eq a a = true.
168  ∀p: Vector A m.
169  ∀a: A.
170  ∀r: Vector A o.
171    mem A eq ? r a = true → mem A eq ? (p @@ r) a = true.
172  # A # M # O # EQ # REFLEX # P # A
173  elim P
174  [ #R #H @H
175  | #NN #AA # PP # IH #R #H
176    normalize
177    cases (EQ A AA)
178    [ normalize %
179    | @ IH @ H
180    ]
181  ]
182qed.
183
184lemma subvector_multiple_append:
185  ∀A: Type[0].
186  ∀o, n: nat.
187  ∀eq: A → A → bool.
188  ∀refl: ∀a. eq a a = true.
189  ∀h: Vector A o.
190  ∀v: Vector A n.
191  ∀m: nat.
192  ∀q: Vector A m.
193    bool_to_Prop (subvector_with A ? ? eq v (h @@ q @@ v)).
194  # A # O # N # EQ # REFLEX # H # V
195  elim V
196  [ normalize
197    # M # V %
198  | # NN # AA # VV # IH # MM # QQ
199    change with (bool_to_Prop (andb ??))
200    cut ((mem A EQ (O + (MM + S NN)) (H@@QQ@@AA:::VV) AA) = true)
201    [
202    | # HH > HH
203      > (vector_cons_append ? ? AA VV)
204      change with (bool_to_Prop (subvector_with ??????))
205      @(super_rewrite2 A ((MM + 1)+ NN) (MM+S NN) ??
206        (λSS.λVS.bool_to_Prop (subvector_with ?? (O+SS) ?? (H@@VS)))
207        ?
208        (vector_associative_append A ? ? ? QQ [[AA]] VV))
209      [ >associative_plus //
210      | @IH ]
211    ]
212    @(mem_monotonic_wrt_append)
213    [ @ REFLEX
214    | @(mem_monotonic_wrt_append)
215      [ @ REFLEX
216      | normalize
217        > REFLEX
218        normalize
219        %
220      ]
221    ]
222qed.
223
224lemma vector_cons_empty:
225  ∀A: Type[0].
226  ∀n: nat.
227  ∀v: Vector A n.
228    [[ ]] @@ v = v.
229  # A # N # V
230  elim V
231  [ normalize %
232  | # NN # HH # VV #H %
233  ]
234qed.
235
236corollary subvector_hd_tl:
237  ∀A: Type[0].
238  ∀o: nat.
239  ∀eq: A → A → bool.
240  ∀refl: ∀a. eq a a = true.
241  ∀h: A.
242  ∀v: Vector A o.
243    bool_to_Prop (subvector_with A ? ? eq v (h ::: v)).
244  # A # O # EQ # REFLEX # H # V
245  > (vector_cons_append A ? H V)
246  < (vector_cons_empty A ? ([[H]] @@ V))
247  @ (subvector_multiple_append A ? ? EQ REFLEX [[]] V ? [[ H ]])
248qed.
249
250lemma eq_a_reflexive:
251  ∀a. eq_a a a = true.
252  # A
253  cases A
254  %
255qed.
256
257lemma is_in_monotonic_wrt_append:
258  ∀m, n: nat.
259  ∀p: Vector addressing_mode_tag m.
260  ∀q: Vector addressing_mode_tag n.
261  ∀to_search: addressing_mode.
262    bool_to_Prop (is_in ? p to_search) → bool_to_Prop (is_in ? (q @@ p) to_search).
263  # M # N # P # Q # TO_SEARCH
264  # H
265  elim Q
266  [ normalize
267    @ H
268  | # NN # PP # QQ # IH
269    normalize
270    cases (is_a PP TO_SEARCH)
271    [ normalize
272      %
273    | normalize
274      normalize in IH
275      @ IH
276    ]
277  ]
278qed.
279
280corollary is_in_hd_tl:
281  ∀to_search: addressing_mode.
282  ∀hd: addressing_mode_tag.
283  ∀n: nat.
284  ∀v: Vector addressing_mode_tag n.
285    bool_to_Prop (is_in ? v to_search) → bool_to_Prop (is_in ? (hd:::v) to_search).
286  # TO_SEARCH # HD # N # V
287  elim V
288  [ # H
289    normalize in H;
290    cases H
291  | # NN # HHD # VV # IH # HH
292    > vector_cons_append
293    > (vector_cons_append ? ? HHD VV)
294    @ (is_in_monotonic_wrt_append ? 1 ([[HHD]]@@VV) [[HD]] TO_SEARCH)
295    @ HH
296  ]
297qed.
298 
299let rec list_addressing_mode_tags_elim
300  (n: nat) (l: Vector addressing_mode_tag (S n)) on l: (l → bool) → bool ≝
301  match l return λx.match x with [O ⇒ λl: Vector … O. bool | S x' ⇒ λl: Vector addressing_mode_tag (S x').
302   (l → bool) → bool ] with
303  [ VEmpty      ⇒  true 
304  | VCons len hd tl ⇒ λP.
305    let process_hd ≝
306      match hd return λhd. ∀P: hd:::tl → bool. bool with
307      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
308      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
309      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
310      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
311      | acc_a ⇒ λP.P ACC_A
312      | acc_b ⇒ λP.P ACC_B
313      | dptr ⇒ λP.P DPTR
314      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
315      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
316      | acc_dptr ⇒ λP.P ACC_DPTR
317      | acc_pc ⇒ λP.P ACC_PC
318      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
319      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
320      | carry ⇒ λP.P CARRY
321      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
322      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
323      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
324      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
325      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
326      ]
327    in
328      andb (process_hd P)
329       (match len return λx. x = len → bool with
330         [ O ⇒ λprf. true
331         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
332  ].
333  try %
334  [ 2: cases (sym_eq ??? prf); @tl
335  | generalize in match H; generalize in match tl; cases prf;
336    (* cases prf in tl H; : ??? WAS WORKING BEFORE *)
337    #tl
338    normalize in ⊢ (∀_: %. ?)
339    # H
340    whd
341    normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
342    cases (is_a hd (subaddressing_modeel y tl H)) whd // ]
343qed.
344
345definition product_elim ≝
346  λm, n: nat.
347  λv: Vector addressing_mode_tag (S m).
348  λq: Vector addressing_mode_tag (S n).
349  λP: (v × q) → bool.
350    list_addressing_mode_tags_elim ? v (λx. list_addressing_mode_tags_elim ? q (λy. P 〈x, y〉)).
351
352definition union_elim ≝
353  λA, B: Type[0].
354  λelimA: (A → bool) → bool.
355  λelimB: (B → bool) → bool.
356  λelimU: A ⊎ B → bool.
357    elimA (λa. elimB (λb. elimU (inl ? ? a) ∧ elimU (inr ? ? b))).
358
359(*                           
360definition preinstruction_elim: ∀P: preinstruction [[ relative ]] → bool. bool ≝
361  λP.
362    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADD ? ACC_A addr)) ∧
363    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADDC ? ACC_A addr)) ∧
364    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (SUBB ? ACC_A addr)) ∧
365    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ; dptr ]] (λaddr. P (INC ? addr)) ∧
366    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ]] (λaddr. P (DEC ? addr)) ∧
367    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (MUL ? ACC_A addr)) ∧
368    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (DIV ? ACC_A addr)) ∧
369    list_addressing_mode_tags_elim ? [[ registr ; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
370    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CLR ? addr)) ∧
371    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CPL ? addr)) ∧
372    P (DA ? ACC_A) ∧
373    bitvector_elim 8 (λr. P (JC ? (RELATIVE r))) ∧
374    bitvector_elim 8 (λr. P (JNC ? (RELATIVE r))) ∧
375    bitvector_elim 8 (λr. P (JZ ? (RELATIVE r))) ∧
376    bitvector_elim 8 (λr. P (JNZ ? (RELATIVE r))) ∧
377    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JB ? (BIT_ADDR b) (RELATIVE r))))) ∧
378    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JNB ? (BIT_ADDR b) (RELATIVE r))))) ∧
379    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JBC ? (BIT_ADDR b) (RELATIVE r))))) ∧
380    list_addressing_mode_tags_elim ? [[ registr; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
381    P (RL ? ACC_A) ∧
382    P (RLC ? ACC_A) ∧
383    P (RR ? ACC_A) ∧
384    P (RRC ? ACC_A) ∧
385    P (SWAP ? ACC_A) ∧
386    P (RET ?) ∧
387    P (RETI ?) ∧
388    P (NOP ?) ∧
389    bit_elim (λb. P (XCHD ? ACC_A (INDIRECT b))) ∧
390    list_addressing_mode_tags_elim ? [[ carry; bit_addr ]] (λaddr. P (SETB ? addr)) ∧
391    bitvector_elim 8 (λaddr. P (PUSH ? (DIRECT addr))) ∧
392    bitvector_elim 8 (λaddr. P (POP ? (DIRECT addr))) ∧
393    union_elim ? ? (product_elim ? ? [[ acc_a ]] [[ direct; data ]])
394                   (product_elim ? ? [[ registr; indirect ]] [[ data ]])
395                   (λd. bitvector_elim 8 (λb. P (CJNE ? d (RELATIVE b)))) ∧
396    list_addressing_mode_tags_elim ? [[ registr; direct; indirect ]] (λaddr. P (XCH ? ACC_A addr)) ∧
397    union_elim ? ? (product_elim ? ? [[acc_a]] [[ data ; registr ; direct ; indirect ]])
398                   (product_elim ? ? [[direct]] [[ acc_a ; data ]])
399                   (λd. P (XRL ? d)) ∧
400    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
401                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
402                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
403                   (λd. P (ANL ? d)) ∧
404    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; data ; direct ; indirect ]])
405                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
406                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
407                   (λd. P (ORL ? d)) ∧
408    union_elim ? ? (product_elim ? ? [[acc_a]] [[ ext_indirect ; ext_indirect_dptr ]])
409                   (product_elim ? ? [[ ext_indirect ; ext_indirect_dptr ]] [[acc_a]])
410                   (λd. P (MOVX ? d)) ∧
411    union_elim ? ? (
412      union_elim ? ? (
413        union_elim ? ? (
414          union_elim ? ? (
415            union_elim ? ?  (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
416                            (product_elim ? ? [[ registr ; indirect ]] [[ acc_a ; direct ; data ]]))
417                            (product_elim ? ? [[direct]] [[ acc_a ; registr ; direct ; indirect ; data ]]))
418                            (product_elim ? ? [[dptr]] [[data16]]))
419                            (product_elim ? ? [[carry]] [[bit_addr]]))
420                            (product_elim ? ? [[bit_addr]] [[carry]])
421                            (λd. P (MOV ? d)).
422  %
423qed.
424 
425definition instruction_elim: ∀P: instruction → bool. bool ≝
426  λP. (*
427    bitvector_elim 11 (λx. P (ACALL (ADDR11 x))) ∧
428    bitvector_elim 16 (λx. P (LCALL (ADDR16 x))) ∧
429    bitvector_elim 11 (λx. P (AJMP (ADDR11 x))) ∧
430    bitvector_elim 16 (λx. P (LJMP (ADDR16 x))) ∧ *)
431    bitvector_elim 8 (λx. P (SJMP (RELATIVE x))). (*  ∧
432    P (JMP INDIRECT_DPTR) ∧
433    list_addressing_mode_tags_elim ? [[ acc_dptr; acc_pc ]] (λa. P (MOVC ACC_A a)) ∧
434    preinstruction_elim (λp. P (RealInstruction p)). *)
435  %
436qed.
437
438
439axiom instruction_elim_complete:
440 ∀P. instruction_elim P = true → ∀i. P i = true.
441*)
442(*definition eq_instruction ≝
443  λi, j: instruction.
444    true.*)
445axiom eq_instruction: instruction → instruction → bool.
446axiom eq_instruction_refl: ∀i. eq_instruction i i = true.
447
448let rec vect_member
449  (A: Type[0]) (n: nat) (eq: A → A → bool)
450  (v: Vector A n) (a: A) on v: bool ≝
451  match v with
452  [ VEmpty          ⇒ false
453  | VCons len hd tl ⇒
454    eq hd a ∨ (vect_member A ? eq tl a)
455  ].
456
457let rec list_addressing_mode_tags_elim_prop
458  (n: nat)
459  (l: Vector addressing_mode_tag (S n))
460  on l:
461  ∀P: l → Prop.
462  ∀direct_a. ∀indirect_a. ∀ext_indirect_a. ∀register_a. ∀acc_a_a.
463  ∀acc_b_a. ∀dptr_a. ∀data_a. ∀data16_a. ∀acc_dptr_a. ∀acc_pc_a.
464  ∀ext_indirect_dptr_a. ∀indirect_dptr_a. ∀carry_a. ∀bit_addr_a.
465  ∀n_bit_addr_a. ∀relative_a. ∀addr11_a. ∀addr16_a.
466  ∀x: l. P x ≝
467  match l return
468    λy.
469      match y with
470      [ O    ⇒ λm: Vector addressing_mode_tag O. ∀prf: 0 = S n. True
471      | S y' ⇒ λl: Vector addressing_mode_tag (S y'). ∀prf: S y' = S n.∀P:l → Prop.
472               ∀direct_a: if vect_member … eq_a l direct then ∀x. P (DIRECT x) else True.
473               ∀indirect_a: if vect_member … eq_a l indirect then ∀x. P (INDIRECT x) else True.
474               ∀ext_indirect_a: if vect_member … eq_a l ext_indirect then ∀x. P (EXT_INDIRECT x) else True.
475               ∀register_a: if vect_member … eq_a l registr then ∀x. P (REGISTER x) else True.
476               ∀acc_a_a: if vect_member … eq_a l acc_a then P (ACC_A) else True.
477               ∀acc_b_a: if vect_member … eq_a l acc_b then P (ACC_B) else True.
478               ∀dptr_a: if vect_member … eq_a l dptr then P DPTR else True.
479               ∀data_a: if vect_member … eq_a l data then ∀x. P (DATA x) else True.
480               ∀data16_a: if vect_member … eq_a l data16 then ∀x. P (DATA16 x) else True.
481               ∀acc_dptr_a: if vect_member … eq_a l acc_dptr then P ACC_DPTR else True.
482               ∀acc_pc_a: if vect_member … eq_a l acc_pc then P ACC_PC else True.
483               ∀ext_indirect_dptr_a: if vect_member … eq_a l ext_indirect_dptr then P EXT_INDIRECT_DPTR else True.
484               ∀indirect_dptr_a: if vect_member … eq_a l indirect_dptr then P INDIRECT_DPTR else True.
485               ∀carry_a: if vect_member … eq_a l carry then P CARRY else True.
486               ∀bit_addr_a: if vect_member … eq_a l bit_addr then ∀x. P (BIT_ADDR x) else True.
487               ∀n_bit_addr_a: if vect_member … eq_a l n_bit_addr then ∀x. P (N_BIT_ADDR x) else True.
488               ∀relative_a: if vect_member … eq_a l relative then ∀x. P (RELATIVE x) else True.
489               ∀addr11_a: if vect_member … eq_a l addr11 then ∀x. P (ADDR11 x) else True.
490               ∀addr_16_a: if vect_member … eq_a l addr16 then ∀x. P (ADDR16 x) else True.
491               ∀x:l. P x
492      ] with
493  [ VEmpty          ⇒ λAbsurd. ⊥
494  | VCons len hd tl ⇒ λProof. ?
495  ] (refl ? (S n)). cases daemon. qed. (*
496  [ destruct(Absurd)
497  | # A1 # A2 # A3 # A4 # A5 # A6 # A7
498    # A8 # A9 # A10 # A11 # A12 # A13 # A14
499    # A15 # A16 # A17 # A18 # A19 # X
500    cases X
501    # SUB cases daemon ] qed.
502    cases SUB
503    [ # BYTE
504    normalize
505  ].
506 
507 
508(*    let prepare_hd ≝
509      match hd with
510      [ direct ⇒ λdirect_prf. ?
511      | indirect ⇒ λindirect_prf. ?
512      | ext_indirect ⇒ λext_indirect_prf. ?
513      | registr ⇒ λregistr_prf. ?
514      | acc_a ⇒ λacc_a_prf. ?
515      | acc_b ⇒ λacc_b_prf. ?
516      | dptr ⇒ λdptr_prf. ?
517      | data ⇒ λdata_prf. ?
518      | data16 ⇒ λdata16_prf. ?
519      | acc_dptr ⇒ λacc_dptr_prf. ?
520      | acc_pc ⇒ λacc_pc_prf. ?
521      | ext_indirect_dptr ⇒ λext_indirect_prf. ?
522      | indirect_dptr ⇒ λindirect_prf. ?
523      | carry ⇒ λcarry_prf. ?
524      | bit_addr ⇒ λbit_addr_prf. ?
525      | n_bit_addr ⇒ λn_bit_addr_prf. ?
526      | relative ⇒ λrelative_prf. ?
527      | addr11 ⇒ λaddr11_prf. ?
528      | addr16 ⇒ λaddr16_prf. ?
529      ]
530    in ? *)
531  ].
532  [ 1: destruct(absd)
533  | 2: # A1 # A2 # A3 # A4 # A5 # A6
534       # A7 # A8 # A9 # A10 # A11 # A12
535       # A13 # A14 # A15 # A16 # A17 # A18
536       # A19 *
537  ].
538
539
540  match l return λx.match x with [O ⇒ λl: Vector … O. bool | S x' ⇒ λl: Vector addressing_mode_tag (S x').
541   (l → bool) → bool ] with
542  [ VEmpty      ⇒  true 
543  | VCons len hd tl ⇒ λP.
544    let process_hd ≝
545      match hd return λhd. ∀P: hd:::tl → bool. bool with
546      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
547      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
548      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
549      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
550      | acc_a ⇒ λP.P ACC_A
551      | acc_b ⇒ λP.P ACC_B
552      | dptr ⇒ λP.P DPTR
553      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
554      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
555      | acc_dptr ⇒ λP.P ACC_DPTR
556      | acc_pc ⇒ λP.P ACC_PC
557      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
558      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
559      | carry ⇒ λP.P CARRY
560      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
561      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
562      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
563      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
564      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
565      ]
566    in
567      andb (process_hd P)
568       (match len return λx. x = len → bool with
569         [ O ⇒ λprf. true
570         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
571  ].
572  try %
573  [ 2: cases (sym_eq ??? prf); @tl
574  | generalize in match H; generalize in match tl; cases prf;
575    (* cases prf in tl H; : ??? WAS WORKING BEFORE *)
576    #tl
577    normalize in ⊢ (∀_: %. ?)
578    # H
579    whd
580    normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
581    cases (is_a hd (subaddressing_modeel y tl H)) whd // ]
582qed.
583*)
584(*
585lemma test:
586  let i ≝ SJMP (RELATIVE (bitvector_of_nat 8 255)) in
587      (let assembled ≝ assembly1 i in
588      let code_memory ≝ load_code_memory assembled in
589      let fetched ≝ fetch code_memory ? in
590      let 〈instr_pc, ticks〉 ≝ fetched in
591        eq_instruction (\fst instr_pc)) i = true.
592 [2: @ zero
593 | normalize
594 ]*)
595
596lemma BitVectorTrie_O:
597 ∀A:Type[0].∀v:BitVectorTrie A 0.(∃w. v ≃ Leaf A w) ∨ v ≃ Stub A 0.
598 #A #v generalize in match (refl … O) cases v in ⊢ (??%? → (?(??(λ_.?%%??)))(?%%??))
599  [ #w #_ %1 %[@w] %
600  | #n #l #r #abs @⊥ //
601  | #n #EQ %2 >EQ %]
602qed.
603
604lemma BitVectorTrie_Sn:
605 ∀A:Type[0].∀n.∀v:BitVectorTrie A (S n).(∃l,r. v ≃ Node A n l r) ∨ v ≃ Stub A (S n).
606 #A #n #v generalize in match (refl … (S n)) cases v in ⊢ (??%? → (?(??(λ_.??(λ_.?%%??))))%)
607  [ #m #abs @⊥ //
608  | #m #l #r #EQ %1 <(injective_S … EQ) %[@l] %[@r] //
609  | #m #EQ %2 // ]
610qed.
611
612lemma lookup_prepare_trie_for_insertion_hit:
613 ∀A:Type[0].∀a,v:A.∀n.∀b:BitVector n.
614  lookup … b (prepare_trie_for_insertion … b v) a = v.
615 #A #a #v #n #b elim b // #m #hd #tl #IH cases hd normalize //
616qed.
617 
618lemma lookup_insert_hit:
619 ∀A:Type[0].∀a,v:A.∀n.∀b:BitVector n.∀t:BitVectorTrie A n.
620  lookup … b (insert … b v t) a = v.
621 #A #a #v #n #b elim b -b -n //
622 #n #hd #tl #IH #t cases(BitVectorTrie_Sn … t)
623  [ * #l * #r #JMEQ >JMEQ cases hd normalize //
624  | #JMEQ >JMEQ cases hd normalize @lookup_prepare_trie_for_insertion_hit ]
625qed.
626
627lemma BitVector_O: ∀v:BitVector 0. v ≃ VEmpty bool.
628 #v generalize in match (refl … 0) cases v in ⊢ (??%? → ?%%??) //
629 #n #hd #tl #abs @⊥ //
630qed.
631
632lemma BitVector_Sn: ∀n.∀v:BitVector (S n).
633 ∃hd.∃tl.v ≃ VCons bool n hd tl.
634 #n #v generalize in match (refl … (S n)) cases v in ⊢ (??%? → ??(λ_.??(λ_.?%%??)))
635 [ #abs @⊥ //
636 | #m #hd #tl #EQ <(injective_S … EQ) %[@hd] %[@tl] // ]
637qed.
638
639coercion bool_to_Prop: ∀b:bool. Prop ≝ bool_to_Prop on _b:bool to Type[0].
640
641lemma lookup_prepare_trie_for_insertion_miss:
642 ∀A:Type[0].∀a,v:A.∀n.∀c,b:BitVector n.
643  (notb (eq_bv ? b c)) → lookup … b (prepare_trie_for_insertion … c v) a = a.
644 #A #a #v #n #c elim c
645  [ #b >(BitVector_O … b) normalize #abs @⊥ //
646  | #m #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ
647    cases hd cases hd' normalize
648    [2,3: #_ cases tl' //
649    |*: change with (bool_to_Prop (notb (eq_bv ???)) → ?) /2/ ]]
650qed.
651 
652lemma lookup_insert_miss:
653 ∀A:Type[0].∀a,v:A.∀n.∀c,b:BitVector n.∀t:BitVectorTrie A n.
654  (notb (eq_bv ? b c)) → lookup … b (insert … c v t) a = lookup … b t a.
655 #A #a #v #n #c elim c -c -n
656  [ #b #t #DIFF @⊥ whd in DIFF; >(BitVector_O … b) in DIFF //
657  | #n #hd #tl #IH #b cases(BitVector_Sn … b) #hd' * #tl' #JMEQ >JMEQ
658    #t cases(BitVectorTrie_Sn … t)
659    [ * #l * #r #JMEQ >JMEQ cases hd cases hd' #H normalize in H;
660     [1,4: change in H with (bool_to_Prop (notb (eq_bv ???))) ] normalize // @IH //
661    | #JMEQ >JMEQ cases hd cases hd' #H normalize in H;
662     [1,4: change in H with (bool_to_Prop (notb (eq_bv ???))) ] normalize
663     [3,4: cases tl' // | *: @lookup_prepare_trie_for_insertion_miss //]]]
664qed.
665
666definition load_code_memory_aux ≝
667 fold_left_i_aux … (
668   λi, mem, v.
669     insert … (bitvector_of_nat … i) v mem) (Stub Byte 16).
670
671axiom split_elim:
672 ∀A,l,m,v.∀P: (Vector A l) × (Vector A m) → Prop.
673  (∀vl,vm. v = vl@@vm → P 〈vl,vm〉) → P (split A l m v).
674
675axiom half_add_SO:
676 ∀pc.
677 \snd (half_add 16 (bitvector_of_nat … pc) (bitvector_of_nat … 1)) = bitvector_of_nat … (S pc).
678
679(*
680axiom not_eqvb_S:
681 ∀pc.
682 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S pc))).
683
684axiom not_eqvb_SS:
685 ∀pc.
686 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S (S pc)))).
687 
688axiom bitvector_elim_complete:
689 ∀n,P. bitvector_elim n P = true → ∀bv. P bv.
690
691lemma bitvector_elim_complete':
692 ∀n,P. bitvector_elim n P = true → ∀bv. P bv = true.
693 #n #P #H generalize in match (bitvector_elim_complete … H) #K #bv
694 generalize in match (K bv) normalize cases (P bv) normalize // #abs @⊥ //
695qed.
696*)
697
698
699
700
701(*
702lemma andb_elim':
703 ∀b1,b2. (b1 = true) → (b2 = true) → (b1 ∧ b2) = true.
704 #b1 #b2 #H1 #H2 @andb_elim cases b1 in H1; normalize //
705qed.
706*)
707
708let rec encoding_check (code_memory: BitVectorTrie Byte 16) (pc: Word) (final_pc: Word)
709                       (encoding: list Byte) on encoding: Prop ≝
710  match encoding with
711  [ nil ⇒ final_pc = pc
712  | cons hd tl ⇒
713    let 〈new_pc, byte〉 ≝ next code_memory pc in
714      hd = byte ∧ encoding_check code_memory new_pc final_pc tl
715  ].
716
717lemma encoding_check_append: ∀code_memory,final_pc,l1,pc,l2.
718 encoding_check code_memory (bitvector_of_nat … pc) (bitvector_of_nat … final_pc) (l1@l2) →
719  let intermediate_pc ≝ pc + length … l1 in
720   encoding_check code_memory (bitvector_of_nat … pc) (bitvector_of_nat … intermediate_pc) l1 ∧
721    encoding_check code_memory (bitvector_of_nat … intermediate_pc) (bitvector_of_nat … final_pc) l2.
722 #code_memory #final_pc #l1 elim l1
723  [ #pc #l2 whd in ⊢ (????% → ?) #H <plus_n_O whd whd in ⊢ (?%?) /2/
724  | #hd #tl #IH #pc #l2 * #H1 #H2 >half_add_SO in H2; #H2 cases (IH … H2) <plus_n_Sm
725    #K1 #K2 % [2:@K2] whd % // >half_add_SO @K1 ]
726qed.
727
728axiom  eq_bv_refl: ∀n,v. eq_bv n v v = true.
729
730axiom bitvector_3_elim_prop:
731 ∀P: BitVector 3 → Prop.
732  P [[false;false;false]] → P [[false;false;true]] → P [[false;true;false]] →
733  P [[false;true;true]] → P [[true;false;false]] → P [[true;false;true]] →
734  P [[true;true;false]] → P [[true;true;true]] → ∀v. P v.
735
736axiom fetch_assembly:
737  ∀pc,i,code_memory,assembled.
738    assembled = assembly1 i →
739      let len ≝ length … assembled in
740      encoding_check code_memory (bitvector_of_nat … pc) (bitvector_of_nat … (pc + len)) assembled →
741      let fetched ≝ fetch code_memory (bitvector_of_nat … pc) in
742      let 〈instr_pc, ticks〉 ≝ fetched in
743      let 〈instr,pc'〉 ≝ instr_pc in
744       (eq_instruction instr i ∧ eq_bv … pc' (bitvector_of_nat … (pc + len))) = true.
745(* #pc #i #code_memory #assembled cases i [8: *]
746 [16,20,29: * * |18,19: * * [1,2,4,5: *] |28: * * [1,2: * [1,2: * [1,2: * [1,2: *]]]]]
747 [47,48,49:
748 |*: #arg @(list_addressing_mode_tags_elim_prop … arg) whd try % -arg
749  [2,3,5,7,10,12,16,17,18,21,25,26,27,30,31,32,37,38,39,40,41,42,43,44,45,48,51,58,
750   59,60,63,64,65,66,67: #ARG]]
751 [4,5,6,7,8,9,10,11,12,13,22,23,24,27,28,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
752  56,57,69,70,72,73,75: #arg2 @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2
753  [1,2,4,7,9,10,12,13,15,16,17,18,20,22,23,24,25,26,27,28,29,30,31,32,33,36,37,38,
754   39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
755   68,69,70,71: #ARG2]]
756 [1,2,19,20: #arg3 @(list_addressing_mode_tags_elim_prop … arg3) whd try % -arg3 #ARG3]
757 normalize in ⊢ (???% → ?)
758 [92,94,42,93,95: @split_elim #vl #vm #E >E -E; [2,4: @(bitvector_3_elim_prop … vl)]
759  normalize in ⊢ (???% → ?)]
760 #H >H * #H1 try (change in ⊢ (% → ?) with (? ∧ ?) * #H2)
761 try (change in ⊢ (% → ?) with (? ∧ ?) * #H3) whd in ⊢ (% → ?) #H4
762 change in ⊢ (let fetched ≝ % in ?) with (fetch0 ??)
763 whd in ⊢ (let fetched ≝ ??% in ?) <H1 whd in ⊢ (let fetched ≝ % in ?)
764 [17,18,19,20,21,22,23,24,25,26,31,34,35,36,37,38: <H3]
765 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
766  30,31,32,33,34,35,36,37,38,39,40,43,45,48,49,52,53,54,55,56,57,60,61,62,65,66,
767  69,70,73,74,78,80,81,84,85,95,98,101,102,103,104,105,106,107,108,109,110: <H2]
768 whd >eq_instruction_refl >H4 @eq_bv_refl
769qed. *)
770
771let rec fetch_many code_memory final_pc pc expected on expected: Prop ≝
772 match expected with
773  [ nil ⇒ eq_bv … pc final_pc = true
774  | cons i tl ⇒
775     let fetched ≝ fetch code_memory pc in
776     let 〈instr_pc, ticks〉 ≝ fetched in
777     let 〈instr,pc'〉 ≝ instr_pc in
778      eq_instruction instr i = true ∧ fetch_many code_memory final_pc pc' tl].
779
780lemma option_destruct_Some: ∀A,a,b. Some A a = Some A b → a=b.
781 #A #a #b #EQ destruct //
782qed.
783
784lemma pair_destruct: ∀A,B,a1,a2,b1,b2. pair A B a1 a2 = 〈b1,b2〉 → a1=b1 ∧ a2=b2.
785 #A #B #a1 #a2 #b1 #b2 #EQ destruct /2/
786qed.
787
788axiom eq_bv_to_eq: ∀n.∀v1,v2: BitVector n. eq_bv … v1 v2 = true → v1=v2.
789
790lemma fetch_assembly_pseudo:
791 ∀program,ppc,lookup_labels,lookup_datalabels.
792  ∀pi,code_memory,len,assembled,instructions,pc.
793   let expansion ≝ jump_expansion_policy program ppc in
794   Some ? instructions = expand_pseudo_instruction lookup_labels lookup_datalabels ppc expansion pi →
795    Some … 〈len,assembled〉 = assembly_1_pseudoinstruction program ppc lookup_labels lookup_datalabels pi →
796     encoding_check code_memory (bitvector_of_nat … pc) (bitvector_of_nat … (pc + len)) assembled →
797      fetch_many code_memory (bitvector_of_nat … (pc + len)) (bitvector_of_nat … pc) instructions.
798 #program #ppc #lookup_labels #lookup_datalabels #pi #code_memory #len #assembled #instructions #pc
799 #EQ1 whd in ⊢ (???% → ?) <EQ1 whd in ⊢ (???% → ?) #EQ2 cases (pair_destruct ?????? (option_destruct_Some … EQ2)) -EQ2; #EQ2a #EQ2b
800 >EQ2a >EQ2b -EQ2a EQ2b;
801  generalize in match (pc + |flatten … (map … assembly1 instructions)|); #final_pc
802  generalize in match pc elim instructions
803  [ #pc whd in ⊢ (% → %) #H >H @eq_bv_refl
804  | #i #tl #IH #pc #H whd cases (encoding_check_append … H); -H; #H1 #H2 whd
805    generalize in match (fetch_assembly pc i code_memory … (refl …) H1)
806    cases (fetch code_memory (bitvector_of_nat … pc)) #newi_pc #ticks whd in ⊢ (% → %)
807    cases newi_pc #newi #newpc whd in ⊢ (% → %) #K cases (conjunction_true … K) -K; #K1 #K2 % //
808    >(eq_bv_to_eq … K2) @IH @H2 ]
809qed.
810
811lemma fetch_assembly_pseudo:
812 ∀program,ppc,lookup_labels,lookup_datalabels.
813  ∀pc,pi,code_memory,instructions,len,assembled.
814   let expansion ≝ jump_expansion_policy program ppc in
815   Some ? instructions = expand_pseudo_instruction lookup_labels lookup_datalabels ppc expansion pi →
816    Some … 〈len,assembled〉 = assembly_1_pseudoinstruction program ppc lookup_labels lookup_datalabels pi →
817     encoding_check code_memory (bitvector_of_nat … pc) (bitvector_of_nat … (pc + len)) assembled →
818      fetch_many code_memory len (bitvector_of_nat … pc) instructions.
819 #program #ppc #lookup_labels #lookup_datalabels #pc #pi #code_memory #instructions #len #assembled
820 #EQ1 #EQ2 generalize in match EQ1 -EQ1; generalize in match pc -pc; elim instructions
821  [ #pc #EQ1 #H whd whd in EQ2:(???%); <EQ1 in EQ2; whd in ⊢ (???% → ?) #EQ2
822    cases (pair_destruct ?????? (option_destruct_Some … EQ2)) -EQ2; #EQ2a #EQ2b >EQ2b
823    whd in ⊢ (% → %) #H >EQ2a <plus_n_O
824    (* OK, ARITHMETIC *) cases daemon
825   | #i #tl #IH #pc #EQ1 whd in EQ2:(???%); <EQ1 in EQ2; whd in ⊢ (???% → ?) #EQ2
826    cases (pair_destruct ?????? (option_destruct_Some … EQ2)) -EQ2 #EQ2a #EQ2b
827    change in EQ2b with (? = ?@flatten …) >EQ2b in IH ⊢ %; -assembled; #IH #H
828    cases (encoding_check_append … H); -H; #H1 #H2 whd
829    generalize in match (fetch_assembly pc i code_memory … (refl …) H1)
830    cases (fetch code_memory (bitvector_of_nat … pc)) #newi_pc #ticks whd in ⊢ (% → %)
831    cases newi_pc #newi #newpc whd in ⊢ (% → %) #K cases (conjunction_true … K) -K; #K1 #K2 % //
832    >(eq_bv_to_eq … K2) @IH
833     [
834     | @H2
835     ]
836  ]
837qed.
838
839(* This establishes the correspondence between pseudo program counters and
840   program counters. It is at the heart of the proof. *)
841(*CSC: code taken from build_maps *)
842definition sigma0: pseudo_assembly_program → option (nat × (nat × (BitVectorTrie Word 16))) ≝
843 λinstr_list.
844  foldl ??
845    (λt. λi.
846       match t with
847       [ None ⇒ None ?
848       | Some ppc_pc_map ⇒
849         let 〈ppc,pc_map〉 ≝ ppc_pc_map in
850         let 〈program_counter, sigma_map〉 ≝ pc_map in
851         let 〈label, i〉 ≝ i in
852          match construct_costs instr_list program_counter (λx. zero ?) (λx. zero ?) (Stub …) i with
853           [ None ⇒ None ?
854           | Some pc_ignore ⇒
855              let 〈pc,ignore〉 ≝ pc_ignore in
856              Some … 〈S ppc,〈pc, insert ? ? (bitvector_of_nat ? ppc) (bitvector_of_nat ? pc) sigma_map〉〉 ]
857       ]) (Some ? 〈0, 〈0, (Stub ? ?)〉〉) (\snd instr_list).
858       
859definition tech_pc_sigma0: pseudo_assembly_program → option (nat × (BitVectorTrie Word 16)) ≝
860 λinstr_list.
861  match sigma0 instr_list with
862   [ None ⇒ None …
863   | Some result ⇒
864      let 〈ppc,pc_sigma_map〉 ≝ result in
865       Some … pc_sigma_map ].
866
867definition sigma_safe: pseudo_assembly_program → option (Word → Word) ≝       
868 λinstr_list.
869  match sigma0 instr_list with
870  [ None ⇒ None ?
871  | Some result ⇒
872    let 〈ppc,pc_sigma_map〉 ≝ result in
873    let 〈pc, sigma_map〉 ≝ pc_sigma_map in
874      if gtb pc (2^16) then
875        None ?
876      else
877        Some ? (λx.lookup ?? x sigma_map (zero …)) ].
878
879axiom policy_ok: ∀p. sigma_safe p ≠ None ….
880
881definition sigma: pseudo_assembly_program → Word → Word ≝
882 λp.
883  match sigma_safe p return λr:option (Word → Word). r ≠ None … → Word → Word with
884   [ None ⇒ λabs. ⊥
885   | Some r ⇒ λ_.r] (policy_ok p).
886 cases abs //
887qed.
888
889lemma length_append:
890 ∀A.∀l1,l2:list A.
891  |l1 @ l2| = |l1| + |l2|.
892 #A #l1 elim l1
893  [ //
894  | #hd #tl #IH #l2 normalize <IH //]
895qed.
896
897let rec does_not_occur (id:Identifier) (l:list labelled_instruction) on l: bool ≝
898 match l with
899  [ nil ⇒ true
900  | cons hd tl ⇒ notb (instruction_matches_identifier id hd) ∧ does_not_occur id tl].
901
902lemma does_not_occur_None:
903 ∀id,i,list_instr.
904  does_not_occur id (list_instr@[〈None …,i〉]) =
905  does_not_occur id list_instr.
906 #id #i #list_instr elim list_instr
907  [ % | #hd #tl #IH whd in ⊢ (??%%) >IH %]
908qed.
909
910let rec occurs_exactly_once (id:Identifier) (l:list labelled_instruction) on l : bool ≝
911 match l with
912  [ nil ⇒ false
913  | cons hd tl ⇒
914     if instruction_matches_identifier id hd then
915      does_not_occur id tl
916     else
917      occurs_exactly_once id tl ].
918
919lemma occurs_exactly_once_None:
920 ∀id,i,list_instr.
921  occurs_exactly_once id (list_instr@[〈None …,i〉]) =
922  occurs_exactly_once id list_instr.
923 #id #i #list_instr elim list_instr
924  [ % | #hd #tl #IH whd in ⊢ (??%%) >IH >does_not_occur_None %]
925qed.
926
927lemma index_of_internal_None: ∀i,id,instr_list,n.
928 occurs_exactly_once id (instr_list@[〈None …,i〉]) →
929  index_of_internal ? (instruction_matches_identifier id) instr_list n =
930   index_of_internal ? (instruction_matches_identifier id) (instr_list@[〈None …,i〉]) n.
931 #i #id #instr_list elim instr_list
932  [ #n #abs whd in abs; cases abs
933  | #hd #tl #IH #n whd in ⊢ (% → ??%%); whd in ⊢ (match % with [_ ⇒ ? | _ ⇒ ?] → ?)
934    cases (instruction_matches_identifier id hd) whd in ⊢ (match % with [_ ⇒ ? | _ ⇒ ?] → ??%%)
935    [ #H %
936    | #H @IH whd in H; cases (occurs_exactly_once ??) in H ⊢ %
937      [ #_ % | #abs cases abs ]]]
938qed.
939
940lemma address_of_word_labels_code_mem_None: ∀i,id,instr_list.
941 occurs_exactly_once id (instr_list@[〈None …,i〉]) →
942  address_of_word_labels_code_mem instr_list id =
943  address_of_word_labels_code_mem (instr_list@[〈None …,i〉]) id.
944 #i #id #instr_list #H whd in ⊢ (??%%) whd in ⊢ (??(??%?)(??%?))
945 >(index_of_internal_None … H) %
946qed.
947
948axiom tech_pc_sigma0_append:
949 ∀preamble,instr_list,prefix,label,i,pc',code,pc,costs,costs'.
950  Some … 〈pc,costs〉 = tech_pc_sigma0 〈preamble,prefix〉 →
951   construct_costs 〈preamble,instr_list〉 … pc (λx.zero 16) (λx. zero 16) costs i = Some … 〈pc',code〉 →
952    tech_pc_sigma0 〈preamble,prefix@[〈label,i〉]〉 = Some … 〈pc',costs'〉.
953
954axiom tech_pc_sigma0_append_None:
955 ∀preamble,instr_list,prefix,i,pc,costs.
956  Some … 〈pc,costs〉 = tech_pc_sigma0 〈preamble,prefix〉 →
957   construct_costs 〈preamble,instr_list〉 … pc (λx.zero 16) (λx. zero 16) costs i = None …
958    → False.
959
960
961definition build_maps' ≝
962  λpseudo_program.
963  let 〈preamble,instr_list〉 ≝ pseudo_program in
964  let result ≝
965   foldl_strong
966    (option Identifier × pseudo_instruction)
967    (λpre. Σres:((BitVectorTrie Word 16) × (nat × (BitVectorTrie Word 16))).
968      let pre' ≝ 〈preamble,pre〉 in
969      let 〈labels,pc_costs〉 ≝ res in
970       tech_pc_sigma0 pre' = Some … pc_costs ∧
971       ∀id. occurs_exactly_once id pre →
972        lookup ?? id labels (zero …) = sigma pre' (address_of_word_labels_code_mem pre id))
973    instr_list
974    (λprefix,i,tl,prf,t.
975      let 〈labels, pc_costs〉 ≝ t in
976      let 〈program_counter, costs〉 ≝ pc_costs in
977       let 〈label, i'〉 ≝ i in
978       let labels ≝
979         match label with
980         [ None ⇒ labels
981         | Some label ⇒
982           let program_counter_bv ≝ bitvector_of_nat ? program_counter in
983             insert ? ? label program_counter_bv labels
984         ]
985       in
986         match construct_costs 〈preamble,instr_list〉 program_counter (λx. zero ?) (λx. zero ?) costs i' with
987         [ None ⇒
988            let dummy ≝ 〈labels,pc_costs〉 in
989             dummy
990         | Some construct ⇒ 〈labels, construct〉
991         ]
992    ) 〈(Stub ? ?), 〈0, (Stub ? ?)〉〉
993  in
994   let 〈labels, pc_costs〉 ≝ result in
995   let 〈pc, costs〉 ≝ pc_costs in
996    〈labels, costs〉.
997 [3: whd % // #id normalize in ⊢ (% → ?) #abs @⊥ //
998 | whd cases construct in p3 #PC #CODE #JMEQ %
999    [ @(tech_pc_sigma0_append ??????????? (jmeq_to_eq ??? JMEQ)) | #id #Hid ]
1000 | (* dummy case *) @⊥
1001   @(tech_pc_sigma0_append_None ?? prefix ???? (jmeq_to_eq ??? p3)) ]
1002 [*: generalize in match (sig2 … t) whd in ⊢ (% → ?)
1003     >p whd in ⊢ (% → ?) >p1 * #IH0 #IH1 >IH0 // ]
1004 whd in ⊢ (??(????%?)?) -labels1;
1005 cases label in Hid
1006  [ #Hid whd in ⊢ (??(????%?)?) >IH1 -IH1
1007     [ >(address_of_word_labels_code_mem_None … Hid)
1008       (* MANCA LEMMA: INDIRIZZO TROVATO NEL PROGRAMMA! *)
1009     | whd in Hid >occurs_exactly_once_None in Hid // ]
1010  | -label #label #Hid whd in ⊢ (??(????%?)?)
1011   
1012  ]
1013qed.
1014
1015(*
1016(*
1017notation < "hvbox('let' 〈ident x,ident y〉 ≝ t 'in' s)"
1018 with precedence 10
1019for @{ match $t with [ pair ${ident x} ${ident y} ⇒ $s ] }.
1020*)
1021
1022lemma build_maps_ok:
1023 ∀p:pseudo_assembly_program.
1024  let 〈labels,costs〉 ≝ build_maps' p in
1025   ∀pc.
1026    (nat_of_bitvector … pc) < length … (\snd p) →
1027     lookup ?? pc labels (zero …) = sigma p (\snd (fetch_pseudo_instruction (\snd p) pc)).
1028 #p cases p #preamble #instr_list
1029  elim instr_list
1030   [ whd #pc #abs normalize in abs; cases (not_le_Sn_O ?) [#H cases (H abs) ]
1031   | #hd #tl #IH
1032    whd in ⊢ (match % with [ _ ⇒ ?])
1033   ]
1034qed.
1035*)
1036
1037(*
1038lemma list_elim_rev:
1039 ∀A:Type[0].∀P:list A → Prop.
1040  P [ ] → (∀n,l. length l = n → P l → 
1041  P [ ] → (∀l,a. P l → P (l@[a])) →
1042   ∀l. P l.
1043 #A #P
1044qed.*)
1045
1046lemma rev_preserves_length:
1047 ∀A.∀l. length … (rev A l) = length … l.
1048  #A #l elim l
1049   [ %
1050   | #hd #tl #IH normalize >length_append normalize /2/ ]
1051qed.
1052
1053lemma rev_append:
1054 ∀A.∀l1,l2.
1055  rev A (l1@l2) = rev A l2 @ rev A l1.
1056 #A #l1 elim l1 normalize //
1057qed.
1058 
1059lemma rev_rev: ∀A.∀l. rev … (rev A l) = l.
1060 #A #l elim l
1061  [ //
1062  | #hd #tl #IH normalize >rev_append normalize // ]
1063qed.
1064
1065lemma split_len_Sn:
1066 ∀A:Type[0].∀l:list A.∀len.
1067  length … l = S len →
1068   Σl'.Σa. l = l'@[a] ∧ length … l' = len.
1069 #A #l elim l
1070  [ normalize #len #abs destruct
1071  | #hd #tl #IH #len
1072    generalize in match (rev_rev … tl)
1073    cases (rev A tl) in ⊢ (??%? → ?)
1074     [ #H <H normalize #EQ % [@[ ]] % [@hd] normalize /2/ 
1075     | #a #l' #H <H normalize #EQ
1076      %[@(hd::rev … l')] %[@a] % //
1077      >length_append in EQ #EQ normalize in EQ; normalize;
1078      generalize in match (injective_S … EQ) #EQ2 /2/ ]]
1079qed.
1080
1081lemma list_elim_rev:
1082 ∀A:Type[0].∀P:list A → Type[0].
1083  P [ ] → (∀l,a. P l → P (l@[a])) →
1084   ∀l. P l.
1085 #A #P #H1 #H2 #l
1086 generalize in match (refl … (length … l))
1087 generalize in ⊢ (???% → ?) #n generalize in match l
1088 elim n
1089  [ #L cases L [ // | #x #w #abs (normalize in abs) @⊥ // ]
1090  | #m #IH #L #EQ
1091    cases (split_len_Sn … EQ) #l' * #a * /3/ ]
1092qed.
1093
1094axiom is_prefix: ∀A:Type[0]. list A → list A → Prop.
1095axiom prefix_of_append:
1096 ∀A:Type[0].∀l,l1,l2:list A.
1097  is_prefix … l l1 → is_prefix … l (l1@l2).
1098axiom prefix_reflexive: ∀A,l. is_prefix A l l.
1099axiom nil_prefix: ∀A,l. is_prefix A [ ] l.
1100
1101record Propify (A:Type[0]) : Type[0] (*Prop*) ≝ { in_propify: A }.
1102
1103definition Propify_elim: ∀A. ∀P:Prop. (A → P) → (Propify A → P) ≝
1104 λA,P,H,x. match x with [ mk_Propify p ⇒ H p ].
1105
1106definition app ≝
1107 λA:Type[0].λl1:Propify (list A).λl2:list A.
1108  match l1 with
1109   [ mk_Propify l1 ⇒ mk_Propify … (l1@l2) ].
1110
1111lemma app_nil: ∀A,l1. app A l1 [ ] = l1.
1112 #A * /3/
1113qed.
1114
1115lemma app_assoc: ∀A,l1,l2,l3. app A (app A l1 l2) l3 = app A l1 (l2@l3).
1116 #A * #l1 normalize //
1117qed.
1118
1119let rec foldli (A: Type[0]) (B: Propify (list A) → Type[0])
1120 (f: ∀prefix. B prefix → ∀x.B (app … prefix [x]))
1121 (prefix: Propify (list A)) (b: B prefix) (l: list A) on l :
1122 B (app … prefix l) ≝
1123  match l with
1124  [ nil ⇒ ? (* b *)
1125  | cons hd tl ⇒ ? (*foldli A B f (prefix@[hd]) (f prefix b hd) tl*)
1126  ].
1127 [ applyS b
1128 | <(app_assoc ?? [hd]) @(foldli A B f (app … prefix [hd]) (f prefix b hd) tl) ]
1129qed.
1130
1131(*
1132let rec foldli (A: Type[0]) (B: list A → Type[0]) (f: ∀prefix. B prefix → ∀x. B (prefix@[x]))
1133 (prefix: list A) (b: B prefix) (l: list A) on l : B (prefix@l) ≝
1134  match l with
1135  [ nil ⇒ ? (* b *)
1136  | cons hd tl ⇒
1137     ? (*foldli A B f (prefix@[hd]) (f prefix b hd) tl*)
1138  ].
1139 [ applyS b
1140 | applyS (foldli A B f (prefix@[hd]) (f prefix b hd) tl) ]
1141qed.
1142*)
1143
1144definition foldll:
1145 ∀A:Type[0].∀B: Propify (list A) → Type[0].
1146  (∀prefix. B prefix → ∀x. B (app … prefix [x])) →
1147   B (mk_Propify … []) → ∀l: list A. B (mk_Propify … l)
1148 ≝ λA,B,f. foldli A B f (mk_Propify … [ ]).
1149
1150axiom is_pprefix: ∀A:Type[0]. Propify (list A) → list A → Prop.
1151axiom pprefix_of_append:
1152 ∀A:Type[0].∀l,l1,l2.
1153  is_pprefix A l l1 → is_pprefix A l (l1@l2).
1154axiom pprefix_reflexive: ∀A,l. is_pprefix A (mk_Propify … l) l.
1155axiom nil_pprefix: ∀A,l. is_pprefix A (mk_Propify … [ ]) l.
1156
1157
1158axiom foldll':
1159 ∀A:Type[0].∀l: list A.
1160  ∀B: ∀prefix:Propify (list A). is_pprefix ? prefix l → Type[0].
1161  (∀prefix,proof. B prefix proof → ∀x,proof'. B (app … prefix [x]) proof') →
1162   B (mk_Propify … [ ]) (nil_pprefix …) → B (mk_Propify … l) (pprefix_reflexive … l).
1163 #A #l #B
1164 generalize in match (foldll A (λprefix. is_pprefix ? prefix l)) #HH
1165 
1166 
1167  #H #acc
1168 @foldll
1169  [
1170  |
1171  ]
1172 
1173 ≝ λA,B,f. foldli A B f (mk_Propify … [ ]).
1174
1175
1176(*
1177record subset (A:Type[0]) (P: A → Prop): Type[0] ≝
1178 { subset_wit:> A;
1179   subset_proof: P subset_wit
1180 }.
1181*)
1182
1183definition build_maps' ≝
1184  λpseudo_program.
1185  let 〈preamble,instr_list〉 ≝ pseudo_program in
1186  let result ≝
1187   foldll
1188    (option Identifier × pseudo_instruction)
1189    (λprefix.
1190      Σt:((BitVectorTrie Word 16) × (nat × (BitVectorTrie Word 16))).
1191       match prefix return λ_.Prop with [mk_Propify prefix ⇒ tech_pc_sigma0 〈preamble,prefix〉 ≠ None ?])
1192    (λprefix,t,i.
1193      let 〈labels, pc_costs〉 ≝ t in
1194      let 〈program_counter, costs〉 ≝ pc_costs in
1195       let 〈label, i'〉 ≝ i in
1196       let labels ≝
1197         match label with
1198         [ None ⇒ labels
1199         | Some label ⇒
1200           let program_counter_bv ≝ bitvector_of_nat ? program_counter in
1201             insert ? ? label program_counter_bv labels
1202         ]
1203       in
1204         match construct_costs pseudo_program program_counter (λx. zero ?) (λx. zero ?) costs i' with
1205         [ None ⇒
1206            let dummy ≝ 〈labels,pc_costs〉 in
1207              dummy
1208         | Some construct ⇒ 〈labels, construct〉
1209         ]
1210    ) 〈(Stub ? ?), 〈0, (Stub ? ?)〉〉 instr_list
1211  in
1212   let 〈labels, pc_costs〉 ≝ result in
1213   let 〈pc, costs〉 ≝ pc_costs in
1214    〈labels, costs〉.
1215 [
1216 | @⊥
1217 | normalize % //
1218 ]
1219qed.
1220
1221definition build_maps' ≝
1222  λpseudo_program.
1223  let 〈preamble,instr_list〉 ≝ pseudo_program in
1224  let result ≝
1225   foldl
1226    (Σt:((BitVectorTrie Word 16) × (nat × (BitVectorTrie Word 16))).
1227          ∃instr_list_prefix. is_prefix ? instr_list_prefix instr_list ∧
1228           tech_pc_sigma0 〈preamble,instr_list_prefix〉 = Some ? (\fst (\snd t)))
1229    (Σi:option Identifier × pseudo_instruction. ∀instr_list_prefix.
1230          let instr_list_prefix' ≝ instr_list_prefix @ [i] in
1231           is_prefix ? instr_list_prefix' instr_list →
1232           tech_pc_sigma0 〈preamble,instr_list_prefix'〉 ≠ None ?)
1233    (λt: Σt:((BitVectorTrie Word 16) × (nat × (BitVectorTrie Word 16))).
1234          ∃instr_list_prefix. is_prefix ? instr_list_prefix instr_list ∧
1235           tech_pc_sigma0 〈preamble,instr_list_prefix〉 = Some ? (\fst (\snd t)).
1236     λi: Σi:option Identifier × pseudo_instruction. ∀instr_list_prefix.
1237          let instr_list_prefix' ≝ instr_list_prefix @ [i] in
1238           is_prefix ? instr_list_prefix' instr_list →
1239           tech_pc_sigma0 〈preamble,instr_list_prefix'〉 ≠ None ? .
1240      let 〈labels, pc_costs〉 ≝ t in
1241      let 〈program_counter, costs〉 ≝ pc_costs in
1242       let 〈label, i'〉 ≝ i in
1243       let labels ≝
1244         match label with
1245         [ None ⇒ labels
1246         | Some label ⇒
1247           let program_counter_bv ≝ bitvector_of_nat ? program_counter in
1248             insert ? ? label program_counter_bv labels
1249         ]
1250       in
1251         match construct_costs pseudo_program program_counter (λx. zero ?) (λx. zero ?) costs i' with
1252         [ None ⇒
1253            let dummy ≝ 〈labels,pc_costs〉 in
1254              dummy
1255         | Some construct ⇒ 〈labels, construct〉
1256         ]
1257    ) 〈(Stub ? ?), 〈0, (Stub ? ?)〉〉 ?(*instr_list*)
1258  in
1259   let 〈labels, pc_costs〉 ≝ result in
1260   let 〈pc, costs〉 ≝ pc_costs in
1261    〈labels, costs〉.
1262 [4: @(list_elim_rev ?
1263       (λinstr_list. list (
1264        (Σi:option Identifier × pseudo_instruction. ∀instr_list_prefix.
1265          let instr_list_prefix' ≝ instr_list_prefix @ [i] in
1266           is_prefix ? instr_list_prefix' instr_list →
1267           tech_pc_sigma0 〈preamble,instr_list_prefix'〉 ≠ None ?)))
1268       ?? instr_list) (* CSC: BAD ORDER FOR CODE EXTRACTION *)
1269      [ @[ ]
1270      | #l' #a #limage %2
1271        [ %[@a] #PREFIX #PREFIX_OK
1272        | (* CSC: EVEN WORST CODE FOR EXTRACTION: WE SHOULD STRENGTHEN
1273             THE INDUCTION HYPOTHESIS INSTEAD *)
1274          elim limage
1275           [ %1
1276           | #HD #TL #IH @(?::IH) cases HD #ELEM #K1 %[@ELEM] #K2 #K3
1277             @K1 @(prefix_of_append ???? K3)
1278           ] 
1279        ]
1280       
1281       
1282     
1283 
1284  cases t in c2 ⊢ % #t' * #LIST_PREFIX * #H1t' #H2t' #HJMt'
1285     % [@ (LIST_PREFIX @ [i])] %
1286      [ cases (sig2 … i LIST_PREFIX) #K1 #K2 @K1
1287      | (* DOABLE IN PRINCIPLE *)
1288      ]
1289 | (* assert false case *)
1290 |3: % [@ ([ ])] % [2: % | (* DOABLE *)]
1291 |   
1292
1293definition assembly_specification:
1294  ∀assembly_program: pseudo_assembly_program.
1295  ∀code_mem: BitVectorTrie Byte 16. Prop ≝
1296  λpseudo_assembly_program.
1297  λcode_mem.
1298    ∀pc: Word.
1299      let 〈preamble, instr_list〉 ≝ pseudo_assembly_program in
1300      let 〈pre_instr, pre_new_pc〉 ≝ fetch_pseudo_instruction instr_list pc in
1301      let labels ≝ λx. sigma' pseudo_assembly_program (address_of_word_labels_code_mem instr_list x) in
1302      let datalabels ≝ λx. sigma' pseudo_assembly_program (lookup ? ? x (construct_datalabels preamble) (zero ?)) in
1303      let pre_assembled ≝ assembly_1_pseudoinstruction pseudo_assembly_program
1304       (sigma' pseudo_assembly_program pc) labels datalabels pre_instr in
1305      match pre_assembled with
1306       [ None ⇒ True
1307       | Some pc_code ⇒
1308          let 〈new_pc,code〉 ≝ pc_code in
1309           encoding_check code_mem pc (sigma' pseudo_assembly_program pre_new_pc) code ].
1310
1311axiom assembly_meets_specification:
1312  ∀pseudo_assembly_program.
1313    match assembly pseudo_assembly_program with
1314    [ None ⇒ True
1315    | Some code_mem_cost ⇒
1316      let 〈code_mem, cost〉 ≝ code_mem_cost in
1317        assembly_specification pseudo_assembly_program (load_code_memory code_mem)
1318    ].
1319(*
1320  # PROGRAM
1321  [ cases PROGRAM
1322    # PREAMBLE
1323    # INSTR_LIST
1324    elim INSTR_LIST
1325    [ whd
1326      whd in ⊢ (∀_. %)
1327      # PC
1328      whd
1329    | # INSTR
1330      # INSTR_LIST_TL
1331      # H
1332      whd
1333      whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1334    ]
1335  | cases not_implemented
1336  ] *)
1337
1338definition status_of_pseudo_status: PseudoStatus → option Status ≝
1339 λps.
1340  let pap ≝ code_memory … ps in
1341   match assembly pap with
1342    [ None ⇒ None …
1343    | Some p ⇒
1344       let cm ≝ load_code_memory (\fst p) in
1345       let pc ≝ sigma' pap (program_counter ? ps) in
1346        Some …
1347         (mk_PreStatus (BitVectorTrie Byte 16)
1348           cm
1349           (low_internal_ram … ps)
1350           (high_internal_ram … ps)
1351           (external_ram … ps)
1352           pc
1353           (special_function_registers_8051 … ps)
1354           (special_function_registers_8052 … ps)
1355           (p1_latch … ps)
1356           (p3_latch … ps)
1357           (clock … ps)) ].
1358
1359definition write_at_stack_pointer':
1360 ∀M. ∀ps: PreStatus M. Byte → Σps':PreStatus M.(code_memory … ps = code_memory … ps') ≝
1361  λM: Type[0].
1362  λs: PreStatus M.
1363  λv: Byte.
1364    let 〈 nu, nl 〉 ≝ split … 4 4 (get_8051_sfr ? s SFR_SP) in
1365    let bit_zero ≝ get_index_v… nu O ? in
1366    let bit_1 ≝ get_index_v… nu 1 ? in
1367    let bit_2 ≝ get_index_v… nu 2 ? in
1368    let bit_3 ≝ get_index_v… nu 3 ? in
1369      if bit_zero then
1370        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1371                              v (low_internal_ram ? s) in
1372          set_low_internal_ram ? s memory
1373      else
1374        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1375                              v (high_internal_ram ? s) in
1376          set_high_internal_ram ? s memory.
1377  [ cases l0 %
1378  |2,3,4,5: normalize repeat (@ le_S_S) @ le_O_n ]
1379qed.
1380
1381definition execute_1_pseudo_instruction': (Word → nat) → ∀ps:PseudoStatus.
1382 Σps':PseudoStatus.(code_memory … ps = code_memory … ps')
1383
1384  λticks_of.
1385  λs.
1386  let 〈instr, pc〉 ≝ fetch_pseudo_instruction (\snd (code_memory ? s)) (program_counter ? s) in
1387  let ticks ≝ ticks_of (program_counter ? s) in
1388  let s ≝ set_clock ? s (clock ? s + ticks) in
1389  let s ≝ set_program_counter ? s pc in
1390    match instr with
1391    [ Instruction instr ⇒
1392       execute_1_preinstruction … (λx, y. address_of_word_labels y x) instr s
1393    | Comment cmt ⇒ s
1394    | Cost cst ⇒ s
1395    | Jmp jmp ⇒ set_program_counter ? s (address_of_word_labels s jmp)
1396    | Call call ⇒
1397      let a ≝ address_of_word_labels s call in
1398      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1399      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1400      let 〈pc_bu, pc_bl〉 ≝ split ? 8 8 (program_counter ? s) in
1401      let s ≝ write_at_stack_pointer' ? s pc_bl in
1402      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1403      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1404      let s ≝ write_at_stack_pointer' ? s pc_bu in
1405        set_program_counter ? s a
1406    | Mov dptr ident ⇒
1407       set_arg_16 ? s (get_arg_16 ? s (DATA16 (address_of_word_labels s ident))) dptr
1408    ].
1409 [
1410 |2,3,4: %
1411 | <(sig2 … l7) whd in ⊢ (??? (??%)) <(sig2 … l5) %
1412 |
1413 | %
1414 ]
1415 cases not_implemented
1416qed.
1417
1418(*
1419lemma execute_code_memory_unchanged:
1420 ∀ticks_of,ps. code_memory ? ps = code_memory ? (execute_1_pseudo_instruction ticks_of ps).
1421 #ticks #ps whd in ⊢ (??? (??%))
1422 cases (fetch_pseudo_instruction (\snd (code_memory pseudo_assembly_program ps))
1423  (program_counter pseudo_assembly_program ps)) #instr #pc
1424 whd in ⊢ (??? (??%)) cases instr
1425  [ #pre cases pre
1426     [ #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1427       cases (split ????) #z1 #z2 %
1428     | #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1429       cases (split ????) #z1 #z2 %
1430     | #a1 #a2 whd in ⊢ (??? (??%)) cases (sub_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1431       cases (split ????) #z1 #z2 %
1432     | #a1 whd in ⊢ (??? (??%)) cases a1 #x #H whd in ⊢ (??? (??%)) cases x
1433       [ #x1 whd in ⊢ (??? (??%))
1434     | *: cases not_implemented
1435     ]
1436  | #comment %
1437  | #cost %
1438  | #label %
1439  | #label whd in ⊢ (??? (??%)) cases (half_add ???) #x1 #x2 whd in ⊢ (??? (??%))
1440    cases (split ????) #y1 #y2 whd in ⊢ (??? (??%)) cases (half_add ???) #z1 #z2
1441    whd in ⊢ (??? (??%)) whd in ⊢ (??? (??%)) cases (split ????) #w1 #w2
1442    whd in ⊢ (??? (??%)) cases (get_index_v bool ????) whd in ⊢ (??? (??%))
1443    (* CSC: ??? *)
1444  | #dptr #label (* CSC: ??? *)
1445  ]
1446  cases not_implemented
1447qed.
1448*)
1449
1450lemma status_of_pseudo_status_failure_depends_only_on_code_memory:
1451 ∀ps,ps': PseudoStatus.
1452  code_memory … ps = code_memory … ps' →
1453   match status_of_pseudo_status ps with
1454    [ None ⇒ status_of_pseudo_status ps' = None …
1455    | Some _ ⇒ ∃w. status_of_pseudo_status ps' = Some … w
1456    ].
1457 #ps #ps' #H whd in ⊢ (mat
1458 ch % with [ _ ⇒ ? | _ ⇒ ? ])
1459 generalize in match (refl … (assembly (code_memory … ps)))
1460 cases (assembly ?) in ⊢ (???% → %)
1461  [ #K whd whd in ⊢ (??%?) <H >K %
1462  | #x #K whd whd in ⊢ (?? (λ_.??%?)) <H >K % [2: % ] ]
1463qed.*)
1464
1465let rec encoding_check' (code_memory: BitVectorTrie Byte 16) (pc: Word) (encoding: list Byte) on encoding: Prop ≝
1466  match encoding with
1467  [ nil ⇒ True
1468  | cons hd tl ⇒
1469    let 〈new_pc, byte〉 ≝ next code_memory pc in
1470      hd = byte ∧ encoding_check' code_memory new_pc tl
1471  ].
1472 
1473lemma main_thm:
1474 ∀ticks_of.
1475 ∀ps: PseudoStatus.
1476  match status_of_pseudo_status ps with [ None ⇒ True | Some s ⇒
1477  let ps' ≝ execute_1_pseudo_instruction ticks_of ps in
1478  match status_of_pseudo_status ps' with [ None ⇒ True | Some s'' ⇒
1479  let s' ≝ execute_1 s in
1480   s = s'']].
1481 #ticks_of #ps
1482 whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ? ])
1483 cases (assembly (code_memory pseudo_assembly_program ps)) [%] * #cm #costs whd
1484 whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ? ])
1485 generalize in match (sig2 … (execute_1_pseudo_instruction' ticks_of ps))
1486 
1487 cases (status_of_pseudo_status (execute_1_pseudo_instruction ticks_of ps)) [%] #s'' whd
Note: See TracBrowser for help on using the repository browser.