# source:src/ASM/AssemblyProof.ma@1957

Last change on this file since 1957 was 1957, checked in by mulligan, 8 years ago

Stitching proofs back together after slight change in statement of assembly_ok.

File size: 73.2 KB
Line
1include "ASM/Assembly.ma".
2include "ASM/Interpret.ma".
3include "ASM/StatusProofs.ma".
4include alias "arithmetics/nat.ma".
5
6definition bit_elim_prop: ∀P: bool → Prop. Prop ≝
7  λP.
8    P true ∧ P false.
9
10let rec bitvector_elim_prop_internal
11  (n: nat) (P: BitVector n → Prop) (m: nat)
12    on m:
13      m ≤ n → BitVector (n - m) → Prop ≝
14  match m return λm. m ≤ n → BitVector (n - m) → Prop with
15  [ O    ⇒ λprf1. λprefix. P ?
16  | S n' ⇒ λprf2. λprefix.
17      bit_elim_prop (λbit. bitvector_elim_prop_internal n P n' …)
18  ].
19  try applyS prefix
20  try (@le_S_to_le assumption)
21  letin res ≝ (bit ::: prefix)
22  <minus_S_S >minus_Sn_m
23  assumption
24qed.
25
26definition bitvector_elim_prop ≝
27  λn: nat.
28  λP: BitVector n → Prop.
29    bitvector_elim_prop_internal n P n ? ?.
30  try @le_n
31  <minus_n_n @[[ ]]
32qed.
33
34lemma bool_eq_internal_eq:
35  ∀b, c.
36    (λb. λc. (if b then c else (if c then false else true))) b c = true → b = c.
37  #b #c
38  cases b cases c normalize nodelta
39  try (#_ % @I)
40  #assm destruct %
41qed.
42
43definition bit_elim: ∀P: bool → bool. bool ≝
44  λP.
45    P true ∧ P false.
46
47let rec bitvector_elim_internal
48  (n: nat) (P: BitVector n → bool) (m: nat)
49    on m:
50      m ≤ n → BitVector (n - m) → bool ≝
51  match m return λm. m ≤ n → BitVector (n - m) → bool with
52  [ O    ⇒ λprf1. λprefix. P ?
53  | S n' ⇒ λprf2. λprefix. bit_elim (λbit. bitvector_elim_internal n P n' ? ?)
54  ].
55  /2/
56qed.
57
58definition bitvector_elim ≝
59  λn: nat.
60  λP: BitVector n → bool.
61    bitvector_elim_internal n P n ? ?.
62  try @le_n
63  <minus_n_n @[[]]
64qed.
65
66lemma super_rewrite2:
67  ∀A:Type[0].
68  ∀n, m: nat.
69  ∀v1: Vector A n.
70  ∀v2: Vector A m.
71  ∀P: ∀m. Vector A m → Prop.
72    n = m → v1 ≃ v2 → P n v1 → P m v2.
73  #A #n #m #v1 #v2 #P #eq #jmeq
74  destruct #assm assumption
75qed.
76
77lemma vector_cons_append:
78  ∀A: Type[0].
79  ∀n: nat.
80  ∀e: A.
81  ∀v: Vector A n.
82    e ::: v = [[ e ]] @@ v.
83  #A #n #e #v
84  cases v try %
85  #n' #hd #tl %
86qed.
87
88lemma vector_cons_append2:
89  ∀A: Type[0].
90  ∀n, m: nat.
91  ∀v: Vector A n.
92  ∀q: Vector A m.
93  ∀hd: A.
94    hd:::(v@@q) = (hd:::v)@@q.
95  #A #n #m #v #q
96  elim v try (#hd %)
97  #n' #hd' #tl' #ih #hd'
98  <ih %
99qed.
100
101lemma jmeq_cons_vector_monotone:
102  ∀A: Type[0].
103  ∀m, n: nat.
104  ∀v: Vector A m.
105  ∀q: Vector A n.
106  ∀prf: m = n.
107  ∀hd: A.
108    v ≃ q → hd:::v ≃ hd:::q.
109  #A #m #n #v #q #prf #hd #E
110  @(super_rewrite2 A … E)
111  try assumption %
112qed.
113
114lemma vector_associative_append:
115  ∀A: Type[0].
116  ∀n, m, o:  nat.
117  ∀v: Vector A n.
118  ∀q: Vector A m.
119  ∀r: Vector A o.
120    (v @@ q) @@ r ≃ v @@ (q @@ r).
121  #A #n #m #o #v #q #r
122  elim v try %
123  #n' #hd #tl #ih
124  <(vector_cons_append2 A … hd)
125  @jmeq_cons_vector_monotone
126  try assumption
127  @associative_plus
128qed.
129
130lemma mem_middle_vector:
131  ∀A: Type[0].
132  ∀m, o: nat.
133  ∀eq: A → A → bool.
134  ∀reflex: ∀a. eq a a = true.
135  ∀p: Vector A m.
136  ∀a: A.
137  ∀r: Vector A o.
138    mem A eq ? (p@@(a:::r)) a = true.
139  #A #m #o #eq #reflex #p #a
140  elim p try (normalize >reflex #H %)
141  #m' #hd #tl #inductive_hypothesis
142  normalize
143  cases (eq ??) normalize nodelta
144  try (#irrelevant %)
145  @inductive_hypothesis
146qed.
147
148lemma mem_monotonic_wrt_append:
149  ∀A: Type[0].
150  ∀m, o: nat.
151  ∀eq: A → A → bool.
152  ∀reflex: ∀a. eq a a = true.
153  ∀p: Vector A m.
154  ∀a: A.
155  ∀r: Vector A o.
156    mem A eq ? r a = true → mem A eq ? (p @@ r) a = true.
157  #A #m #o #eq #reflex #p #a
158  elim p try (#r #assm assumption)
159  #m' #hd #tl #inductive_hypothesis #r #assm
160  normalize
161  cases (eq ??) try %
162  @inductive_hypothesis assumption
163qed.
164
165lemma subvector_multiple_append:
166  ∀A: Type[0].
167  ∀o, n: nat.
168  ∀eq: A → A → bool.
169  ∀refl: ∀a. eq a a = true.
170  ∀h: Vector A o.
171  ∀v: Vector A n.
172  ∀m: nat.
173  ∀q: Vector A m.
174    bool_to_Prop (subvector_with A ? ? eq v (h @@ q @@ v)).
175  #A #o #n #eq #reflex #h #v
176  elim v try (normalize #m #irrelevant @I)
177  #m' #hd #tl #inductive_hypothesis #m #q
178  change with (bool_to_Prop (andb ??))
179  cut ((mem A eq (o + (m + S m')) (h@@q@@hd:::tl) hd) = true)
180  [1:
181    @mem_monotonic_wrt_append try assumption
182    @mem_monotonic_wrt_append try assumption
183    normalize >reflex %
184  |2:
185    #assm >assm
186    >vector_cons_append
187    change with (bool_to_Prop (subvector_with ??????))
188    @(super_rewrite2 … (vector_associative_append … q [[hd]] tl))
189    try @associative_plus
190    @inductive_hypothesis
191  ]
192qed.
193
194lemma vector_cons_empty:
195  ∀A: Type[0].
196  ∀n: nat.
197  ∀v: Vector A n.
198    [[ ]] @@ v = v.
199  #A #n #v
200  cases v try %
201  #n' #hd #tl %
202qed.
203
204corollary subvector_hd_tl:
205  ∀A: Type[0].
206  ∀o: nat.
207  ∀eq: A → A → bool.
208  ∀refl: ∀a. eq a a = true.
209  ∀h: A.
210  ∀v: Vector A o.
211    bool_to_Prop (subvector_with A ? ? eq v (h ::: v)).
212  #A #o #eq #reflex #h #v
213  >(vector_cons_append … h v)
214  <(vector_cons_empty … ([[h]] @@ v))
215  @(subvector_multiple_append … eq reflex [[ ]] v ? [[h]])
216qed.
217
218lemma eq_a_reflexive:
219  ∀a. eq_a a a = true.
220  #a cases a %
221qed.
222
223lemma is_in_monotonic_wrt_append:
224  ∀m, n: nat.
228    bool_to_Prop (is_in ? p to_search) → bool_to_Prop (is_in ? (q @@ p) to_search).
229  #m #n #p #q #to_search #assm
230  elim q try assumption
231  #n' #hd #tl #inductive_hypothesis
232  normalize
233  cases (is_a ??) try @I
234  >inductive_hypothesis @I
235qed.
236
237corollary is_in_hd_tl:
240  ∀n: nat.
242    bool_to_Prop (is_in ? v to_search) → bool_to_Prop (is_in ? (hd:::v) to_search).
243  #to_search #hd #n #v
244  elim v
245  [1:
246    #absurd
247    normalize in absurd; cases absurd
248  |2:
249    #n' #hd' #tl #inductive_hypothesis #assm
250    >vector_cons_append >(vector_cons_append … hd' tl)
251    @(is_in_monotonic_wrt_append … ([[hd']]@@tl) [[hd]] to_search)
252    assumption
253  ]
254qed.
255
257  (n: nat) (l: Vector addressing_mode_tag (S n))
258    on l: (l → bool) → bool ≝
259  match l return λx.
260    match x with
261    [ O ⇒ λl: Vector … O. bool
262    | S x' ⇒ λl: Vector addressing_mode_tag (S x'). (l → bool) → bool
263    ] with
264  [ VEmpty      ⇒  true
265  | VCons len hd tl ⇒ λP.
266    let process_hd ≝
267      match hd return λhd. ∀P: hd:::tl → bool. bool with
268      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
269      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
270      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
271      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
272      | acc_a ⇒ λP.P ACC_A
273      | acc_b ⇒ λP.P ACC_B
274      | dptr ⇒ λP.P DPTR
275      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
276      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
277      | acc_dptr ⇒ λP.P ACC_DPTR
278      | acc_pc ⇒ λP.P ACC_PC
279      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
280      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
281      | carry ⇒ λP.P CARRY
284      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
287      ]
288    in
289      andb (process_hd P)
290       (match len return λx. x = len → bool with
291         [ O ⇒ λprf. true
292         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
293  ].
294  try %
295  [2:
296    cases (sym_eq ??? prf); assumption
297  |1:
298    generalize in match H; generalize in match tl;
299    destruct #tl
300    normalize in ⊢ (∀_: %. ?);
301    #H
302    whd normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?]);
303    cases (is_a hd (subaddressing_modeel y tl H))
304    whd try @I normalize nodelta //
305  ]
306qed.
307
308definition product_elim ≝
309  λm, n: nat.
310  λv: Vector addressing_mode_tag (S m).
311  λq: Vector addressing_mode_tag (S n).
312  λP: (v × q) → bool.
313    list_addressing_mode_tags_elim ? v (λx. list_addressing_mode_tags_elim ? q (λy. P 〈x, y〉)).
314
315definition union_elim ≝
316  λA, B: Type[0].
317  λelimA: (A → bool) → bool.
318  λelimB: (B → bool) → bool.
319  λelimU: A ⊎ B → bool.
320    elimA (λa. elimB (λb. elimU (inl ? ? a) ∧ elimU (inr ? ? b))).
321
322(*
323definition preinstruction_elim: ∀P: preinstruction [[ relative ]] → bool. bool ≝
324  λP.
327    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (SUBB ? ACC_A addr)) ∧
328    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ; dptr ]] (λaddr. P (INC ? addr)) ∧
329    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ]] (λaddr. P (DEC ? addr)) ∧
332    list_addressing_mode_tags_elim ? [[ registr ; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
335    P (DA ? ACC_A) ∧
336    bitvector_elim 8 (λr. P (JC ? (RELATIVE r))) ∧
337    bitvector_elim 8 (λr. P (JNC ? (RELATIVE r))) ∧
338    bitvector_elim 8 (λr. P (JZ ? (RELATIVE r))) ∧
339    bitvector_elim 8 (λr. P (JNZ ? (RELATIVE r))) ∧
340    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JB ? (BIT_ADDR b) (RELATIVE r))))) ∧
341    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JNB ? (BIT_ADDR b) (RELATIVE r))))) ∧
342    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JBC ? (BIT_ADDR b) (RELATIVE r))))) ∧
343    list_addressing_mode_tags_elim ? [[ registr; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
344    P (RL ? ACC_A) ∧
345    P (RLC ? ACC_A) ∧
346    P (RR ? ACC_A) ∧
347    P (RRC ? ACC_A) ∧
348    P (SWAP ? ACC_A) ∧
349    P (RET ?) ∧
350    P (RETI ?) ∧
351    P (NOP ?) ∧
352    bit_elim (λb. P (XCHD ? ACC_A (INDIRECT b))) ∧
356    union_elim ? ? (product_elim ? ? [[ acc_a ]] [[ direct; data ]])
357                   (product_elim ? ? [[ registr; indirect ]] [[ data ]])
358                   (λd. bitvector_elim 8 (λb. P (CJNE ? d (RELATIVE b)))) ∧
360    union_elim ? ? (product_elim ? ? [[acc_a]] [[ data ; registr ; direct ; indirect ]])
361                   (product_elim ? ? [[direct]] [[ acc_a ; data ]])
362                   (λd. P (XRL ? d)) ∧
363    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
364                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
366                   (λd. P (ANL ? d)) ∧
367    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; data ; direct ; indirect ]])
368                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
370                   (λd. P (ORL ? d)) ∧
371    union_elim ? ? (product_elim ? ? [[acc_a]] [[ ext_indirect ; ext_indirect_dptr ]])
372                   (product_elim ? ? [[ ext_indirect ; ext_indirect_dptr ]] [[acc_a]])
373                   (λd. P (MOVX ? d)) ∧
374    union_elim ? ? (
375      union_elim ? ? (
376        union_elim ? ? (
377          union_elim ? ? (
378            union_elim ? ?  (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
379                            (product_elim ? ? [[ registr ; indirect ]] [[ acc_a ; direct ; data ]]))
380                            (product_elim ? ? [[direct]] [[ acc_a ; registr ; direct ; indirect ; data ]]))
381                            (product_elim ? ? [[dptr]] [[data16]]))
382                            (product_elim ? ? [[carry]] [[bit_addr]]))
383                            (product_elim ? ? [[bit_addr]] [[carry]])
384                            (λd. P (MOV ? d)).
385  %
386qed.
387
388definition instruction_elim: ∀P: instruction → bool. bool ≝
389  λP. (*
390    bitvector_elim 11 (λx. P (ACALL (ADDR11 x))) ∧
391    bitvector_elim 16 (λx. P (LCALL (ADDR16 x))) ∧
392    bitvector_elim 11 (λx. P (AJMP (ADDR11 x))) ∧
393    bitvector_elim 16 (λx. P (LJMP (ADDR16 x))) ∧ *)
394    bitvector_elim 8 (λx. P (SJMP (RELATIVE x))). (*  ∧
395    P (JMP INDIRECT_DPTR) ∧
396    list_addressing_mode_tags_elim ? [[ acc_dptr; acc_pc ]] (λa. P (MOVC ACC_A a)) ∧
397    preinstruction_elim (λp. P (RealInstruction p)). *)
398  %
399qed.
400
401
402axiom instruction_elim_complete:
403 ∀P. instruction_elim P = true → ∀i. P i = true.
404*)
405(*definition eq_instruction ≝
406  λi, j: instruction.
407    true.*)
408
411  match a with
412  [ DIRECT d ⇒
413    match b with
414    [ DIRECT e ⇒ eq_bv ? d e
415    | _ ⇒ false
416    ]
417  | INDIRECT b' ⇒
418    match b with
419    [ INDIRECT e ⇒ eq_b b' e
420    | _ ⇒ false
421    ]
422  | EXT_INDIRECT b' ⇒
423    match b with
424    [ EXT_INDIRECT e ⇒ eq_b b' e
425    | _ ⇒ false
426    ]
427  | REGISTER bv ⇒
428    match b with
429    [ REGISTER bv' ⇒ eq_bv ? bv bv'
430    | _ ⇒ false
431    ]
432  | ACC_A ⇒ match b with [ ACC_A ⇒ true | _ ⇒ false ]
433  | ACC_B ⇒ match b with [ ACC_B ⇒ true | _ ⇒ false ]
434  | DPTR ⇒ match b with [ DPTR ⇒ true | _ ⇒ false ]
435  | DATA b' ⇒
436    match b with
437    [ DATA e ⇒ eq_bv ? b' e
438    | _ ⇒ false
439    ]
440  | DATA16 w ⇒
441    match b with
442    [ DATA16 e ⇒ eq_bv ? w e
443    | _ ⇒ false
444    ]
445  | ACC_DPTR ⇒ match b with [ ACC_DPTR ⇒ true | _ ⇒ false ]
446  | ACC_PC ⇒ match b with [ ACC_PC ⇒ true | _ ⇒ false ]
447  | EXT_INDIRECT_DPTR ⇒ match b with [ EXT_INDIRECT_DPTR ⇒ true | _ ⇒ false ]
448  | INDIRECT_DPTR ⇒ match b with [ INDIRECT_DPTR ⇒ true | _ ⇒ false ]
449  | CARRY ⇒ match b with [ CARRY ⇒ true | _ ⇒ false ]
451    match b with
452    [ BIT_ADDR e ⇒ eq_bv ? b' e
453    | _ ⇒ false
454    ]
456    match b with
457    [ N_BIT_ADDR e ⇒ eq_bv ? b' e
458    | _ ⇒ false
459    ]
460  | RELATIVE n ⇒
461    match b with
462    [ RELATIVE e ⇒ eq_bv ? n e
463    | _ ⇒ false
464    ]
466    match b with
467    [ ADDR11 e ⇒ eq_bv ? w e
468    | _ ⇒ false
469    ]
471    match b with
472    [ ADDR16 e ⇒ eq_bv ? w e
473    | _ ⇒ false
474    ]
475  ].
476
477lemma eq_bv_refl:
478  ∀n, b.
479    eq_bv n b b = true.
480  #n #b cases b //
481qed.
482
483lemma eq_b_refl:
484  ∀b.
485    eq_b b b = true.
486  #b cases b //
487qed.
488
490  ∀a. eq_addressing_mode a a = true.
491  #a
492  cases a try #arg1 try #arg2
493  try @eq_bv_refl try @eq_b_refl
494  try normalize %
495qed.
496
497definition eq_sum:
498    ∀A, B. (A → A → bool) → (B → B → bool) → (A ⊎ B) → (A ⊎ B) → bool ≝
499  λlt, rt, leq, req, left, right.
500    match left with
501    [ inl l ⇒
502      match right with
503      [ inl l' ⇒ leq l l'
504      | _ ⇒ false
505      ]
506    | inr r ⇒
507      match right with
508      [ inr r' ⇒ req r r'
509      | _ ⇒ false
510      ]
511    ].
512
513definition eq_prod: ∀A, B. (A → A → bool) → (B → B → bool) → (A × B) → (A × B) → bool ≝
514  λlt, rt, leq, req, left, right.
515    let 〈l, r〉 ≝ left in
516    let 〈l', r'〉 ≝ right in
517      leq l l' ∧ req r r'.
518
519definition eq_preinstruction: preinstruction [[relative]] → preinstruction [[relative]] → bool ≝
520  λi, j.
521  match i with
522  [ ADD arg1 arg2 ⇒
523    match j with
525    | _ ⇒ false
526    ]
527  | ADDC arg1 arg2 ⇒
528    match j with
530    | _ ⇒ false
531    ]
532  | SUBB arg1 arg2 ⇒
533    match j with
534    [ SUBB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
535    | _ ⇒ false
536    ]
537  | INC arg ⇒
538    match j with
539    [ INC arg' ⇒ eq_addressing_mode arg arg'
540    | _ ⇒ false
541    ]
542  | DEC arg ⇒
543    match j with
544    [ DEC arg' ⇒ eq_addressing_mode arg arg'
545    | _ ⇒ false
546    ]
547  | MUL arg1 arg2 ⇒
548    match j with
549    [ MUL arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
550    | _ ⇒ false
551    ]
552  | DIV arg1 arg2 ⇒
553    match j with
554    [ DIV arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
555    | _ ⇒ false
556    ]
557  | DA arg ⇒
558    match j with
559    [ DA arg' ⇒ eq_addressing_mode arg arg'
560    | _ ⇒ false
561    ]
562  | JC arg ⇒
563    match j with
564    [ JC arg' ⇒ eq_addressing_mode arg arg'
565    | _ ⇒ false
566    ]
567  | JNC arg ⇒
568    match j with
569    [ JNC arg' ⇒ eq_addressing_mode arg arg'
570    | _ ⇒ false
571    ]
572  | JB arg1 arg2 ⇒
573    match j with
574    [ JB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
575    | _ ⇒ false
576    ]
577  | JNB arg1 arg2 ⇒
578    match j with
579    [ JNB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
580    | _ ⇒ false
581    ]
582  | JBC arg1 arg2 ⇒
583    match j with
584    [ JBC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
585    | _ ⇒ false
586    ]
587  | JZ arg ⇒
588    match j with
589    [ JZ arg' ⇒ eq_addressing_mode arg arg'
590    | _ ⇒ false
591    ]
592  | JNZ arg ⇒
593    match j with
594    [ JNZ arg' ⇒ eq_addressing_mode arg arg'
595    | _ ⇒ false
596    ]
597  | CJNE arg1 arg2 ⇒
598    match j with
599    [ CJNE arg1' arg2' ⇒
602      let arg1_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
603        arg1_eq arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
604    | _ ⇒ false
605    ]
606  | DJNZ arg1 arg2 ⇒
607    match j with
608    [ DJNZ arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
609    | _ ⇒ false
610    ]
611  | CLR arg ⇒
612    match j with
613    [ CLR arg' ⇒ eq_addressing_mode arg arg'
614    | _ ⇒ false
615    ]
616  | CPL arg ⇒
617    match j with
618    [ CPL arg' ⇒ eq_addressing_mode arg arg'
619    | _ ⇒ false
620    ]
621  | RL arg ⇒
622    match j with
623    [ RL arg' ⇒ eq_addressing_mode arg arg'
624    | _ ⇒ false
625    ]
626  | RLC arg ⇒
627    match j with
628    [ RLC arg' ⇒ eq_addressing_mode arg arg'
629    | _ ⇒ false
630    ]
631  | RR arg ⇒
632    match j with
633    [ RR arg' ⇒ eq_addressing_mode arg arg'
634    | _ ⇒ false
635    ]
636  | RRC arg ⇒
637    match j with
638    [ RRC arg' ⇒ eq_addressing_mode arg arg'
639    | _ ⇒ false
640    ]
641  | SWAP arg ⇒
642    match j with
643    [ SWAP arg' ⇒ eq_addressing_mode arg arg'
644    | _ ⇒ false
645    ]
646  | SETB arg ⇒
647    match j with
648    [ SETB arg' ⇒ eq_addressing_mode arg arg'
649    | _ ⇒ false
650    ]
651  | PUSH arg ⇒
652    match j with
653    [ PUSH arg' ⇒ eq_addressing_mode arg arg'
654    | _ ⇒ false
655    ]
656  | POP arg ⇒
657    match j with
658    [ POP arg' ⇒ eq_addressing_mode arg arg'
659    | _ ⇒ false
660    ]
661  | XCH arg1 arg2 ⇒
662    match j with
663    [ XCH arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
664    | _ ⇒ false
665    ]
666  | XCHD arg1 arg2 ⇒
667    match j with
668    [ XCHD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
669    | _ ⇒ false
670    ]
671  | RET ⇒ match j with [ RET ⇒ true | _ ⇒ false ]
672  | RETI ⇒ match j with [ RETI ⇒ true | _ ⇒ false ]
673  | NOP ⇒ match j with [ NOP ⇒ true | _ ⇒ false ]
674  | MOVX arg ⇒
675    match j with
676    [ MOVX arg' ⇒
679      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
680        sum_eq arg arg'
681    | _ ⇒ false
682    ]
683  | XRL arg ⇒
684    match j with
685    [ XRL arg' ⇒
686      let prod_eq_left ≝ eq_prod [[acc_a]] [[ data ; registr ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
687      let prod_eq_right ≝ eq_prod [[direct]] [[ acc_a ; data ]] eq_addressing_mode eq_addressing_mode in
688      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
689        sum_eq arg arg'
690    | _ ⇒ false
691    ]
692  | ORL arg ⇒
693    match j with
694    [ ORL arg' ⇒
695      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; data ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
696      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
697      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
699      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
700        sum_eq arg arg'
701    | _ ⇒ false
702    ]
703  | ANL arg ⇒
704    match j with
705    [ ANL arg' ⇒
706      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; direct ; indirect ; data ]] eq_addressing_mode eq_addressing_mode in
707      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
708      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
710      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
711        sum_eq arg arg'
712    | _ ⇒ false
713    ]
714  | MOV arg ⇒
715    match j with
716    [ MOV arg' ⇒
717      let prod_eq_6 ≝ eq_prod [[acc_a]] [[registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
718      let prod_eq_5 ≝ eq_prod [[registr; indirect]] [[acc_a; direct; data]] eq_addressing_mode eq_addressing_mode in
719      let prod_eq_4 ≝ eq_prod [[direct]] [[acc_a; registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
723      let sum_eq_1 ≝ eq_sum ? ? prod_eq_6 prod_eq_5 in
724      let sum_eq_2 ≝ eq_sum ? ? sum_eq_1 prod_eq_4 in
725      let sum_eq_3 ≝ eq_sum ? ? sum_eq_2 prod_eq_3 in
726      let sum_eq_4 ≝ eq_sum ? ? sum_eq_3 prod_eq_2 in
727      let sum_eq_5 ≝ eq_sum ? ? sum_eq_4 prod_eq_1 in
728        sum_eq_5 arg arg'
729    | _ ⇒ false
730    ]
731  ].
732
733lemma eq_sum_refl:
734  ∀A, B: Type[0].
735  ∀leq, req.
736  ∀s.
737  ∀leq_refl: (∀t. leq t t = true).
738  ∀req_refl: (∀u. req u u = true).
739    eq_sum A B leq req s s = true.
740  #A #B #leq #req #s #leq_refl #req_refl
741  cases s assumption
742qed.
743
744lemma eq_prod_refl:
745  ∀A, B: Type[0].
746  ∀leq, req.
747  ∀s.
748  ∀leq_refl: (∀t. leq t t = true).
749  ∀req_refl: (∀u. req u u = true).
750    eq_prod A B leq req s s = true.
751  #A #B #leq #req #s #leq_refl #req_refl
752  cases s
753  whd in ⊢ (? → ? → ??%?);
754  #l #r
755  >leq_refl @req_refl
756qed.
757
758lemma eq_preinstruction_refl:
759  ∀i.
760    eq_preinstruction i i = true.
761  #i cases i try #arg1 try #arg2
763  [1,2,3,4,5,6,7,8,10,16,17,18,19,20:
764    whd in ⊢ (??%?); try %
767  |13,15:
768    whd in ⊢ (??%?);
769    cases arg1
770    [*:
771      #arg1_left normalize nodelta
772      >eq_prod_refl [*: try % #argr @eq_addressing_mode_refl]
773    ]
774  |11,12:
775    whd in ⊢ (??%?);
776    cases arg1
777    [1:
778      #arg1_left normalize nodelta
779      >(eq_sum_refl …)
780      [1: % | 2,3: #arg @eq_prod_refl ]
782    |2:
783      #arg1_left normalize nodelta
785    |3:
786      #arg1_left normalize nodelta
787      >(eq_sum_refl …)
788      [1:
789        %
790      |2,3:
792      ]
793    |4:
794      #arg1_left normalize nodelta
795      @eq_prod_refl [*: #arg @eq_addressing_mode_refl ]
796    ]
797  |14:
798    whd in ⊢ (??%?);
799    cases arg1
800    [1:
801      #arg1_left normalize nodelta
802      @eq_sum_refl
803      [1:
804        #arg @eq_sum_refl
805        [1:
806          #arg @eq_sum_refl
807          [1:
808            #arg @eq_sum_refl
809            [1:
810              #arg @eq_prod_refl
811              [*:
813              ]
814            |2:
815              #arg @eq_prod_refl
816              [*:
818              ]
819            ]
820          |2:
821            #arg @eq_prod_refl
822            [*:
824            ]
825          ]
826        |2:
827          #arg @eq_prod_refl
828          [*:
830          ]
831        ]
832      |2:
833        #arg @eq_prod_refl
834        [*:
836        ]
837      ]
838    |2:
839      #arg1_right normalize nodelta
840      @eq_prod_refl
841      [*:
843      ]
844    ]
845  |*:
846    whd in ⊢ (??%?);
847    cases arg1
848    [*:
849      #arg1 >eq_sum_refl
850      [1,4:
852      |2,3,5,6:
853        #arg @eq_prod_refl
854        [*:
856        ]
857      ]
858    ]
859  ]
860qed.
861
862definition eq_instruction: instruction → instruction → bool ≝
863  λi, j.
864  match i with
865  [ ACALL arg ⇒
866    match j with
867    [ ACALL arg' ⇒ eq_addressing_mode arg arg'
868    | _ ⇒ false
869    ]
870  | LCALL arg ⇒
871    match j with
872    [ LCALL arg' ⇒ eq_addressing_mode arg arg'
873    | _ ⇒ false
874    ]
875  | AJMP arg ⇒
876    match j with
877    [ AJMP arg' ⇒ eq_addressing_mode arg arg'
878    | _ ⇒ false
879    ]
880  | LJMP arg ⇒
881    match j with
882    [ LJMP arg' ⇒ eq_addressing_mode arg arg'
883    | _ ⇒ false
884    ]
885  | SJMP arg ⇒
886    match j with
887    [ SJMP arg' ⇒ eq_addressing_mode arg arg'
888    | _ ⇒ false
889    ]
890  | JMP arg ⇒
891    match j with
892    [ JMP arg' ⇒ eq_addressing_mode arg arg'
893    | _ ⇒ false
894    ]
895  | MOVC arg1 arg2 ⇒
896    match j with
897    [ MOVC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
898    | _ ⇒ false
899    ]
900  | RealInstruction instr ⇒
901    match j with
902    [ RealInstruction instr' ⇒ eq_preinstruction instr instr'
903    | _ ⇒ false
904    ]
905  ].
906
907lemma eq_instruction_refl:
908  ∀i. eq_instruction i i = true.
909  #i cases i [*: #arg1 ]
911  try @eq_preinstruction_refl
912  #arg2 whd in ⊢ (??%?);
914qed.
915
916let rec vect_member
917  (A: Type[0]) (n: nat) (eq: A → A → bool) (v: Vector A n) (a: A)
918    on v: bool ≝
919  match v with
920  [ VEmpty          ⇒ false
921  | VCons len hd tl ⇒
922      eq hd a ∨ (vect_member A ? eq tl a)
923  ].
924
926  (n: nat)
927  (l: Vector addressing_mode_tag (S n))
928  on l:
929  ∀P: l → Prop.
930  ∀direct_a. ∀indirect_a. ∀ext_indirect_a. ∀register_a. ∀acc_a_a.
931  ∀acc_b_a. ∀dptr_a. ∀data_a. ∀data16_a. ∀acc_dptr_a. ∀acc_pc_a.
934  ∀x: l. P x ≝
935  match l return
936    λy.
937      match y with
938      [ O    ⇒ λm: Vector addressing_mode_tag O. ∀prf: 0 = S n. True
939      | S y' ⇒ λl: Vector addressing_mode_tag (S y'). ∀prf: S y' = S n.∀P:l → Prop.
940               ∀direct_a: if vect_member … eq_a l direct then ∀x. P (DIRECT x) else True.
941               ∀indirect_a: if vect_member … eq_a l indirect then ∀x. P (INDIRECT x) else True.
942               ∀ext_indirect_a: if vect_member … eq_a l ext_indirect then ∀x. P (EXT_INDIRECT x) else True.
943               ∀register_a: if vect_member … eq_a l registr then ∀x. P (REGISTER x) else True.
944               ∀acc_a_a: if vect_member … eq_a l acc_a then P (ACC_A) else True.
945               ∀acc_b_a: if vect_member … eq_a l acc_b then P (ACC_B) else True.
946               ∀dptr_a: if vect_member … eq_a l dptr then P DPTR else True.
947               ∀data_a: if vect_member … eq_a l data then ∀x. P (DATA x) else True.
948               ∀data16_a: if vect_member … eq_a l data16 then ∀x. P (DATA16 x) else True.
949               ∀acc_dptr_a: if vect_member … eq_a l acc_dptr then P ACC_DPTR else True.
950               ∀acc_pc_a: if vect_member … eq_a l acc_pc then P ACC_PC else True.
951               ∀ext_indirect_dptr_a: if vect_member … eq_a l ext_indirect_dptr then P EXT_INDIRECT_DPTR else True.
952               ∀indirect_dptr_a: if vect_member … eq_a l indirect_dptr then P INDIRECT_DPTR else True.
953               ∀carry_a: if vect_member … eq_a l carry then P CARRY else True.
956               ∀relative_a: if vect_member … eq_a l relative then ∀x. P (RELATIVE x) else True.
959               ∀x:l. P x
960      ] with
961  [ VEmpty          ⇒ λAbsurd. ⊥
962  | VCons len hd tl ⇒ λProof. ?
963  ] (refl ? (S n)). cases daemon. qed. (*
964  [ destruct(Absurd)
965  | # A1 # A2 # A3 # A4 # A5 # A6 # A7
966    # A8 # A9 # A10 # A11 # A12 # A13 # A14
967    # A15 # A16 # A17 # A18 # A19 # X
968    cases X
969    # SUB cases daemon ] qed.
970    cases SUB
971    [ # BYTE
972    normalize
973  ].
974
975
976(*    let prepare_hd ≝
977      match hd with
978      [ direct ⇒ λdirect_prf. ?
979      | indirect ⇒ λindirect_prf. ?
980      | ext_indirect ⇒ λext_indirect_prf. ?
981      | registr ⇒ λregistr_prf. ?
982      | acc_a ⇒ λacc_a_prf. ?
983      | acc_b ⇒ λacc_b_prf. ?
984      | dptr ⇒ λdptr_prf. ?
985      | data ⇒ λdata_prf. ?
986      | data16 ⇒ λdata16_prf. ?
987      | acc_dptr ⇒ λacc_dptr_prf. ?
988      | acc_pc ⇒ λacc_pc_prf. ?
989      | ext_indirect_dptr ⇒ λext_indirect_prf. ?
990      | indirect_dptr ⇒ λindirect_prf. ?
991      | carry ⇒ λcarry_prf. ?
994      | relative ⇒ λrelative_prf. ?
997      ]
998    in ? *)
999  ].
1000  [ 1: destruct(absd)
1001  | 2: # A1 # A2 # A3 # A4 # A5 # A6
1002       # A7 # A8 # A9 # A10 # A11 # A12
1003       # A13 # A14 # A15 # A16 # A17 # A18
1004       # A19 *
1005  ].
1006
1007
1008  match l return λx.match x with [O ⇒ λl: Vector … O. bool | S x' ⇒ λl: Vector addressing_mode_tag (S x').
1009   (l → bool) → bool ] with
1010  [ VEmpty      ⇒  true
1011  | VCons len hd tl ⇒ λP.
1012    let process_hd ≝
1013      match hd return λhd. ∀P: hd:::tl → bool. bool with
1014      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
1015      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
1016      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
1017      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
1018      | acc_a ⇒ λP.P ACC_A
1019      | acc_b ⇒ λP.P ACC_B
1020      | dptr ⇒ λP.P DPTR
1021      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
1022      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
1023      | acc_dptr ⇒ λP.P ACC_DPTR
1024      | acc_pc ⇒ λP.P ACC_PC
1025      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
1026      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
1027      | carry ⇒ λP.P CARRY
1030      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
1033      ]
1034    in
1035      andb (process_hd P)
1036       (match len return λx. x = len → bool with
1037         [ O ⇒ λprf. true
1038         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
1039  ].
1040  try %
1041  [ 2: cases (sym_eq ??? prf); @tl
1042  | generalize in match H; generalize in match tl; cases prf;
1043    (* cases prf in tl H; : ??? WAS WORKING BEFORE *)
1044    #tl
1045    normalize in ⊢ (∀_: %. ?)
1046    # H
1047    whd
1048    normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1049    cases (is_a hd (subaddressing_modeel y tl H)) whd // ]
1050qed.
1051*)
1052
1054 fold_left_i_aux … (
1055   λi, mem, v.
1056     insert … (bitvector_of_nat … i) v mem) (Stub Byte 16).
1057
1058lemma split_zero:
1059  ∀A,m.
1060  ∀v: Vector A m.
1061    〈[[]], v〉 = split A 0 m v.
1062  #A #m #v
1063  cases v try %
1064  #n #hd #tl %
1065qed.
1066
1067lemma Vector_O:
1068  ∀A: Type[0].
1069  ∀v: Vector A 0.
1070    v ≃ VEmpty A.
1071 #A #v
1072 generalize in match (refl … 0);
1073 cases v in ⊢ (??%? → ?%%??); //
1074 #n #hd #tl #absurd
1075 destruct(absurd)
1076qed.
1077
1078lemma Vector_Sn:
1079  ∀A: Type[0].
1080  ∀n: nat.
1081  ∀v: Vector A (S n).
1082    ∃hd: A. ∃tl: Vector A n.
1083      v ≃ VCons A n hd tl.
1084  #A #n #v
1085  generalize in match (refl … (S n));
1086  cases v in ⊢ (??%? → ??(λ_.??(λ_.?%%??)));
1087  [1:
1088    #absurd destruct(absurd)
1089  |2:
1090    #m #hd #tl #eq
1091    <(injective_S … eq)
1092    %{hd} %{tl} %
1093  ]
1094qed.
1095
1096lemma vector_append_zero:
1097  ∀A,m.
1098  ∀v: Vector A m.
1099  ∀q: Vector A 0.
1100    v = q@@v.
1101  #A #m #v #q
1102  >(Vector_O A q) %
1103qed.
1104
1105lemma prod_eq_left:
1106  ∀A: Type[0].
1107  ∀p, q, r: A.
1108    p = q → 〈p, r〉 = 〈q, r〉.
1109  #A #p #q #r #hyp
1110  destruct %
1111qed.
1112
1113lemma prod_eq_right:
1114  ∀A: Type[0].
1115  ∀p, q, r: A.
1116    p = q → 〈r, p〉 = 〈r, q〉.
1117  #A #p #q #r #hyp
1118  destruct %
1119qed.
1120
1121corollary prod_vector_zero_eq_left:
1122  ∀A, n.
1123  ∀q: Vector A O.
1124  ∀r: Vector A n.
1125    〈q, r〉 = 〈[[ ]], r〉.
1126  #A #n #q #r
1127  generalize in match (Vector_O A q …);
1128  #hyp destruct %
1129qed.
1130
1132  ∀a: Type[0].
1133  ∀m, n: nat.
1134  ∀hd: a.
1135  ∀l: Vector a m.
1136  ∀r: Vector a n.
1137    tail a ? (hd:::(l@@r)) = l@@r.
1138  #a #m #n #hd #l #r
1139  cases l try %
1140  #m' #hd' #tl' %
1141qed.
1142
1144  ∀a: Type[0].
1145  ∀m: nat.
1146  ∀hd: a.
1147  ∀l: Vector a m.
1148    hd = head' … (hd:::l).
1149  #a #m #hd #l cases l try %
1150  #m' #hd' #tl %
1151qed.
1152
1153lemma split_succ:
1154  ∀A: Type[0].
1155  ∀m, n: nat.
1156  ∀l: Vector A m.
1157  ∀r: Vector A n.
1158  ∀v: Vector A (m + n).
1159  ∀hd: A.
1160    v = l@@r → (〈l, r〉 = split A m n v → 〈hd:::l, r〉 = split A (S m) n (hd:::v)).
1161  #A #m
1162  elim m
1163  [1:
1164    #n #l #r #v #hd #eq #hyp
1165    destruct >(Vector_O … l) %
1166  |2:
1167    #m' #inductive_hypothesis #n #l #r #v #hd #equal #hyp
1168    destruct
1169    cases (Vector_Sn … l) #hd' #tl'
1170    whd in ⊢ (???%);
1172    <(? : split A (S m') n (l@@r) = split' A (S m') n (l@@r))
1174    elim l normalize //
1175  ]
1176qed.
1177
1178lemma split_prod:
1179  ∀A: Type[0].
1180  ∀m, n: nat.
1181  ∀p: Vector A (m + n).
1182  ∀v: Vector A m.
1183  ∀q: Vector A n.
1184    p = v@@q → 〈v, q〉 = split A m n p.
1185  #A #m elim m
1186  [1:
1187    #n #p #v #q #hyp
1188    >hyp <(vector_append_zero A n q v)
1189    >(prod_vector_zero_eq_left A …)
1190    @split_zero
1191  |2:
1192    #r #ih #n #p #v #q #hyp
1193    >hyp
1194    cases (Vector_Sn A r v) #hd #exists
1195    cases exists #tl #jmeq
1196    >jmeq @split_succ try %
1197    @ih %
1198  ]
1199qed.
1200
1201(*
1202lemma split_prod_exists:
1203  ∀A, m, n.
1204  ∀p: Vector A (m + n).
1205  ∃v: Vector A m.
1206  ∃q: Vector A n.
1207    〈v, q〉 = split A m n p.
1208  #A #m #n #p
1209  elim m
1210  @ex_intro
1211  [1:
1212  |2: @ex_intro
1213      [1:
1214      |2:
1215      ]
1216  ]
1217*)
1218
1219definition split_elim:
1220  ∀A: Type[0].
1221  ∀l, m: nat.
1222  ∀v: Vector A (l + m).
1223  ∀P: (Vector A l) × (Vector A m) → Prop.
1224    (∀vl: Vector A l.
1225     ∀vm: Vector A m.
1226      v = vl@@vm → P 〈vl,vm〉) → P (split A l m v) ≝
1227  λa: Type[0].
1228  λl, m: nat.
1229  λv: Vector a (l + m).
1230  λP. ?.
1231  cases daemon
1232qed.
1233
1234(*
1235axiom not_eqvb_S:
1236 ∀pc.
1237 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S pc))).
1238
1239axiom not_eqvb_SS:
1240 ∀pc.
1241 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S (S pc)))).
1242
1243axiom bitvector_elim_complete:
1244 ∀n,P. bitvector_elim n P = true → ∀bv. P bv.
1245
1246lemma bitvector_elim_complete':
1247 ∀n,P. bitvector_elim n P = true → ∀bv. P bv = true.
1248 #n #P #H generalize in match (bitvector_elim_complete … H) #K #bv
1249 generalize in match (K bv) normalize cases (P bv) normalize // #abs @⊥ //
1250qed.
1251*)
1252
1253(*
1254lemma andb_elim':
1255 ∀b1,b2. (b1 = true) → (b2 = true) → (b1 ∧ b2) = true.
1256 #b1 #b2 #H1 #H2 @andb_elim cases b1 in H1; normalize //
1257qed.
1258*)
1259
1260let rec encoding_check
1261  (code_memory: BitVectorTrie Byte 16) (pc: Word) (final_pc: Word)
1262    (encoding: list Byte)
1263      on encoding: Prop ≝
1264  match encoding with
1265  [ nil ⇒ final_pc = pc
1266  | cons hd tl ⇒
1267    let 〈new_pc, byte〉 ≝ next code_memory pc in
1268      hd = byte ∧ encoding_check code_memory new_pc final_pc tl
1269  ].
1270
1272  ∀n: nat.
1273  ∀l, r: BitVector n.
1275
1277  ∀n, m: nat.
1278    add … (bitvector_of_nat … 1) (bitvector_of_nat … m) =
1279      bitvector_of_nat n (S m).
1280
1281lemma encoding_check_append:
1282  ∀code_memory: BitVectorTrie Byte 16.
1283  ∀final_pc: Word.
1284  ∀l1: list Byte.
1285  ∀pc: Word.
1286  ∀l2: list Byte.
1287    encoding_check code_memory pc final_pc (l1@l2) →
1288      let pc_plus_len ≝ add … pc (bitvector_of_nat … (length … l1)) in
1289        encoding_check code_memory pc pc_plus_len l1 ∧
1290          encoding_check code_memory pc_plus_len final_pc l2.
1291  #code_memory #final_pc #l1 elim l1
1292  [1:
1293    #pc #l2
1294    whd in ⊢ (????% → ?); #H
1296    whd whd in ⊢ (?%?); /2/
1297  |2:
1298    #hd #tl #IH #pc #l2 * #H1 #H2
1299(*    >add_SO in H2; #H2 *)
1300    cases (IH … H2) #E1 #E2 %
1301    [1:
1302      % try @H1
1303      <(add_bitvector_of_nat_Sm 16 (|tl|)) in E1;
1305    |2:
1308      assumption
1309    ]
1310  ]
1311qed.
1312
1313lemma destruct_bug_fix:
1314  3 = 0 → False.
1315  #absurd destruct(absurd)
1316qed.
1317
1318definition bitvector_3_cases:
1319  ∀b: BitVector 3.
1320    ∃l, c, r: bool.
1321      b ≃ [[l; c; r]] ≝ ?.
1322  #b
1323  @(Vector_inv_ind bool 3 b (λn: nat. λv: Vector bool n. ∃l:bool.∃c:bool.∃r:bool. v ≃ [[l; c; r]]))
1324  [1:
1325    #absurd @⊥ @destruct_bug_fix
1326    >absurd %
1327  |2:
1328    #n #hd #tl #_ #_ #_ %{hd}
1329    cases daemon
1330  ]
1331qed.
1332
1333lemma bitvector_3_elim_prop:
1334  ∀P: BitVector 3 → Prop.
1335    P [[false;false;false]] → P [[false;false;true]] → P [[false;true;false]] →
1336    P [[false;true;true]] → P [[true;false;false]] → P [[true;false;true]] →
1337    P [[true;true;false]] → P [[true;true;true]] → ∀v. P v.
1338  #P #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 #H9
1339  cases (bitvector_3_cases … H9) #l #assm cases assm
1340  -assm #c #assm cases assm
1341  -assm #r #assm cases assm destruct
1342  cases l cases c cases r //
1343qed.
1344
1345definition ticks_of_instruction ≝
1346  λi.
1347    let trivial_code_memory ≝ assembly1 i in
1348    let trivial_status ≝ load_code_memory trivial_code_memory in
1349      \snd (fetch trivial_status (zero ?)).
1350
1351lemma fetch_assembly:
1352  ∀pc: Word.
1353  ∀i: instruction.
1354  ∀code_memory: BitVectorTrie Byte 16.
1355  ∀assembled: list Byte.
1356    assembled = assembly1 i →
1357      let len ≝ length … assembled in
1358      let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1359        encoding_check code_memory pc pc_plus_len assembled →
1360          let 〈instr, pc', ticks〉 ≝ fetch code_memory pc in
1361           (eq_instruction instr i ∧ eqb ticks (ticks_of_instruction instr) ∧ eq_bv … pc' pc_plus_len) = true.
1362  #pc #i #code_memory #assembled cases i [8: *]
1363 [16,20,29: * * |18,19: * * [1,2,4,5: *] |28: * * [1,2: * [1,2: * [1,2: * [1,2: *]]]]]
1364 [47,48,49:
1365 |*: #arg @(list_addressing_mode_tags_elim_prop … arg) whd try % -arg
1366  [2,3,5,7,10,12,16,17,18,21,25,26,27,30,31,32,37,38,39,40,41,42,43,44,45,48,51,58,
1367   59,60,63,64,65,66,67: #ARG]]
1368 [4,5,6,7,8,9,10,11,12,13,22,23,24,27,28,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
1369  56,57,69,70,72,73,75: #arg2 @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2
1370  [1,2,4,7,9,10,12,13,15,16,17,18,20,22,23,24,25,26,27,28,29,30,31,32,33,36,37,38,
1371   39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
1372   68,69,70,71: #ARG2]]
1373 [1,2,19,20: #arg3 @(list_addressing_mode_tags_elim_prop … arg3) whd try % -arg3 #ARG3]
1374 normalize in ⊢ (???% → ?);
1375 [92,94,42,93,95: @split_elim #vl #vm #E >E -E; [2,4: @(bitvector_3_elim_prop … vl)]
1376  normalize in ⊢ (???% → ?);]
1377 #H >H * #H1 try (whd in ⊢ (% → ?); * #H2)
1378 try (whd in ⊢ (% → ?); * #H3) whd in ⊢ (% → ?); #H4
1379 [ whd in match fetch; normalize nodelta <H1 ] cases daemon
1380(*
1381 whd in ⊢ (let ? ≝ ??% in ?); <H1 whd in ⊢ (let fetched ≝ % in ?)
1382 [17,18,19,20,21,22,23,24,25,26,31,34,35,36,37,38: <H3]
1383 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
1384  30,31,32,33,34,35,36,37,38,39,40,43,45,48,49,52,53,54,55,56,57,60,61,62,65,66,
1385  69,70,73,74,78,80,81,84,85,95,98,101,102,103,104,105,106,107,108,109,110: <H2]
1386 whd >eq_instruction_refl >H4 @eq_bv_refl
1387*) (* XXX: not working! *)
1388qed.
1389
1390let rec fetch_many
1391  (code_memory: BitVectorTrie Byte 16) (final_pc: Word) (pc: Word)
1392    (expected: list instruction)
1393      on expected: Prop ≝
1394  match expected with
1395  [ nil ⇒ eq_bv … pc final_pc = true
1396  | cons i tl ⇒
1397    let fetched ≝ fetch code_memory pc in
1398    let 〈instr_pc, ticks〉 ≝ fetched in
1399    let 〈instr,pc'〉 ≝ instr_pc in
1400      eq_instruction instr i = true ∧
1401        ticks = (ticks_of_instruction i) ∧
1402        fetch_many code_memory final_pc pc' tl
1403  ].
1404
1405lemma option_destruct_Some:
1406  ∀A: Type[0].
1407  ∀a, b: A.
1408    Some A a = Some A b → a = b.
1409  #A #a #b #EQ
1410  destruct %
1411qed.
1412
1413axiom eq_instruction_to_eq:
1414  ∀i1, i2: instruction.
1415    eq_instruction i1 i2 = true → i1 ≃ i2.
1416
1417lemma fetch_assembly_pseudo':
1418  ∀lookup_labels.
1419  ∀sigma: Word → Word.
1420  ∀policy: Word → bool.
1421  ∀ppc.
1422  ∀lookup_datalabels.
1423  ∀pi.
1424  ∀code_memory.
1425  ∀len.
1426  ∀assembled.
1427  ∀instructions.
1428    let pc ≝ sigma ppc in
1429      instructions = expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi →
1430        〈len,assembled〉 = assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi →
1431          let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1432            encoding_check code_memory pc pc_plus_len assembled →
1433              fetch_many code_memory pc_plus_len pc instructions.
1434  #lookup_labels #sigma #policy #ppc #lookup_datalabels #pi #code_memory #len #assembled #instructions
1435  normalize nodelta #instructions_refl whd in ⊢ (???% → ?); <instructions_refl whd in ⊢ (???% → ?); #assembled_refl
1436  cases (pair_destruct ?????? assembled_refl) -assembled_refl #len_refl #assembled_refl
1437  >len_refl >assembled_refl -len_refl
1438  generalize in match (add 16 (sigma ppc)
1439    (bitvector_of_nat 16
1440     (|flatten (Vector bool 8)
1441       (map instruction (list (Vector bool 8)) assembly1 instructions)|)));
1442  #final_pc
1443  generalize in match (sigma ppc); elim instructions
1444  [1:
1445    #pc whd in ⊢ (% → %); #H >H @eq_bv_refl
1446  |2:
1447    #i #tl #IH #pc #H whd
1448    cases (encoding_check_append ????? H) -H #H1 #H2
1449    @pair_elim #instr_pc #ticks #fetch_refl normalize nodelta
1450    @pair_elim #instr #pc' #instr_pc_refl normalize nodelta
1451    lapply (fetch_assembly pc i code_memory (assembly1 i) (refl …)) whd in ⊢ (% → ?);
1452    #H3 lapply (H3 H1) -H3 >fetch_refl >instr_pc_refl normalize nodelta
1453    #H3 lapply (conjunction_true ?? H3) * #H4 #H5 %
1454    [1:
1455      lapply (conjunction_true … H4) * #B1 #B2
1456      % try assumption @eqb_true_to_eq
1457      <(eq_instruction_to_eq … B1) assumption
1458    |2:
1459      >(eq_bv_eq … H5) @IH @H2
1460    ]
1461  ]
1462qed.
1463
1464lemma fetch_assembly_pseudo:
1465  ∀program: pseudo_assembly_program.
1466  ∀sigma: Word → Word.
1467  ∀policy: Word → bool.
1468  let lookup_labels ≝ λx:Identifier. sigma (address_of_word_labels_code_mem (\snd  program) x) in
1469  ∀ppc.
1470  ∀code_memory.
1471  let lookup_datalabels ≝ λx:Identifier.lookup_def … (construct_datalabels (\fst  program)) x (zero 16) in
1472  let pi ≝  \fst  (fetch_pseudo_instruction (\snd program) ppc) in
1473  let pc ≝ sigma ppc in
1474  let instructions ≝ expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi in
1475  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi in
1476  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1477    encoding_check code_memory pc pc_plus_len assembled →
1478      fetch_many code_memory pc_plus_len pc instructions.
1479 #program #sigma #policy letin lookup_labels ≝ (λx.?) #ppc #code_memory
1480 letin lookup_datalabels ≝ (λx.?)
1481 letin pi ≝ (fst ???)
1482 letin pc ≝ (sigma ?)
1483 letin instructions ≝ (expand_pseudo_instruction ??????)
1484 @pair_elim #len #assembled #assembled_refl normalize nodelta
1485 #H
1486 generalize in match
1487  (fetch_assembly_pseudo' lookup_labels sigma policy ppc lookup_datalabels pi code_memory len assembled instructions) in ⊢ ?;
1488 #X destruct normalize nodelta @X try % <assembled_refl try % assumption
1489qed.
1490
1491(* This is a trivial consequence of fetch_assembly_pseudo + the proof that the
1492   function that load the code in memory is correct. The latter is based
1493   on missing properties from the standard library on the BitVectorTrie
1494   data structrure.
1495
1496   Wrong at the moment, requires Jaap's precondition to ensure that the program
1497   does not overflow when put into code memory (i.e. shorter than 2^16 bytes).
1498*)
1499lemma assembly_ok:
1500  ∀program.
1501  ∀sigma: Word → Word.
1502  ∀policy: Word → bool.
1503  ∀assembled.
1504  ∀costs'.
1505  let 〈preamble, instr_list〉 ≝ program in
1506  let 〈labels, costs〉 ≝ create_label_cost_map instr_list in
1507  〈assembled,costs'〉 = assembly program sigma policy →
1508  costs = costs' ∧
1509  let code_memory ≝ load_code_memory assembled in
1510  let datalabels ≝ construct_datalabels (\fst program) in
1511  let lookup_labels ≝ λx. sigma (address_of_word_labels_code_mem (\snd program) x) in
1512  let lookup_datalabels ≝ λx. lookup_def ?? datalabels x (zero ?) in
1513  ∀ppc.
1514  let 〈pi, newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1515  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi in
1516  let pc ≝ sigma ppc in
1517  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1518   encoding_check code_memory pc pc_plus_len assembled ∧
1519       sigma newppc = add … pc (bitvector_of_nat … len).
1520  #program #sigma #policy #assembled #costs'
1521  @pair_elim #preamble #instr_list #program_refl
1522  @pair_elim #labels #costs #create_label_cost_refl
1523  #assembly_refl %
1524  [1:
1525    >(?: costs = \snd (create_label_cost_map instr_list))
1526    [1:
1527      >(?: costs' = \snd (assembly program sigma policy))
1528      [1:
1529        whd in match assembly; normalize nodelta
1530        >program_refl normalize nodelta
1531        >create_label_cost_refl in ⊢ (???%); normalize nodelta
1532        whd in match create_label_cost_map; normalize nodelta
1533        whd in match create_label_cost_map0; normalize nodelta
1534      |2:
1535        <assembly_refl %
1536      ]
1537    |2:
1538      >create_label_cost_refl %
1539    ]
1540  |2:
1541  ]
1542  cases daemon (* XXX: !!! *)
1543qed.
1544
1545(* XXX: should we add that costs = costs'? *)
1546lemma fetch_assembly_pseudo2:
1547  ∀program.
1548  ∀sigma.
1549  ∀policy.
1550  ∀ppc.
1551  let 〈labels, costs〉 ≝ create_label_cost_map (\snd program) in
1552  let 〈assembled, costs'〉 ≝ assembly program sigma policy in
1553  let code_memory ≝ load_code_memory assembled in
1554  let data_labels ≝ construct_datalabels (\fst program) in
1555  let lookup_labels ≝ λx. sigma (address_of_word_labels_code_mem (\snd program) x) in
1556  let lookup_datalabels ≝ λx. lookup_def ? ? data_labels x (zero ?) in
1557  let 〈pi,newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1558  let instructions ≝ expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi in
1559    fetch_many code_memory (sigma newppc) (sigma ppc) instructions.
1560  * #preamble #instr_list #sigma #policy #ppc
1561  @pair_elim #labels #costs #create_label_map_refl
1562  @pair_elim #assembled #costs' #assembled_refl
1563  letin code_memory ≝ (load_code_memory ?)
1564  letin data_labels ≝ (construct_datalabels ?)
1565  letin lookup_labels ≝ (λx. ?)
1566  letin lookup_datalabels ≝ (λx. ?)
1567  @pair_elim #pi #newppc #fetch_pseudo_refl
1568  lapply (assembly_ok 〈preamble, instr_list〉 sigma policy assembled costs')
1569  normalize nodelta
1570  @pair_elim #labels' #costs' #create_label_map_refl' #H
1571  cases (H (sym_eq … assembled_refl))
1572  #_
1573  lapply (refl … (assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi))
1574  cases (assembly_1_pseudoinstruction ??????) in ⊢ (???% → ?);
1575  #len #assembledi #EQ4 #H
1576  lapply (H ppc) >fetch_pseudo_refl #H
1577  lapply (fetch_assembly_pseudo 〈preamble,instr_list〉 sigma policy ppc (load_code_memory assembled))
1578  >EQ4 #H1 cases H #H2 #H3 >H3 normalize nodelta in H1; normalize nodelta
1579  >fetch_pseudo_refl in H1; #assm @assm assumption
1580qed.
1581
1582(* OLD?
1583definition assembly_specification:
1584  ∀assembly_program: pseudo_assembly_program.
1585  ∀code_mem: BitVectorTrie Byte 16. Prop ≝
1586  λpseudo_assembly_program.
1587  λcode_mem.
1588    ∀pc: Word.
1589      let 〈preamble, instr_list〉 ≝ pseudo_assembly_program in
1590      let 〈pre_instr, pre_new_pc〉 ≝ fetch_pseudo_instruction instr_list pc in
1591      let labels ≝ λx. sigma' pseudo_assembly_program (address_of_word_labels_code_mem instr_list x) in
1592      let datalabels ≝ λx. sigma' pseudo_assembly_program (lookup ? ? x (construct_datalabels preamble) (zero ?)) in
1593      let pre_assembled ≝ assembly_1_pseudoinstruction pseudo_assembly_program
1594       (sigma' pseudo_assembly_program pc) labels datalabels pre_instr in
1595      match pre_assembled with
1596       [ None ⇒ True
1597       | Some pc_code ⇒
1598          let 〈new_pc,code〉 ≝ pc_code in
1599           encoding_check code_mem pc (sigma' pseudo_assembly_program pre_new_pc) code ].
1600
1601axiom assembly_meets_specification:
1602  ∀pseudo_assembly_program.
1603    match assembly pseudo_assembly_program with
1604    [ None ⇒ True
1605    | Some code_mem_cost ⇒
1606      let 〈code_mem, cost〉 ≝ code_mem_cost in
1608    ].
1609(*
1610  # PROGRAM
1611  [ cases PROGRAM
1612    # PREAMBLE
1613    # INSTR_LIST
1614    elim INSTR_LIST
1615    [ whd
1616      whd in ⊢ (∀_. %)
1617      # PC
1618      whd
1619    | # INSTR
1620      # INSTR_LIST_TL
1621      # H
1622      whd
1623      whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1624    ]
1625  | cases not_implemented
1626  ] *)
1627*)
1628
1629definition internal_pseudo_address_map ≝ list (BitVector 8).
1630
1631axiom low_internal_ram_of_pseudo_low_internal_ram:
1632 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1633
1634axiom high_internal_ram_of_pseudo_high_internal_ram:
1635 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1636
1637axiom low_internal_ram_of_pseudo_internal_ram_hit:
1639  member ? (eq_bv 8) (false:::addr) M = true →
1640   let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1641   let pbl ≝ lookup ? 7 addr (low_internal_ram … s) (zero 8) in
1642   let pbu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) (low_internal_ram … s) (zero 8) in
1643   let bl ≝ lookup ? 7 addr ram (zero 8) in
1644   let bu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) ram (zero 8) in
1645    bu@@bl = \fst (sigma (pbu@@pbl)).
1646
1647(* changed from add to sub *)
1648axiom low_internal_ram_of_pseudo_internal_ram_miss:
1650  let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1652  let carr ≝ get_index_v ? ? flags 1 ? in
1653  carr = false →
1654  member ? (eq_bv 8) (false:::Saddr) M = false →
1655   member ? (eq_bv 8) (false:::addr) M = false →
1656    lookup ? 7 addr ram (zero ?) = lookup ? 7 addr (low_internal_ram … s) (zero ?).
1657  //
1658qed.
1659
1664    [ DIRECT d ⇒
1665       ¬(member ? (eq_bv 8) d M) ∧
1666       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1667    | INDIRECT i ⇒
1668       let d ≝ get_register … s [[false;false;i]] in
1669       ¬(member ? (eq_bv 8) d M) ∧
1670       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1671    | EXT_INDIRECT _ ⇒ true
1672    | REGISTER _ ⇒ true
1673    | ACC_A ⇒ true
1674    | ACC_B ⇒ true
1675    | DPTR ⇒ true
1676    | DATA _ ⇒ true
1677    | DATA16 _ ⇒ true
1678    | ACC_DPTR ⇒ true
1679    | ACC_PC ⇒ true
1680    | EXT_INDIRECT_DPTR ⇒ true
1681    | INDIRECT_DPTR ⇒ true
1682    | CARRY ⇒ true
1683    | BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1684    | N_BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1685    | RELATIVE _ ⇒ true
1686    | ADDR11 _ ⇒ true
1687    | ADDR16 _ ⇒ true ].
1688
1690  λT.
1691  λfetched.
1693  λcm:T.
1694  λs: PreStatus T cm.
1695   match fetched with
1696    [ Comment _ ⇒ Some ? M
1697    | Cost _ ⇒ Some … M
1698    | Jmp _ ⇒ Some … M
1699    | Call _ ⇒
1700       Some … (add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1)::M)
1701    | Mov _ _ ⇒ Some … M
1702    | Instruction instr ⇒
1703       match instr with
1706            Some ? M
1707           else
1708            None ?
1711            Some ? M
1712           else
1713            None ?
1716            Some ? M
1717           else
1718            None ?
1719        | _ ⇒ (* TO BE COMPLETED *) Some ? M ]].
1720
1721
1724 λcm.
1725  λs:PseudoStatus cm.
1727     (\fst (fetch_pseudo_instruction (\snd cm) (program_counter … s))) M cm s.
1728
1729definition code_memory_of_pseudo_assembly_program:
1730    ∀pap:pseudo_assembly_program.
1731      (Word → Word) → (Word → bool) → BitVectorTrie Byte 16 ≝
1732  λpap.
1733  λsigma.
1734  λpolicy.
1735    let p ≝ assembly pap sigma policy in
1737
1738definition status_of_pseudo_status:
1739    internal_pseudo_address_map → ∀pap. ∀ps: PseudoStatus pap.
1740      ∀sigma: Word → Word. ∀policy: Word → bool.
1741        Status (code_memory_of_pseudo_assembly_program pap sigma policy) ≝
1742  λM.
1743  λpap.
1744  λps.
1745  λsigma.
1746  λpolicy.
1747  let cm ≝ code_memory_of_pseudo_assembly_program … sigma policy in
1748  let pc ≝ sigma (program_counter … ps) in
1749  let lir ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … ps) in
1750  let hir ≝ high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … ps) in
1751     mk_PreStatus (BitVectorTrie Byte 16)
1752      cm
1753      lir
1754      hir
1755      (external_ram … ps)
1756      pc
1757      (special_function_registers_8051 … ps)
1758      (special_function_registers_8052 … ps)
1759      (p1_latch … ps)
1760      (p3_latch … ps)
1761      (clock … ps).
1762
1763(*
1764definition write_at_stack_pointer':
1765 ∀M. ∀ps: PreStatus M. Byte → Σps':PreStatus M.(code_memory … ps = code_memory … ps') ≝
1766  λM: Type[0].
1767  λs: PreStatus M.
1768  λv: Byte.
1769    let 〈 nu, nl 〉 ≝ split … 4 4 (get_8051_sfr ? s SFR_SP) in
1770    let bit_zero ≝ get_index_v… nu O ? in
1771    let bit_1 ≝ get_index_v… nu 1 ? in
1772    let bit_2 ≝ get_index_v… nu 2 ? in
1773    let bit_3 ≝ get_index_v… nu 3 ? in
1774      if bit_zero then
1775        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1776                              v (low_internal_ram ? s) in
1777          set_low_internal_ram ? s memory
1778      else
1779        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1780                              v (high_internal_ram ? s) in
1781          set_high_internal_ram ? s memory.
1782  [ cases l0 %
1783  |2,3,4,5: normalize repeat (@ le_S_S) @ le_O_n ]
1784qed.
1785
1786definition execute_1_pseudo_instruction': (Word → nat) → ∀ps:PseudoStatus.
1787 Σps':PseudoStatus.(code_memory … ps = code_memory … ps')
1788
1789  λticks_of.
1790  λs.
1791  let 〈instr, pc〉 ≝ fetch_pseudo_instruction (\snd (code_memory ? s)) (program_counter ? s) in
1792  let ticks ≝ ticks_of (program_counter ? s) in
1793  let s ≝ set_clock ? s (clock ? s + ticks) in
1794  let s ≝ set_program_counter ? s pc in
1795    match instr with
1796    [ Instruction instr ⇒
1797       execute_1_preinstruction … (λx, y. address_of_word_labels y x) instr s
1798    | Comment cmt ⇒ s
1799    | Cost cst ⇒ s
1800    | Jmp jmp ⇒ set_program_counter ? s (address_of_word_labels s jmp)
1801    | Call call ⇒
1802      let a ≝ address_of_word_labels s call in
1803      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1804      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1805      let 〈pc_bu, pc_bl〉 ≝ split ? 8 8 (program_counter ? s) in
1806      let s ≝ write_at_stack_pointer' ? s pc_bl in
1807      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1808      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1809      let s ≝ write_at_stack_pointer' ? s pc_bu in
1810        set_program_counter ? s a
1811    | Mov dptr ident ⇒
1812       set_arg_16 ? s (get_arg_16 ? s (DATA16 (address_of_word_labels s ident))) dptr
1813    ].
1814 [
1815 |2,3,4: %
1816 | <(sig2 … l7) whd in ⊢ (??? (??%)) <(sig2 … l5) %
1817 |
1818 | %
1819 ]
1820 cases not_implemented
1821qed.
1822*)
1823
1824(*
1825lemma execute_code_memory_unchanged:
1826 ∀ticks_of,ps. code_memory ? ps = code_memory ? (execute_1_pseudo_instruction ticks_of ps).
1827 #ticks #ps whd in ⊢ (??? (??%))
1828 cases (fetch_pseudo_instruction (\snd (code_memory pseudo_assembly_program ps))
1829  (program_counter pseudo_assembly_program ps)) #instr #pc
1830 whd in ⊢ (??? (??%)) cases instr
1831  [ #pre cases pre
1832     [ #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1833       cases (split ????) #z1 #z2 %
1834     | #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1835       cases (split ????) #z1 #z2 %
1836     | #a1 #a2 whd in ⊢ (??? (??%)) cases (sub_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1837       cases (split ????) #z1 #z2 %
1838     | #a1 whd in ⊢ (??? (??%)) cases a1 #x #H whd in ⊢ (??? (??%)) cases x
1839       [ #x1 whd in ⊢ (??? (??%))
1840     | *: cases not_implemented
1841     ]
1842  | #comment %
1843  | #cost %
1844  | #label %
1845  | #label whd in ⊢ (??? (??%)) cases (half_add ???) #x1 #x2 whd in ⊢ (??? (??%))
1846    cases (split ????) #y1 #y2 whd in ⊢ (??? (??%)) cases (half_add ???) #z1 #z2
1847    whd in ⊢ (??? (??%)) whd in ⊢ (??? (??%)) cases (split ????) #w1 #w2
1848    whd in ⊢ (??? (??%)) cases (get_index_v bool ????) whd in ⊢ (??? (??%))
1849    (* CSC: ??? *)
1850  | #dptr #label (* CSC: ??? *)
1851  ]
1852  cases not_implemented
1853qed.
1854*)
1855
1857lemma status_of_pseudo_status_failure_depends_only_on_code_memory:
1859 ∀ps,ps': PseudoStatus.
1860 ∀pol.
1861  ∀prf:code_memory … ps = code_memory … ps'.
1862   let pol' ≝ ? in
1863   match status_of_pseudo_status M ps pol with
1864    [ None ⇒ status_of_pseudo_status M ps' pol' = None …
1865    | Some _ ⇒ ∃w. status_of_pseudo_status M ps' pol' = Some … w
1866    ].
1867 [2: <prf @pol]
1868 #M #ps #ps' #pol #H normalize nodelta; whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ? ])
1869 generalize in match (refl … (assembly (code_memory … ps) pol))
1870 cases (assembly ??) in ⊢ (???% → %)
1871  [ #K whd whd in ⊢ (??%?) <H >K %
1872  | #x #K whd whd in ⊢ (?? (λ_.??%?)) <H >K % [2: % ] ]
1873qed.
1874*)
1875
1876definition ticks_of0:
1877    ∀p:pseudo_assembly_program.
1878      (Word → Word) → (Word → bool) → Word → pseudo_instruction → nat × nat ≝
1879  λprogram: pseudo_assembly_program.
1880  λsigma.
1881  λpolicy.
1882  λppc: Word.
1883  λfetched.
1884    match fetched with
1885    [ Instruction instr ⇒
1886      match instr with
1887      [ JC lbl ⇒ ? (*
1888        match pol lookup_labels ppc with
1889        [ short_jump ⇒ 〈2, 2〉
1890        | medium_jump ⇒ ?
1891        | long_jump ⇒ 〈4, 4〉
1892        ] *)
1893      | JNC lbl ⇒ ? (*
1894        match pol lookup_labels ppc with
1895        [ short_jump ⇒ 〈2, 2〉
1896        | medium_jump ⇒ ?
1897        | long_jump ⇒ 〈4, 4〉
1898        ] *)
1899      | JB bit lbl ⇒ ? (*
1900        match pol lookup_labels ppc with
1901        [ short_jump ⇒ 〈2, 2〉
1902        | medium_jump ⇒ ?
1903        | long_jump ⇒ 〈4, 4〉
1904        ] *)
1905      | JNB bit lbl ⇒ ? (*
1906        match pol lookup_labels ppc with
1907        [ short_jump ⇒ 〈2, 2〉
1908        | medium_jump ⇒ ?
1909        | long_jump ⇒ 〈4, 4〉
1910        ] *)
1911      | JBC bit lbl ⇒ ? (*
1912        match pol lookup_labels ppc with
1913        [ short_jump ⇒ 〈2, 2〉
1914        | medium_jump ⇒ ?
1915        | long_jump ⇒ 〈4, 4〉
1916        ] *)
1917      | JZ lbl ⇒ ? (*
1918        match pol lookup_labels ppc with
1919        [ short_jump ⇒ 〈2, 2〉
1920        | medium_jump ⇒ ?
1921        | long_jump ⇒ 〈4, 4〉
1922        ] *)
1923      | JNZ lbl ⇒ ? (*
1924        match pol lookup_labels  ppc with
1925        [ short_jump ⇒ 〈2, 2〉
1926        | medium_jump ⇒ ?
1927        | long_jump ⇒ 〈4, 4〉
1928        ] *)
1929      | CJNE arg lbl ⇒ ? (*
1930        match pol lookup_labels ppc with
1931        [ short_jump ⇒ 〈2, 2〉
1932        | medium_jump ⇒ ?
1933        | long_jump ⇒ 〈4, 4〉
1934        ] *)
1935      | DJNZ arg lbl ⇒ ? (*
1936        match pol lookup_labels ppc with
1937        [ short_jump ⇒ 〈2, 2〉
1938        | medium_jump ⇒ ?
1939        | long_jump ⇒ 〈4, 4〉
1940        ] *)
1941      | ADD arg1 arg2 ⇒
1942        let ticks ≝ ticks_of_instruction (ADD ? arg1 arg2) in
1943         〈ticks, ticks〉
1944      | ADDC arg1 arg2 ⇒
1945        let ticks ≝ ticks_of_instruction (ADDC ? arg1 arg2) in
1946         〈ticks, ticks〉
1947      | SUBB arg1 arg2 ⇒
1948        let ticks ≝ ticks_of_instruction (SUBB ? arg1 arg2) in
1949         〈ticks, ticks〉
1950      | INC arg ⇒
1951        let ticks ≝ ticks_of_instruction (INC ? arg) in
1952         〈ticks, ticks〉
1953      | DEC arg ⇒
1954        let ticks ≝ ticks_of_instruction (DEC ? arg) in
1955         〈ticks, ticks〉
1956      | MUL arg1 arg2 ⇒
1957        let ticks ≝ ticks_of_instruction (MUL ? arg1 arg2) in
1958         〈ticks, ticks〉
1959      | DIV arg1 arg2 ⇒
1960        let ticks ≝ ticks_of_instruction (DIV ? arg1 arg2) in
1961         〈ticks, ticks〉
1962      | DA arg ⇒
1963        let ticks ≝ ticks_of_instruction (DA ? arg) in
1964         〈ticks, ticks〉
1965      | ANL arg ⇒
1966        let ticks ≝ ticks_of_instruction (ANL ? arg) in
1967         〈ticks, ticks〉
1968      | ORL arg ⇒
1969        let ticks ≝ ticks_of_instruction (ORL ? arg) in
1970         〈ticks, ticks〉
1971      | XRL arg ⇒
1972        let ticks ≝ ticks_of_instruction (XRL ? arg) in
1973         〈ticks, ticks〉
1974      | CLR arg ⇒
1975        let ticks ≝ ticks_of_instruction (CLR ? arg) in
1976         〈ticks, ticks〉
1977      | CPL arg ⇒
1978        let ticks ≝ ticks_of_instruction (CPL ? arg) in
1979         〈ticks, ticks〉
1980      | RL arg ⇒
1981        let ticks ≝ ticks_of_instruction (RL ? arg) in
1982         〈ticks, ticks〉
1983      | RLC arg ⇒
1984        let ticks ≝ ticks_of_instruction (RLC ? arg) in
1985         〈ticks, ticks〉
1986      | RR arg ⇒
1987        let ticks ≝ ticks_of_instruction (RR ? arg) in
1988         〈ticks, ticks〉
1989      | RRC arg ⇒
1990        let ticks ≝ ticks_of_instruction (RRC ? arg) in
1991         〈ticks, ticks〉
1992      | SWAP arg ⇒
1993        let ticks ≝ ticks_of_instruction (SWAP ? arg) in
1994         〈ticks, ticks〉
1995      | MOV arg ⇒
1996        let ticks ≝ ticks_of_instruction (MOV ? arg) in
1997         〈ticks, ticks〉
1998      | MOVX arg ⇒
1999        let ticks ≝ ticks_of_instruction (MOVX ? arg) in
2000         〈ticks, ticks〉
2001      | SETB arg ⇒
2002        let ticks ≝ ticks_of_instruction (SETB ? arg) in
2003         〈ticks, ticks〉
2004      | PUSH arg ⇒
2005        let ticks ≝ ticks_of_instruction (PUSH ? arg) in
2006         〈ticks, ticks〉
2007      | POP arg ⇒
2008        let ticks ≝ ticks_of_instruction (POP ? arg) in
2009         〈ticks, ticks〉
2010      | XCH arg1 arg2 ⇒
2011        let ticks ≝ ticks_of_instruction (XCH ? arg1 arg2) in
2012         〈ticks, ticks〉
2013      | XCHD arg1 arg2 ⇒
2014        let ticks ≝ ticks_of_instruction (XCHD ? arg1 arg2) in
2015         〈ticks, ticks〉
2016      | RET ⇒
2017        let ticks ≝ ticks_of_instruction (RET ?) in
2018         〈ticks, ticks〉
2019      | RETI ⇒
2020        let ticks ≝ ticks_of_instruction (RETI ?) in
2021         〈ticks, ticks〉
2022      | NOP ⇒
2023        let ticks ≝ ticks_of_instruction (NOP ?) in
2024         〈ticks, ticks〉
2025      ]
2026    | Comment comment ⇒ 〈0, 0〉
2027    | Cost cost ⇒ 〈0, 0〉
2028    | Jmp jmp ⇒ 〈2, 2〉
2029    | Call call ⇒ 〈2, 2〉
2030    | Mov dptr tgt ⇒ 〈2, 2〉
2031    ].
2032    cases daemon
2033qed.
2034
2035definition ticks_of:
2036    ∀p:pseudo_assembly_program.
2037      (Word → Word) → (Word → bool) → Word → nat × nat ≝
2038  λprogram: pseudo_assembly_program.
2039  λsigma.
2040  λpolicy.
2041  λppc: Word.
2042    let 〈preamble, pseudo〉 ≝ program in
2043    let 〈fetched, new_ppc〉 ≝ fetch_pseudo_instruction pseudo ppc in
2044     ticks_of0 program sigma policy ppc fetched.
2045
2046lemma eq_rect_Type1_r:
2047  ∀A: Type[1].
2048  ∀a: A.
2049  ∀P: ∀x:A. eq ? x a → Type[1]. P a (refl A a) → ∀x: A.∀p:eq ? x a. P x p.
2050  #A #a #P #H #x #p
2051  generalize in match H;
2052  generalize in match P;
2053  cases p //
2054qed.
2055
2056axiom split_append:
2057  ∀A: Type[0].
2058  ∀m, n: nat.
2059  ∀v, v': Vector A m.
2060  ∀q, q': Vector A n.
2061    let 〈v', q'〉 ≝ split A m n (v@@q) in
2062      v = v' ∧ q = q'.
2063
2064lemma split_vector_singleton:
2065  ∀A: Type[0].
2066  ∀n: nat.
2067  ∀v: Vector A (S n).
2068  ∀rest: Vector A n.
2069  ∀s: Vector A 1.
2070    v = s @@ rest →
2071    ((get_index_v A ? v 0 ?) ::: rest) = v.
2072  [1:
2073    #A #n #v cases daemon (* XXX: !!! *)
2074  |2:
2075    @le_S_S @le_O_n
2076  ]
2077qed.
2078
2079example sub_minus_one_seven_eight:
2080  ∀v: BitVector 7.
2081  false ::: (\fst (sub_7_with_carry v (bitvector_of_nat ? 1) false)) =
2082  \fst (sub_8_with_carry (false ::: v) (bitvector_of_nat ? 1) false).
2083 cases daemon.
2084qed.
2085
2086(*
2087lemma blah:
2089  ∀s: PseudoStatus.
2090  ∀arg: Byte.
2091  ∀b: bool.
2092    addressing_mode_ok m s (DIRECT arg) = true →
2093      get_arg_8 ? (set_low_internal_ram ? s (low_internal_ram_of_pseudo_low_internal_ram m (low_internal_ram ? s))) b (DIRECT arg) =
2094      get_arg_8 ? s b (DIRECT arg).
2095  [2, 3: normalize % ]
2096  #m #s #arg #b #hyp
2097  whd in ⊢ (??%%)
2098  @split_elim''
2099  #nu' #nl' #arg_nu_nl_eq
2100  normalize nodelta
2101  generalize in match (refl ? (get_index_v bool 4 nu' ? ?))
2102  cases (get_index_v bool 4 nu' ? ?) in ⊢ (??%? → %)
2103  #get_index_v_eq
2104  normalize nodelta
2105  [2:
2106    normalize nodelta
2107    @split_elim''
2108    #bit_one' #three_bits' #bit_one_three_bit_eq
2109    generalize in match (low_internal_ram_of_pseudo_internal_ram_miss m s (three_bits'@@nl'))
2110    normalize nodelta
2111    generalize in match (refl ? (sub_7_with_carry ? ? ?))
2112    cases (sub_7_with_carry ? ? ?) in ⊢ (??%? → %)
2114    normalize nodelta
2115    #carr_hyp'
2116    @carr_hyp'
2117    [1:
2118    |2: whd in hyp:(??%?); generalize in match hyp; -hyp;
2119        generalize in match (refl ? (¬(member (BitVector 8) ? arg m)))
2120        cases (¬(member (BitVector 8) ? arg m)) in ⊢ (??%? → %)
2121        #member_eq
2122        normalize nodelta
2123        [2: #destr destruct(destr)
2124        |1: -carr_hyp';
2125            >arg_nu_nl_eq
2126            <(split_vector_singleton ? ? nu' ? ? ? bit_one_three_bit_eq)
2127            [1: >get_index_v_eq in ⊢ (??%? → ?)
2128            |2: @le_S @le_S @le_S @le_n
2129            ]
2130            cases (member (BitVector 8) ? (\fst ?) ?)
2131            [1: #destr normalize in destr; destruct(destr)
2132            |2:
2133            ]
2134        ]
2135    |3: >get_index_v_eq in ⊢ (??%?)
2136        change in ⊢ (??(???%?)?) with ((? ::: three_bits') @@ nl')
2137        >(split_vector_singleton … bit_one_three_bit_eq)
2138        <arg_nu_nl_eq
2139        whd in hyp:(??%?)
2140        cases (member (BitVector 8) (eq_bv 8) arg m) in hyp
2141        normalize nodelta [*: #ignore @sym_eq ]
2142    ]
2143  |
2144  ].
2145*)
2146(*
2147map_address0 ... (DIRECT arg) = Some .. →
2148  get_arg_8 (map_address0 ... (internal_ram ...) (DIRECT arg) =
2149  get_arg_8 (internal_ram ...) (DIRECT arg)
2150
2155*)
2156
2157axiom low_internal_ram_write_at_stack_pointer:
2158 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma: Word → Word.∀policy: Word → bool.
2159 ∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2160  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2161  low_internal_ram ? cm2 s2 = low_internal_ram T2 cm3 s3 →
2162  sp1 = add ? (get_8051_sfr … cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2163  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2164  bu@@bl = sigma (pbu@@pbl) →
2165   low_internal_ram T1 cm1
2166     (write_at_stack_pointer …
2167       (set_8051_sfr …
2168         (write_at_stack_pointer …
2169           (set_8051_sfr …
2170             (set_low_internal_ram … s1
2171               (low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s2)))
2172             SFR_SP sp1)
2173          bl)
2174        SFR_SP sp2)
2175      bu)
2176   = low_internal_ram_of_pseudo_low_internal_ram (sp1::M)
2177      (low_internal_ram …
2178       (write_at_stack_pointer …
2179         (set_8051_sfr …
2180           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2181          SFR_SP sp2)
2182        pbu)).
2183
2184lemma high_internal_ram_write_at_stack_pointer:
2185 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma:Word → Word.∀policy: Word → bool.
2186 ∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2187  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2188  high_internal_ram ?? s2 = high_internal_ram T2 cm3 s3 →
2189  sp1 = add ? (get_8051_sfr ? cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2190  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2191  bu@@bl = sigma (pbu@@pbl) →
2192   high_internal_ram T1 cm1
2193     (write_at_stack_pointer …
2194       (set_8051_sfr …
2195         (write_at_stack_pointer …
2196           (set_8051_sfr …
2197             (set_high_internal_ram … s1
2198               (high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … s2)))
2199             SFR_SP sp1)
2200          bl)
2201        SFR_SP sp2)
2202      bu)
2203   = high_internal_ram_of_pseudo_high_internal_ram (sp1::M)
2204      (high_internal_ram …
2205       (write_at_stack_pointer …
2206         (set_8051_sfr …
2207           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2208          SFR_SP sp2)
2209        pbu)).
2210  #T1 #T2 #M #cm1 #s1 #cm2 #s2 #cm3 #s3 #sigma #policy #pbu #pbl #bu #bl #sp1 #sp2
2211  #get_8051_sfr_refl #high_internal_ram_refl #sp1_refl #sp2_refl #sigma_refl
2212  cases daemon (* XXX: !!! *)
2213qed.
2214
2215lemma Some_Some_elim:
2216 ∀T:Type[0].∀x,y:T.∀P:Type[2]. (x=y → P) → Some T x = Some T y → P.
2217 #T #x #y #P #H #K @H @option_destruct_Some //
2218qed.
2219
2220definition is_present_in_machine_code_image_p: ∀pseudo_instruction. Prop ≝
2221  λpseudo_instruction.
2222    match pseudo_instruction with
2223    [ Comment c ⇒ False
2224    | Cost c ⇒ False
2225    | _ ⇒ True
2226    ].
2227
2228lemma pair_destruct_right:
2229  ∀A: Type[0].
2230  ∀B: Type[0].
2231  ∀a, c: A.
2232  ∀b, d: B.
2233    〈a, b〉 = 〈c, d〉 → b = d.
2234  #A #B #a #b #c #d //
2235qed.
2236
2237(*CSC: ???*)
2238lemma snd_assembly_1_pseudoinstruction_ok:
2239  ∀program: pseudo_assembly_program.
2240  ∀sigma: Word → Word.
2241  ∀policy: Word → bool.
2242  ∀ppc: Word.
2243  ∀pi.
2244  ∀present_in_machine_code_image_witness: is_present_in_machine_code_image_p pi.
2245  ∀lookup_labels.
2246  ∀lookup_datalabels.
2247    lookup_labels = (λx. sigma (address_of_word_labels_code_mem (\snd program) x)) →
2248    lookup_datalabels = (λx. lookup_def … (construct_datalabels (\fst program)) x (zero ?)) →
2249    \fst (fetch_pseudo_instruction (\snd program) ppc) = pi →
2250    let len ≝ \fst (assembly_1_pseudoinstruction lookup_labels sigma policy (*(sigma ppc)*) ppc lookup_datalabels  pi) in
2251      sigma (add … ppc (bitvector_of_nat ? 1)) = add … (sigma ppc) (bitvector_of_nat ? len).
2252  #program #sigma #policy #ppc #pi #is_present_in_machine_code_image_witness
2253  #lookup_labels #lookup_datalabels #lookup_labels_refl #lookup_datalabels_refl
2254  #fetch_pseudo_refl
2255  normalize nodelta
2256  generalize in match fetch_pseudo_refl; -fetch_pseudo_refl
2257  generalize in match is_present_in_machine_code_image_witness; -is_present_in_machine_code_image_witness
2258  cases pi
2259  [1:
2260    #preinstruction #_
2261  |2,3:
2262    (* XXX: bug in original statement here, to prove: sigma (ppc + 1) = sigma ppc *)
2263    #cost_or_comment normalize in ⊢ (% → ?); #absurd cases absurd
2264  |4,5:
2265    #identifier #_
2266  |6:
2267    #dptr #identifier #_
2268  ]
2269  #fetch_pseudo_refl
2270  letin assembled ≝ (\fst (assembly program sigma policy))
2271  letin costs ≝ (\snd (assembly program sigma policy))
2272  lapply (assembly_ok program sigma policy assembled costs)
2273  @pair_elim #preamble #instr_list #program_refl
2274  @pair_elim #labels #costs' #create_label_cost_map_refl
2275  <eq_pair_fst_snd #H cases (H (refl …)) -H #costs_refl #H
2276  lapply (H ppc) -H
2277  @pair_elim #pi' #newppc #fetch_pseudo_refl'
2278  @pair_elim #len #assembled #assembly1_refl #H cases H
2279  #encoding_check_assm #sigma_newppc_refl
2280  >fetch_pseudo_refl' in fetch_pseudo_refl; #pi_refl'
2281  >pi_refl' in assembly1_refl; #assembly1_refl
2282  >lookup_labels_refl >lookup_datalabels_refl >assembly1_refl
2283  <sigma_newppc_refl
2284  generalize in match fetch_pseudo_refl';
2285  whd in match (fetch_pseudo_instruction ??);
2286  @pair_elim #lbl #instr #nth_refl normalize nodelta
2287  #G cases (pair_destruct_right ?????? G) %
2288qed.
2289
2290lemma pose: ∀A:Type[0].∀B:A → Type[0].∀a:A. (∀a':A. a'=a → B a') → B a.
2291  /2/
2292qed.
2293
2294(* To be moved in ProofStatus *)
2295lemma program_counter_set_program_counter:
2296  ∀T.
2297  ∀cm.
2298  ∀s.
2299  ∀x.
2300    program_counter T cm (set_program_counter T cm s x) = x.
2301  //
2302qed.
Note: See TracBrowser for help on using the repository browser.