source: src/ASM/AssemblyProof.ma @ 1955

Last change on this file since 1955 was 1955, checked in by mulligan, 8 years ago

Completed proof of snd_assembly_1_pseudoinstruction_ok, modulo some small changes to the statement

File size: 72.2 KB
Line 
1include "ASM/Assembly.ma".
2include "ASM/Interpret.ma".
3include "ASM/StatusProofs.ma".
4include alias "arithmetics/nat.ma".
5
6definition bit_elim_prop: ∀P: bool → Prop. Prop ≝
7  λP.
8    P true ∧ P false.
9 
10let rec bitvector_elim_prop_internal
11  (n: nat) (P: BitVector n → Prop) (m: nat)
12    on m:
13      m ≤ n → BitVector (n - m) → Prop ≝
14  match m return λm. m ≤ n → BitVector (n - m) → Prop with
15  [ O    ⇒ λprf1. λprefix. P ?
16  | S n' ⇒ λprf2. λprefix.
17      bit_elim_prop (λbit. bitvector_elim_prop_internal n P n' …)
18  ].
19  try applyS prefix
20  try (@le_S_to_le assumption)
21  letin res ≝ (bit ::: prefix)
22  <minus_S_S >minus_Sn_m
23  assumption
24qed.
25
26definition bitvector_elim_prop ≝
27  λn: nat.
28  λP: BitVector n → Prop.
29    bitvector_elim_prop_internal n P n ? ?.
30  try @le_n
31  <minus_n_n @[[ ]]
32qed.
33
34lemma bool_eq_internal_eq:
35  ∀b, c.
36    (λb. λc. (if b then c else (if c then false else true))) b c = true → b = c.
37  #b #c
38  cases b cases c normalize nodelta
39  try (#_ % @I)
40  #assm destruct %
41qed.
42
43definition bit_elim: ∀P: bool → bool. bool ≝
44  λP.
45    P true ∧ P false.
46
47let rec bitvector_elim_internal
48  (n: nat) (P: BitVector n → bool) (m: nat)
49    on m:
50      m ≤ n → BitVector (n - m) → bool ≝
51  match m return λm. m ≤ n → BitVector (n - m) → bool with
52  [ O    ⇒ λprf1. λprefix. P ?
53  | S n' ⇒ λprf2. λprefix. bit_elim (λbit. bitvector_elim_internal n P n' ? ?)
54  ].
55  /2/
56qed.
57
58definition bitvector_elim ≝
59  λn: nat.
60  λP: BitVector n → bool.
61    bitvector_elim_internal n P n ? ?.
62  try @le_n
63  <minus_n_n @[[]]
64qed.
65
66lemma super_rewrite2:
67  ∀A:Type[0].
68  ∀n, m: nat.
69  ∀v1: Vector A n.
70  ∀v2: Vector A m.
71  ∀P: ∀m. Vector A m → Prop.
72    n = m → v1 ≃ v2 → P n v1 → P m v2.
73  #A #n #m #v1 #v2 #P #eq #jmeq
74  destruct #assm assumption
75qed.
76
77lemma vector_cons_append:
78  ∀A: Type[0].
79  ∀n: nat.
80  ∀e: A.
81  ∀v: Vector A n.
82    e ::: v = [[ e ]] @@ v.
83  #A #n #e #v
84  cases v try %
85  #n' #hd #tl %
86qed.
87
88lemma vector_cons_append2:
89  ∀A: Type[0].
90  ∀n, m: nat.
91  ∀v: Vector A n.
92  ∀q: Vector A m.
93  ∀hd: A.
94    hd:::(v@@q) = (hd:::v)@@q.
95  #A #n #m #v #q
96  elim v try (#hd %)
97  #n' #hd' #tl' #ih #hd'
98  <ih %
99qed.
100
101lemma jmeq_cons_vector_monotone:
102  ∀A: Type[0].
103  ∀m, n: nat.
104  ∀v: Vector A m.
105  ∀q: Vector A n.
106  ∀prf: m = n.
107  ∀hd: A.
108    v ≃ q → hd:::v ≃ hd:::q.
109  #A #m #n #v #q #prf #hd #E
110  @(super_rewrite2 A … E)
111  try assumption %
112qed.
113
114lemma vector_associative_append:
115  ∀A: Type[0].
116  ∀n, m, o:  nat.
117  ∀v: Vector A n.
118  ∀q: Vector A m.
119  ∀r: Vector A o.
120    (v @@ q) @@ r ≃ v @@ (q @@ r).
121  #A #n #m #o #v #q #r
122  elim v try %
123  #n' #hd #tl #ih
124  <(vector_cons_append2 A … hd)
125  @jmeq_cons_vector_monotone
126  try assumption
127  @associative_plus
128qed.
129
130lemma mem_middle_vector:
131  ∀A: Type[0].
132  ∀m, o: nat.
133  ∀eq: A → A → bool.
134  ∀reflex: ∀a. eq a a = true.
135  ∀p: Vector A m.
136  ∀a: A.
137  ∀r: Vector A o.
138    mem A eq ? (p@@(a:::r)) a = true.
139  #A #m #o #eq #reflex #p #a
140  elim p try (normalize >reflex #H %)
141  #m' #hd #tl #inductive_hypothesis
142  normalize
143  cases (eq ??) normalize nodelta
144  try (#irrelevant %)
145  @inductive_hypothesis
146qed.
147
148lemma mem_monotonic_wrt_append:
149  ∀A: Type[0].
150  ∀m, o: nat.
151  ∀eq: A → A → bool.
152  ∀reflex: ∀a. eq a a = true.
153  ∀p: Vector A m.
154  ∀a: A.
155  ∀r: Vector A o.
156    mem A eq ? r a = true → mem A eq ? (p @@ r) a = true.
157  #A #m #o #eq #reflex #p #a
158  elim p try (#r #assm assumption)
159  #m' #hd #tl #inductive_hypothesis #r #assm
160  normalize
161  cases (eq ??) try %
162  @inductive_hypothesis assumption
163qed.
164
165lemma subvector_multiple_append:
166  ∀A: Type[0].
167  ∀o, n: nat.
168  ∀eq: A → A → bool.
169  ∀refl: ∀a. eq a a = true.
170  ∀h: Vector A o.
171  ∀v: Vector A n.
172  ∀m: nat.
173  ∀q: Vector A m.
174    bool_to_Prop (subvector_with A ? ? eq v (h @@ q @@ v)).
175  #A #o #n #eq #reflex #h #v
176  elim v try (normalize #m #irrelevant @I)
177  #m' #hd #tl #inductive_hypothesis #m #q
178  change with (bool_to_Prop (andb ??))
179  cut ((mem A eq (o + (m + S m')) (h@@q@@hd:::tl) hd) = true)
180  [1:
181    @mem_monotonic_wrt_append try assumption
182    @mem_monotonic_wrt_append try assumption
183    normalize >reflex %
184  |2:
185    #assm >assm
186    >vector_cons_append
187    change with (bool_to_Prop (subvector_with ??????))
188    @(super_rewrite2 … (vector_associative_append … q [[hd]] tl))
189    try @associative_plus
190    @inductive_hypothesis
191  ]
192qed.
193
194lemma vector_cons_empty:
195  ∀A: Type[0].
196  ∀n: nat.
197  ∀v: Vector A n.
198    [[ ]] @@ v = v.
199  #A #n #v
200  cases v try %
201  #n' #hd #tl %
202qed.
203
204corollary subvector_hd_tl:
205  ∀A: Type[0].
206  ∀o: nat.
207  ∀eq: A → A → bool.
208  ∀refl: ∀a. eq a a = true.
209  ∀h: A.
210  ∀v: Vector A o.
211    bool_to_Prop (subvector_with A ? ? eq v (h ::: v)).
212  #A #o #eq #reflex #h #v
213  >(vector_cons_append … h v)
214  <(vector_cons_empty … ([[h]] @@ v))
215  @(subvector_multiple_append … eq reflex [[ ]] v ? [[h]])
216qed.
217
218lemma eq_a_reflexive:
219  ∀a. eq_a a a = true.
220  #a cases a %
221qed.
222
223lemma is_in_monotonic_wrt_append:
224  ∀m, n: nat.
225  ∀p: Vector addressing_mode_tag m.
226  ∀q: Vector addressing_mode_tag n.
227  ∀to_search: addressing_mode.
228    bool_to_Prop (is_in ? p to_search) → bool_to_Prop (is_in ? (q @@ p) to_search).
229  #m #n #p #q #to_search #assm
230  elim q try assumption
231  #n' #hd #tl #inductive_hypothesis
232  normalize
233  cases (is_a ??) try @I
234  >inductive_hypothesis @I
235qed.
236
237corollary is_in_hd_tl:
238  ∀to_search: addressing_mode.
239  ∀hd: addressing_mode_tag.
240  ∀n: nat.
241  ∀v: Vector addressing_mode_tag n.
242    bool_to_Prop (is_in ? v to_search) → bool_to_Prop (is_in ? (hd:::v) to_search).
243  #to_search #hd #n #v
244  elim v
245  [1:
246    #absurd
247    normalize in absurd; cases absurd
248  |2:
249    #n' #hd' #tl #inductive_hypothesis #assm
250    >vector_cons_append >(vector_cons_append … hd' tl)
251    @(is_in_monotonic_wrt_append … ([[hd']]@@tl) [[hd]] to_search)
252    assumption
253  ]
254qed.
255 
256let rec list_addressing_mode_tags_elim
257  (n: nat) (l: Vector addressing_mode_tag (S n))
258    on l: (l → bool) → bool ≝
259  match l return λx.
260    match x with
261    [ O ⇒ λl: Vector … O. bool
262    | S x' ⇒ λl: Vector addressing_mode_tag (S x'). (l → bool) → bool
263    ] with
264  [ VEmpty      ⇒  true 
265  | VCons len hd tl ⇒ λP.
266    let process_hd ≝
267      match hd return λhd. ∀P: hd:::tl → bool. bool with
268      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
269      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
270      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
271      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
272      | acc_a ⇒ λP.P ACC_A
273      | acc_b ⇒ λP.P ACC_B
274      | dptr ⇒ λP.P DPTR
275      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
276      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
277      | acc_dptr ⇒ λP.P ACC_DPTR
278      | acc_pc ⇒ λP.P ACC_PC
279      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
280      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
281      | carry ⇒ λP.P CARRY
282      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
283      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
284      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
285      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
286      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
287      ]
288    in
289      andb (process_hd P)
290       (match len return λx. x = len → bool with
291         [ O ⇒ λprf. true
292         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
293  ].
294  try %
295  [2:
296    cases (sym_eq ??? prf); assumption
297  |1:
298    generalize in match H; generalize in match tl;
299    destruct #tl
300    normalize in ⊢ (∀_: %. ?);
301    #H
302    whd normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?]);
303    cases (is_a hd (subaddressing_modeel y tl H))
304    whd try @I normalize nodelta //
305  ]
306qed.
307
308definition product_elim ≝
309  λm, n: nat.
310  λv: Vector addressing_mode_tag (S m).
311  λq: Vector addressing_mode_tag (S n).
312  λP: (v × q) → bool.
313    list_addressing_mode_tags_elim ? v (λx. list_addressing_mode_tags_elim ? q (λy. P 〈x, y〉)).
314
315definition union_elim ≝
316  λA, B: Type[0].
317  λelimA: (A → bool) → bool.
318  λelimB: (B → bool) → bool.
319  λelimU: A ⊎ B → bool.
320    elimA (λa. elimB (λb. elimU (inl ? ? a) ∧ elimU (inr ? ? b))).
321
322(*                           
323definition preinstruction_elim: ∀P: preinstruction [[ relative ]] → bool. bool ≝
324  λP.
325    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADD ? ACC_A addr)) ∧
326    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADDC ? ACC_A addr)) ∧
327    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (SUBB ? ACC_A addr)) ∧
328    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ; dptr ]] (λaddr. P (INC ? addr)) ∧
329    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ]] (λaddr. P (DEC ? addr)) ∧
330    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (MUL ? ACC_A addr)) ∧
331    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (DIV ? ACC_A addr)) ∧
332    list_addressing_mode_tags_elim ? [[ registr ; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
333    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CLR ? addr)) ∧
334    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CPL ? addr)) ∧
335    P (DA ? ACC_A) ∧
336    bitvector_elim 8 (λr. P (JC ? (RELATIVE r))) ∧
337    bitvector_elim 8 (λr. P (JNC ? (RELATIVE r))) ∧
338    bitvector_elim 8 (λr. P (JZ ? (RELATIVE r))) ∧
339    bitvector_elim 8 (λr. P (JNZ ? (RELATIVE r))) ∧
340    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JB ? (BIT_ADDR b) (RELATIVE r))))) ∧
341    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JNB ? (BIT_ADDR b) (RELATIVE r))))) ∧
342    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JBC ? (BIT_ADDR b) (RELATIVE r))))) ∧
343    list_addressing_mode_tags_elim ? [[ registr; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
344    P (RL ? ACC_A) ∧
345    P (RLC ? ACC_A) ∧
346    P (RR ? ACC_A) ∧
347    P (RRC ? ACC_A) ∧
348    P (SWAP ? ACC_A) ∧
349    P (RET ?) ∧
350    P (RETI ?) ∧
351    P (NOP ?) ∧
352    bit_elim (λb. P (XCHD ? ACC_A (INDIRECT b))) ∧
353    list_addressing_mode_tags_elim ? [[ carry; bit_addr ]] (λaddr. P (SETB ? addr)) ∧
354    bitvector_elim 8 (λaddr. P (PUSH ? (DIRECT addr))) ∧
355    bitvector_elim 8 (λaddr. P (POP ? (DIRECT addr))) ∧
356    union_elim ? ? (product_elim ? ? [[ acc_a ]] [[ direct; data ]])
357                   (product_elim ? ? [[ registr; indirect ]] [[ data ]])
358                   (λd. bitvector_elim 8 (λb. P (CJNE ? d (RELATIVE b)))) ∧
359    list_addressing_mode_tags_elim ? [[ registr; direct; indirect ]] (λaddr. P (XCH ? ACC_A addr)) ∧
360    union_elim ? ? (product_elim ? ? [[acc_a]] [[ data ; registr ; direct ; indirect ]])
361                   (product_elim ? ? [[direct]] [[ acc_a ; data ]])
362                   (λd. P (XRL ? d)) ∧
363    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
364                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
365                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
366                   (λd. P (ANL ? d)) ∧
367    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; data ; direct ; indirect ]])
368                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
369                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
370                   (λd. P (ORL ? d)) ∧
371    union_elim ? ? (product_elim ? ? [[acc_a]] [[ ext_indirect ; ext_indirect_dptr ]])
372                   (product_elim ? ? [[ ext_indirect ; ext_indirect_dptr ]] [[acc_a]])
373                   (λd. P (MOVX ? d)) ∧
374    union_elim ? ? (
375      union_elim ? ? (
376        union_elim ? ? (
377          union_elim ? ? (
378            union_elim ? ?  (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
379                            (product_elim ? ? [[ registr ; indirect ]] [[ acc_a ; direct ; data ]]))
380                            (product_elim ? ? [[direct]] [[ acc_a ; registr ; direct ; indirect ; data ]]))
381                            (product_elim ? ? [[dptr]] [[data16]]))
382                            (product_elim ? ? [[carry]] [[bit_addr]]))
383                            (product_elim ? ? [[bit_addr]] [[carry]])
384                            (λd. P (MOV ? d)).
385  %
386qed.
387 
388definition instruction_elim: ∀P: instruction → bool. bool ≝
389  λP. (*
390    bitvector_elim 11 (λx. P (ACALL (ADDR11 x))) ∧
391    bitvector_elim 16 (λx. P (LCALL (ADDR16 x))) ∧
392    bitvector_elim 11 (λx. P (AJMP (ADDR11 x))) ∧
393    bitvector_elim 16 (λx. P (LJMP (ADDR16 x))) ∧ *)
394    bitvector_elim 8 (λx. P (SJMP (RELATIVE x))). (*  ∧
395    P (JMP INDIRECT_DPTR) ∧
396    list_addressing_mode_tags_elim ? [[ acc_dptr; acc_pc ]] (λa. P (MOVC ACC_A a)) ∧
397    preinstruction_elim (λp. P (RealInstruction p)). *)
398  %
399qed.
400
401
402axiom instruction_elim_complete:
403 ∀P. instruction_elim P = true → ∀i. P i = true.
404*)
405(*definition eq_instruction ≝
406  λi, j: instruction.
407    true.*)
408
409definition eq_addressing_mode: addressing_mode → addressing_mode → bool ≝
410  λa, b: addressing_mode.
411  match a with
412  [ DIRECT d ⇒
413    match b with
414    [ DIRECT e ⇒ eq_bv ? d e
415    | _ ⇒ false
416    ]
417  | INDIRECT b' ⇒
418    match b with
419    [ INDIRECT e ⇒ eq_b b' e
420    | _ ⇒ false
421    ]
422  | EXT_INDIRECT b' ⇒
423    match b with
424    [ EXT_INDIRECT e ⇒ eq_b b' e
425    | _ ⇒ false
426    ]
427  | REGISTER bv ⇒
428    match b with
429    [ REGISTER bv' ⇒ eq_bv ? bv bv'
430    | _ ⇒ false
431    ]
432  | ACC_A ⇒ match b with [ ACC_A ⇒ true | _ ⇒ false ]
433  | ACC_B ⇒ match b with [ ACC_B ⇒ true | _ ⇒ false ]
434  | DPTR ⇒ match b with [ DPTR ⇒ true | _ ⇒ false ]
435  | DATA b' ⇒
436    match b with
437    [ DATA e ⇒ eq_bv ? b' e
438    | _ ⇒ false
439    ]
440  | DATA16 w ⇒
441    match b with
442    [ DATA16 e ⇒ eq_bv ? w e
443    | _ ⇒ false
444    ]
445  | ACC_DPTR ⇒ match b with [ ACC_DPTR ⇒ true | _ ⇒ false ]
446  | ACC_PC ⇒ match b with [ ACC_PC ⇒ true | _ ⇒ false ]
447  | EXT_INDIRECT_DPTR ⇒ match b with [ EXT_INDIRECT_DPTR ⇒ true | _ ⇒ false ]
448  | INDIRECT_DPTR ⇒ match b with [ INDIRECT_DPTR ⇒ true | _ ⇒ false ]
449  | CARRY ⇒ match b with [ CARRY ⇒ true | _ ⇒ false ]
450  | BIT_ADDR b' ⇒
451    match b with
452    [ BIT_ADDR e ⇒ eq_bv ? b' e
453    | _ ⇒ false
454    ]
455  | N_BIT_ADDR b' ⇒
456    match b with
457    [ N_BIT_ADDR e ⇒ eq_bv ? b' e
458    | _ ⇒ false
459    ]
460  | RELATIVE n ⇒
461    match b with
462    [ RELATIVE e ⇒ eq_bv ? n e
463    | _ ⇒ false
464    ]
465  | ADDR11 w ⇒
466    match b with
467    [ ADDR11 e ⇒ eq_bv ? w e
468    | _ ⇒ false
469    ]
470  | ADDR16 w ⇒
471    match b with
472    [ ADDR16 e ⇒ eq_bv ? w e
473    | _ ⇒ false
474    ]
475  ].
476
477lemma eq_bv_refl:
478  ∀n, b.
479    eq_bv n b b = true.
480  #n #b cases b //
481qed.
482
483lemma eq_b_refl:
484  ∀b.
485    eq_b b b = true.
486  #b cases b //
487qed.
488
489lemma eq_addressing_mode_refl:
490  ∀a. eq_addressing_mode a a = true.
491  #a
492  cases a try #arg1 try #arg2
493  try @eq_bv_refl try @eq_b_refl
494  try normalize %
495qed.
496 
497definition eq_sum:
498    ∀A, B. (A → A → bool) → (B → B → bool) → (A ⊎ B) → (A ⊎ B) → bool ≝
499  λlt, rt, leq, req, left, right.
500    match left with
501    [ inl l ⇒
502      match right with
503      [ inl l' ⇒ leq l l'
504      | _ ⇒ false
505      ]
506    | inr r ⇒
507      match right with
508      [ inr r' ⇒ req r r'
509      | _ ⇒ false
510      ]
511    ].
512
513definition eq_prod: ∀A, B. (A → A → bool) → (B → B → bool) → (A × B) → (A × B) → bool ≝
514  λlt, rt, leq, req, left, right.
515    let 〈l, r〉 ≝ left in
516    let 〈l', r'〉 ≝ right in
517      leq l l' ∧ req r r'.
518
519definition eq_preinstruction: preinstruction [[relative]] → preinstruction [[relative]] → bool ≝
520  λi, j.
521  match i with
522  [ ADD arg1 arg2 ⇒
523    match j with
524    [ ADD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
525    | _ ⇒ false
526    ]
527  | ADDC arg1 arg2 ⇒
528    match j with
529    [ ADDC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
530    | _ ⇒ false
531    ]
532  | SUBB arg1 arg2 ⇒
533    match j with
534    [ SUBB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
535    | _ ⇒ false
536    ]
537  | INC arg ⇒
538    match j with
539    [ INC arg' ⇒ eq_addressing_mode arg arg'
540    | _ ⇒ false
541    ]
542  | DEC arg ⇒
543    match j with
544    [ DEC arg' ⇒ eq_addressing_mode arg arg'
545    | _ ⇒ false
546    ]
547  | MUL arg1 arg2 ⇒
548    match j with
549    [ MUL arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
550    | _ ⇒ false
551    ]
552  | DIV arg1 arg2 ⇒
553    match j with
554    [ DIV arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
555    | _ ⇒ false
556    ]
557  | DA arg ⇒
558    match j with
559    [ DA arg' ⇒ eq_addressing_mode arg arg'
560    | _ ⇒ false
561    ]
562  | JC arg ⇒
563    match j with
564    [ JC arg' ⇒ eq_addressing_mode arg arg'
565    | _ ⇒ false
566    ]
567  | JNC arg ⇒
568    match j with
569    [ JNC arg' ⇒ eq_addressing_mode arg arg'
570    | _ ⇒ false
571    ]
572  | JB arg1 arg2 ⇒
573    match j with
574    [ JB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
575    | _ ⇒ false
576    ]
577  | JNB arg1 arg2 ⇒
578    match j with
579    [ JNB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
580    | _ ⇒ false
581    ]
582  | JBC arg1 arg2 ⇒
583    match j with
584    [ JBC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
585    | _ ⇒ false
586    ]
587  | JZ arg ⇒
588    match j with
589    [ JZ arg' ⇒ eq_addressing_mode arg arg'
590    | _ ⇒ false
591    ]
592  | JNZ arg ⇒
593    match j with
594    [ JNZ arg' ⇒ eq_addressing_mode arg arg'
595    | _ ⇒ false
596    ]
597  | CJNE arg1 arg2 ⇒
598    match j with
599    [ CJNE arg1' arg2' ⇒
600      let prod_eq_left ≝ eq_prod [[acc_a]] [[direct; data]] eq_addressing_mode eq_addressing_mode in
601      let prod_eq_right ≝ eq_prod [[registr; indirect]] [[data]] eq_addressing_mode eq_addressing_mode in
602      let arg1_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
603        arg1_eq arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
604    | _ ⇒ false
605    ]
606  | DJNZ arg1 arg2 ⇒
607    match j with
608    [ DJNZ arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
609    | _ ⇒ false
610    ]
611  | CLR arg ⇒
612    match j with
613    [ CLR arg' ⇒ eq_addressing_mode arg arg'
614    | _ ⇒ false
615    ]
616  | CPL arg ⇒
617    match j with
618    [ CPL arg' ⇒ eq_addressing_mode arg arg'
619    | _ ⇒ false
620    ]
621  | RL arg ⇒
622    match j with
623    [ RL arg' ⇒ eq_addressing_mode arg arg'
624    | _ ⇒ false
625    ]
626  | RLC arg ⇒
627    match j with
628    [ RLC arg' ⇒ eq_addressing_mode arg arg'
629    | _ ⇒ false
630    ]
631  | RR arg ⇒
632    match j with
633    [ RR arg' ⇒ eq_addressing_mode arg arg'
634    | _ ⇒ false
635    ]
636  | RRC arg ⇒
637    match j with
638    [ RRC arg' ⇒ eq_addressing_mode arg arg'
639    | _ ⇒ false
640    ]
641  | SWAP arg ⇒
642    match j with
643    [ SWAP arg' ⇒ eq_addressing_mode arg arg'
644    | _ ⇒ false
645    ]
646  | SETB arg ⇒
647    match j with
648    [ SETB arg' ⇒ eq_addressing_mode arg arg'
649    | _ ⇒ false
650    ]
651  | PUSH arg ⇒
652    match j with
653    [ PUSH arg' ⇒ eq_addressing_mode arg arg'
654    | _ ⇒ false
655    ]
656  | POP arg ⇒
657    match j with
658    [ POP arg' ⇒ eq_addressing_mode arg arg'
659    | _ ⇒ false
660    ]
661  | XCH arg1 arg2 ⇒
662    match j with
663    [ XCH arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
664    | _ ⇒ false
665    ]
666  | XCHD arg1 arg2 ⇒
667    match j with
668    [ XCHD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
669    | _ ⇒ false
670    ]
671  | RET ⇒ match j with [ RET ⇒ true | _ ⇒ false ]
672  | RETI ⇒ match j with [ RETI ⇒ true | _ ⇒ false ]
673  | NOP ⇒ match j with [ NOP ⇒ true | _ ⇒ false ]
674  | MOVX arg ⇒
675    match j with
676    [ MOVX arg' ⇒
677      let prod_eq_left ≝ eq_prod [[acc_a]] [[ext_indirect; ext_indirect_dptr]] eq_addressing_mode eq_addressing_mode in
678      let prod_eq_right ≝ eq_prod [[ext_indirect; ext_indirect_dptr]] [[acc_a]] eq_addressing_mode eq_addressing_mode in
679      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
680        sum_eq arg arg'
681    | _ ⇒ false
682    ]
683  | XRL arg ⇒
684    match j with
685    [ XRL arg' ⇒
686      let prod_eq_left ≝ eq_prod [[acc_a]] [[ data ; registr ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
687      let prod_eq_right ≝ eq_prod [[direct]] [[ acc_a ; data ]] eq_addressing_mode eq_addressing_mode in
688      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
689        sum_eq arg arg'
690    | _ ⇒ false
691    ]
692  | ORL arg ⇒
693    match j with
694    [ ORL arg' ⇒
695      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; data ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
696      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
697      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
698      let prod_eq_right ≝ eq_prod [[carry]] [[ bit_addr ; n_bit_addr]] eq_addressing_mode eq_addressing_mode in
699      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
700        sum_eq arg arg'
701    | _ ⇒ false
702    ]
703  | ANL arg ⇒
704    match j with
705    [ ANL arg' ⇒
706      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; direct ; indirect ; data ]] eq_addressing_mode eq_addressing_mode in
707      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
708      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
709      let prod_eq_right ≝ eq_prod [[carry]] [[ bit_addr ; n_bit_addr]] eq_addressing_mode eq_addressing_mode in
710      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
711        sum_eq arg arg'
712    | _ ⇒ false
713    ]
714  | MOV arg ⇒
715    match j with
716    [ MOV arg' ⇒
717      let prod_eq_6 ≝ eq_prod [[acc_a]] [[registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
718      let prod_eq_5 ≝ eq_prod [[registr; indirect]] [[acc_a; direct; data]] eq_addressing_mode eq_addressing_mode in
719      let prod_eq_4 ≝ eq_prod [[direct]] [[acc_a; registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
720      let prod_eq_3 ≝ eq_prod [[dptr]] [[data16]] eq_addressing_mode eq_addressing_mode in
721      let prod_eq_2 ≝ eq_prod [[carry]] [[bit_addr]] eq_addressing_mode eq_addressing_mode in
722      let prod_eq_1 ≝ eq_prod [[bit_addr]] [[carry]] eq_addressing_mode eq_addressing_mode in
723      let sum_eq_1 ≝ eq_sum ? ? prod_eq_6 prod_eq_5 in
724      let sum_eq_2 ≝ eq_sum ? ? sum_eq_1 prod_eq_4 in
725      let sum_eq_3 ≝ eq_sum ? ? sum_eq_2 prod_eq_3 in
726      let sum_eq_4 ≝ eq_sum ? ? sum_eq_3 prod_eq_2 in
727      let sum_eq_5 ≝ eq_sum ? ? sum_eq_4 prod_eq_1 in
728        sum_eq_5 arg arg'
729    | _ ⇒ false
730    ]
731  ].
732
733lemma eq_sum_refl:
734  ∀A, B: Type[0].
735  ∀leq, req.
736  ∀s.
737  ∀leq_refl: (∀t. leq t t = true).
738  ∀req_refl: (∀u. req u u = true).
739    eq_sum A B leq req s s = true.
740  #A #B #leq #req #s #leq_refl #req_refl
741  cases s assumption
742qed.
743
744lemma eq_prod_refl:
745  ∀A, B: Type[0].
746  ∀leq, req.
747  ∀s.
748  ∀leq_refl: (∀t. leq t t = true).
749  ∀req_refl: (∀u. req u u = true).
750    eq_prod A B leq req s s = true.
751  #A #B #leq #req #s #leq_refl #req_refl
752  cases s
753  whd in ⊢ (? → ? → ??%?);
754  #l #r
755  >leq_refl @req_refl
756qed.
757
758lemma eq_preinstruction_refl:
759  ∀i.
760    eq_preinstruction i i = true.
761  #i cases i try #arg1 try #arg2
762  try @eq_addressing_mode_refl
763  [1,2,3,4,5,6,7,8,10,16,17,18,19,20:
764    whd in ⊢ (??%?); try %
765    >eq_addressing_mode_refl
766    >eq_addressing_mode_refl %
767  |13,15:
768    whd in ⊢ (??%?);
769    cases arg1
770    [*:
771      #arg1_left normalize nodelta
772      >eq_prod_refl [*: try % #argr @eq_addressing_mode_refl]
773    ]
774  |11,12:
775    whd in ⊢ (??%?);
776    cases arg1
777    [1:
778      #arg1_left normalize nodelta
779      >(eq_sum_refl …)
780      [1: % | 2,3: #arg @eq_prod_refl ]
781      @eq_addressing_mode_refl
782    |2:
783      #arg1_left normalize nodelta
784      @eq_prod_refl [*: @eq_addressing_mode_refl ]
785    |3:
786      #arg1_left normalize nodelta
787      >(eq_sum_refl …)
788      [1:
789        %
790      |2,3:
791        #arg @eq_prod_refl #arg @eq_addressing_mode_refl
792      ]
793    |4:
794      #arg1_left normalize nodelta
795      @eq_prod_refl [*: #arg @eq_addressing_mode_refl ]
796    ]
797  |14:
798    whd in ⊢ (??%?);
799    cases arg1
800    [1:
801      #arg1_left normalize nodelta
802      @eq_sum_refl
803      [1:
804        #arg @eq_sum_refl
805        [1:
806          #arg @eq_sum_refl
807          [1:
808            #arg @eq_sum_refl
809            [1:
810              #arg @eq_prod_refl
811              [*:
812                @eq_addressing_mode_refl
813              ]
814            |2:
815              #arg @eq_prod_refl
816              [*:
817                #arg @eq_addressing_mode_refl
818              ]
819            ]
820          |2:
821            #arg @eq_prod_refl
822            [*:
823              #arg @eq_addressing_mode_refl
824            ]
825          ]
826        |2:
827          #arg @eq_prod_refl
828          [*:
829            #arg @eq_addressing_mode_refl
830          ]
831        ]
832      |2:
833        #arg @eq_prod_refl
834        [*:
835          #arg @eq_addressing_mode_refl
836        ]
837      ]
838    |2:
839      #arg1_right normalize nodelta
840      @eq_prod_refl
841      [*:
842        #arg @eq_addressing_mode_refl
843      ]
844    ]
845  |*:
846    whd in ⊢ (??%?);
847    cases arg1
848    [*:
849      #arg1 >eq_sum_refl
850      [1,4:
851        @eq_addressing_mode_refl
852      |2,3,5,6:
853        #arg @eq_prod_refl
854        [*:
855          #arg @eq_addressing_mode_refl
856        ]
857      ]
858    ]
859  ]
860qed.
861
862definition eq_instruction: instruction → instruction → bool ≝
863  λi, j.
864  match i with
865  [ ACALL arg ⇒
866    match j with
867    [ ACALL arg' ⇒ eq_addressing_mode arg arg'
868    | _ ⇒ false
869    ]
870  | LCALL arg ⇒
871    match j with
872    [ LCALL arg' ⇒ eq_addressing_mode arg arg'
873    | _ ⇒ false
874    ]
875  | AJMP arg ⇒
876    match j with
877    [ AJMP arg' ⇒ eq_addressing_mode arg arg'
878    | _ ⇒ false
879    ]
880  | LJMP arg ⇒
881    match j with
882    [ LJMP arg' ⇒ eq_addressing_mode arg arg'
883    | _ ⇒ false
884    ]
885  | SJMP arg ⇒
886    match j with
887    [ SJMP arg' ⇒ eq_addressing_mode arg arg'
888    | _ ⇒ false
889    ]
890  | JMP arg ⇒
891    match j with
892    [ JMP arg' ⇒ eq_addressing_mode arg arg'
893    | _ ⇒ false
894    ]
895  | MOVC arg1 arg2 ⇒
896    match j with
897    [ MOVC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
898    | _ ⇒ false
899    ]
900  | RealInstruction instr ⇒
901    match j with
902    [ RealInstruction instr' ⇒ eq_preinstruction instr instr'
903    | _ ⇒ false
904    ]
905  ].
906 
907lemma eq_instruction_refl:
908  ∀i. eq_instruction i i = true.
909  #i cases i [*: #arg1 ]
910  try @eq_addressing_mode_refl
911  try @eq_preinstruction_refl
912  #arg2 whd in ⊢ (??%?);
913  >eq_addressing_mode_refl >eq_addressing_mode_refl %
914qed.
915
916let rec vect_member
917  (A: Type[0]) (n: nat) (eq: A → A → bool) (v: Vector A n) (a: A)
918    on v: bool ≝
919  match v with
920  [ VEmpty          ⇒ false
921  | VCons len hd tl ⇒
922      eq hd a ∨ (vect_member A ? eq tl a)
923  ].
924
925let rec list_addressing_mode_tags_elim_prop
926  (n: nat)
927  (l: Vector addressing_mode_tag (S n))
928  on l:
929  ∀P: l → Prop.
930  ∀direct_a. ∀indirect_a. ∀ext_indirect_a. ∀register_a. ∀acc_a_a.
931  ∀acc_b_a. ∀dptr_a. ∀data_a. ∀data16_a. ∀acc_dptr_a. ∀acc_pc_a.
932  ∀ext_indirect_dptr_a. ∀indirect_dptr_a. ∀carry_a. ∀bit_addr_a.
933  ∀n_bit_addr_a. ∀relative_a. ∀addr11_a. ∀addr16_a.
934  ∀x: l. P x ≝
935  match l return
936    λy.
937      match y with
938      [ O    ⇒ λm: Vector addressing_mode_tag O. ∀prf: 0 = S n. True
939      | S y' ⇒ λl: Vector addressing_mode_tag (S y'). ∀prf: S y' = S n.∀P:l → Prop.
940               ∀direct_a: if vect_member … eq_a l direct then ∀x. P (DIRECT x) else True.
941               ∀indirect_a: if vect_member … eq_a l indirect then ∀x. P (INDIRECT x) else True.
942               ∀ext_indirect_a: if vect_member … eq_a l ext_indirect then ∀x. P (EXT_INDIRECT x) else True.
943               ∀register_a: if vect_member … eq_a l registr then ∀x. P (REGISTER x) else True.
944               ∀acc_a_a: if vect_member … eq_a l acc_a then P (ACC_A) else True.
945               ∀acc_b_a: if vect_member … eq_a l acc_b then P (ACC_B) else True.
946               ∀dptr_a: if vect_member … eq_a l dptr then P DPTR else True.
947               ∀data_a: if vect_member … eq_a l data then ∀x. P (DATA x) else True.
948               ∀data16_a: if vect_member … eq_a l data16 then ∀x. P (DATA16 x) else True.
949               ∀acc_dptr_a: if vect_member … eq_a l acc_dptr then P ACC_DPTR else True.
950               ∀acc_pc_a: if vect_member … eq_a l acc_pc then P ACC_PC else True.
951               ∀ext_indirect_dptr_a: if vect_member … eq_a l ext_indirect_dptr then P EXT_INDIRECT_DPTR else True.
952               ∀indirect_dptr_a: if vect_member … eq_a l indirect_dptr then P INDIRECT_DPTR else True.
953               ∀carry_a: if vect_member … eq_a l carry then P CARRY else True.
954               ∀bit_addr_a: if vect_member … eq_a l bit_addr then ∀x. P (BIT_ADDR x) else True.
955               ∀n_bit_addr_a: if vect_member … eq_a l n_bit_addr then ∀x. P (N_BIT_ADDR x) else True.
956               ∀relative_a: if vect_member … eq_a l relative then ∀x. P (RELATIVE x) else True.
957               ∀addr11_a: if vect_member … eq_a l addr11 then ∀x. P (ADDR11 x) else True.
958               ∀addr_16_a: if vect_member … eq_a l addr16 then ∀x. P (ADDR16 x) else True.
959               ∀x:l. P x
960      ] with
961  [ VEmpty          ⇒ λAbsurd. ⊥
962  | VCons len hd tl ⇒ λProof. ?
963  ] (refl ? (S n)). cases daemon. qed. (*
964  [ destruct(Absurd)
965  | # A1 # A2 # A3 # A4 # A5 # A6 # A7
966    # A8 # A9 # A10 # A11 # A12 # A13 # A14
967    # A15 # A16 # A17 # A18 # A19 # X
968    cases X
969    # SUB cases daemon ] qed.
970    cases SUB
971    [ # BYTE
972    normalize
973  ].
974 
975 
976(*    let prepare_hd ≝
977      match hd with
978      [ direct ⇒ λdirect_prf. ?
979      | indirect ⇒ λindirect_prf. ?
980      | ext_indirect ⇒ λext_indirect_prf. ?
981      | registr ⇒ λregistr_prf. ?
982      | acc_a ⇒ λacc_a_prf. ?
983      | acc_b ⇒ λacc_b_prf. ?
984      | dptr ⇒ λdptr_prf. ?
985      | data ⇒ λdata_prf. ?
986      | data16 ⇒ λdata16_prf. ?
987      | acc_dptr ⇒ λacc_dptr_prf. ?
988      | acc_pc ⇒ λacc_pc_prf. ?
989      | ext_indirect_dptr ⇒ λext_indirect_prf. ?
990      | indirect_dptr ⇒ λindirect_prf. ?
991      | carry ⇒ λcarry_prf. ?
992      | bit_addr ⇒ λbit_addr_prf. ?
993      | n_bit_addr ⇒ λn_bit_addr_prf. ?
994      | relative ⇒ λrelative_prf. ?
995      | addr11 ⇒ λaddr11_prf. ?
996      | addr16 ⇒ λaddr16_prf. ?
997      ]
998    in ? *)
999  ].
1000  [ 1: destruct(absd)
1001  | 2: # A1 # A2 # A3 # A4 # A5 # A6
1002       # A7 # A8 # A9 # A10 # A11 # A12
1003       # A13 # A14 # A15 # A16 # A17 # A18
1004       # A19 *
1005  ].
1006
1007
1008  match l return λx.match x with [O ⇒ λl: Vector … O. bool | S x' ⇒ λl: Vector addressing_mode_tag (S x').
1009   (l → bool) → bool ] with
1010  [ VEmpty      ⇒  true 
1011  | VCons len hd tl ⇒ λP.
1012    let process_hd ≝
1013      match hd return λhd. ∀P: hd:::tl → bool. bool with
1014      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
1015      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
1016      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
1017      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
1018      | acc_a ⇒ λP.P ACC_A
1019      | acc_b ⇒ λP.P ACC_B
1020      | dptr ⇒ λP.P DPTR
1021      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
1022      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
1023      | acc_dptr ⇒ λP.P ACC_DPTR
1024      | acc_pc ⇒ λP.P ACC_PC
1025      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
1026      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
1027      | carry ⇒ λP.P CARRY
1028      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
1029      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
1030      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
1031      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
1032      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
1033      ]
1034    in
1035      andb (process_hd P)
1036       (match len return λx. x = len → bool with
1037         [ O ⇒ λprf. true
1038         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
1039  ].
1040  try %
1041  [ 2: cases (sym_eq ??? prf); @tl
1042  | generalize in match H; generalize in match tl; cases prf;
1043    (* cases prf in tl H; : ??? WAS WORKING BEFORE *)
1044    #tl
1045    normalize in ⊢ (∀_: %. ?)
1046    # H
1047    whd
1048    normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1049    cases (is_a hd (subaddressing_modeel y tl H)) whd // ]
1050qed.
1051*)
1052
1053definition load_code_memory_aux ≝
1054 fold_left_i_aux … (
1055   λi, mem, v.
1056     insert … (bitvector_of_nat … i) v mem) (Stub Byte 16).
1057
1058lemma split_zero:
1059  ∀A,m.
1060  ∀v: Vector A m.
1061    〈[[]], v〉 = split A 0 m v.
1062  #A #m #v
1063  cases v try %
1064  #n #hd #tl %
1065qed.
1066
1067lemma Vector_O:
1068  ∀A: Type[0].
1069  ∀v: Vector A 0.
1070    v ≃ VEmpty A.
1071 #A #v
1072 generalize in match (refl … 0);
1073 cases v in ⊢ (??%? → ?%%??); //
1074 #n #hd #tl #absurd
1075 destruct(absurd)
1076qed.
1077
1078lemma Vector_Sn:
1079  ∀A: Type[0].
1080  ∀n: nat.
1081  ∀v: Vector A (S n).
1082    ∃hd: A. ∃tl: Vector A n.
1083      v ≃ VCons A n hd tl.
1084  #A #n #v
1085  generalize in match (refl … (S n));
1086  cases v in ⊢ (??%? → ??(λ_.??(λ_.?%%??)));
1087  [1:
1088    #absurd destruct(absurd)
1089  |2:
1090    #m #hd #tl #eq
1091    <(injective_S … eq)
1092    %{hd} %{tl} %
1093  ]
1094qed.
1095
1096lemma vector_append_zero:
1097  ∀A,m.
1098  ∀v: Vector A m.
1099  ∀q: Vector A 0.
1100    v = q@@v.
1101  #A #m #v #q
1102  >(Vector_O A q) %
1103qed.
1104
1105lemma prod_eq_left:
1106  ∀A: Type[0].
1107  ∀p, q, r: A.
1108    p = q → 〈p, r〉 = 〈q, r〉.
1109  #A #p #q #r #hyp
1110  destruct %
1111qed.
1112
1113lemma prod_eq_right:
1114  ∀A: Type[0].
1115  ∀p, q, r: A.
1116    p = q → 〈r, p〉 = 〈r, q〉.
1117  #A #p #q #r #hyp
1118  destruct %
1119qed.
1120
1121corollary prod_vector_zero_eq_left:
1122  ∀A, n.
1123  ∀q: Vector A O.
1124  ∀r: Vector A n.
1125    〈q, r〉 = 〈[[ ]], r〉.
1126  #A #n #q #r
1127  generalize in match (Vector_O A q …);
1128  #hyp destruct %
1129qed.
1130
1131lemma tail_head:
1132  ∀a: Type[0].
1133  ∀m, n: nat.
1134  ∀hd: a.
1135  ∀l: Vector a m.
1136  ∀r: Vector a n.
1137    tail a ? (hd:::(l@@r)) = l@@r.
1138  #a #m #n #hd #l #r
1139  cases l try %
1140  #m' #hd' #tl' %
1141qed.
1142
1143lemma head_head':
1144  ∀a: Type[0].
1145  ∀m: nat.
1146  ∀hd: a.
1147  ∀l: Vector a m.
1148    hd = head' … (hd:::l).
1149  #a #m #hd #l cases l try %
1150  #m' #hd' #tl %
1151qed.
1152
1153lemma split_succ:
1154  ∀A: Type[0].
1155  ∀m, n: nat.
1156  ∀l: Vector A m.
1157  ∀r: Vector A n.
1158  ∀v: Vector A (m + n).
1159  ∀hd: A.
1160    v = l@@r → (〈l, r〉 = split A m n v → 〈hd:::l, r〉 = split A (S m) n (hd:::v)).
1161  #A #m
1162  elim m
1163  [1:
1164    #n #l #r #v #hd #eq #hyp
1165    destruct >(Vector_O … l) %
1166  |2:
1167    #m' #inductive_hypothesis #n #l #r #v #hd #equal #hyp
1168    destruct
1169    cases (Vector_Sn … l) #hd' #tl'
1170    whd in ⊢ (???%);
1171    >tail_head
1172    <(? : split A (S m') n (l@@r) = split' A (S m') n (l@@r))
1173    try (<hyp <head_head' %)
1174    elim l normalize //
1175  ]
1176qed.
1177
1178lemma split_prod:
1179  ∀A: Type[0].
1180  ∀m, n: nat.
1181  ∀p: Vector A (m + n).
1182  ∀v: Vector A m.
1183  ∀q: Vector A n.
1184    p = v@@q → 〈v, q〉 = split A m n p.
1185  #A #m elim m
1186  [1:
1187    #n #p #v #q #hyp
1188    >hyp <(vector_append_zero A n q v)
1189    >(prod_vector_zero_eq_left A …)
1190    @split_zero
1191  |2:
1192    #r #ih #n #p #v #q #hyp
1193    >hyp
1194    cases (Vector_Sn A r v) #hd #exists
1195    cases exists #tl #jmeq
1196    >jmeq @split_succ try %
1197    @ih %
1198  ]
1199qed.
1200
1201(*
1202lemma split_prod_exists:
1203  ∀A, m, n.
1204  ∀p: Vector A (m + n).
1205  ∃v: Vector A m.
1206  ∃q: Vector A n.
1207    〈v, q〉 = split A m n p.
1208  #A #m #n #p
1209  elim m
1210  @ex_intro
1211  [1:
1212  |2: @ex_intro
1213      [1:
1214      |2:
1215      ]
1216  ]
1217*)
1218
1219definition split_elim:
1220  ∀A: Type[0].
1221  ∀l, m: nat.
1222  ∀v: Vector A (l + m).
1223  ∀P: (Vector A l) × (Vector A m) → Prop.
1224    (∀vl: Vector A l.
1225     ∀vm: Vector A m.
1226      v = vl@@vm → P 〈vl,vm〉) → P (split A l m v) ≝
1227  λa: Type[0].
1228  λl, m: nat.
1229  λv: Vector a (l + m).
1230  λP. ?.
1231  cases daemon
1232qed.
1233
1234(*
1235axiom not_eqvb_S:
1236 ∀pc.
1237 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S pc))).
1238
1239axiom not_eqvb_SS:
1240 ∀pc.
1241 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S (S pc)))).
1242 
1243axiom bitvector_elim_complete:
1244 ∀n,P. bitvector_elim n P = true → ∀bv. P bv.
1245
1246lemma bitvector_elim_complete':
1247 ∀n,P. bitvector_elim n P = true → ∀bv. P bv = true.
1248 #n #P #H generalize in match (bitvector_elim_complete … H) #K #bv
1249 generalize in match (K bv) normalize cases (P bv) normalize // #abs @⊥ //
1250qed.
1251*)
1252
1253(*
1254lemma andb_elim':
1255 ∀b1,b2. (b1 = true) → (b2 = true) → (b1 ∧ b2) = true.
1256 #b1 #b2 #H1 #H2 @andb_elim cases b1 in H1; normalize //
1257qed.
1258*)
1259
1260let rec encoding_check
1261  (code_memory: BitVectorTrie Byte 16) (pc: Word) (final_pc: Word)
1262    (encoding: list Byte)
1263      on encoding: Prop ≝
1264  match encoding with
1265  [ nil ⇒ final_pc = pc
1266  | cons hd tl ⇒
1267    let 〈new_pc, byte〉 ≝ next code_memory pc in
1268      hd = byte ∧ encoding_check code_memory new_pc final_pc tl
1269  ].
1270
1271axiom add_commutative:
1272  ∀n: nat.
1273  ∀l, r: BitVector n.
1274    add n l r = add n r l.
1275
1276axiom add_bitvector_of_nat_Sm:
1277  ∀n, m: nat.
1278    add … (bitvector_of_nat … 1) (bitvector_of_nat … m) =
1279      bitvector_of_nat n (S m).
1280
1281lemma encoding_check_append:
1282  ∀code_memory: BitVectorTrie Byte 16.
1283  ∀final_pc: Word.
1284  ∀l1: list Byte.
1285  ∀pc: Word.
1286  ∀l2: list Byte.
1287    encoding_check code_memory pc final_pc (l1@l2) →
1288      let pc_plus_len ≝ add … pc (bitvector_of_nat … (length … l1)) in
1289        encoding_check code_memory pc pc_plus_len l1 ∧
1290          encoding_check code_memory pc_plus_len final_pc l2.
1291  #code_memory #final_pc #l1 elim l1
1292  [1:
1293    #pc #l2
1294    whd in ⊢ (????% → ?); #H
1295    <add_zero
1296    whd whd in ⊢ (?%?); /2/
1297  |2:
1298    #hd #tl #IH #pc #l2 * #H1 #H2
1299(*    >add_SO in H2; #H2 *)
1300    cases (IH … H2) #E1 #E2 %
1301    [1:
1302      % try @H1
1303      <(add_bitvector_of_nat_Sm 16 (|tl|)) in E1;
1304      <add_associative #assm assumption
1305    |2:
1306      <add_associative in E2;
1307      <(add_bitvector_of_nat_Sm 16 (|tl|)) #assm
1308      assumption
1309    ]
1310  ]
1311qed.
1312
1313lemma destruct_bug_fix:
1314  3 = 0 → False.
1315  #absurd destruct(absurd)
1316qed.
1317
1318definition bitvector_3_cases:
1319  ∀b: BitVector 3.
1320    ∃l, c, r: bool.
1321      b ≃ [[l; c; r]] ≝ ?.
1322  #b
1323  @(Vector_inv_ind bool 3 b (λn: nat. λv: Vector bool n. ∃l:bool.∃c:bool.∃r:bool. v ≃ [[l; c; r]]))
1324  [1:
1325    #absurd @⊥ @destruct_bug_fix
1326    >absurd %
1327  |2:
1328    #n #hd #tl #_ #_ #_ %{hd}
1329    cases daemon
1330  ]
1331qed.
1332
1333lemma bitvector_3_elim_prop:
1334  ∀P: BitVector 3 → Prop.
1335    P [[false;false;false]] → P [[false;false;true]] → P [[false;true;false]] →
1336    P [[false;true;true]] → P [[true;false;false]] → P [[true;false;true]] →
1337    P [[true;true;false]] → P [[true;true;true]] → ∀v. P v.
1338  #P #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 #H9
1339  cases (bitvector_3_cases … H9) #l #assm cases assm
1340  -assm #c #assm cases assm
1341  -assm #r #assm cases assm destruct
1342  cases l cases c cases r //
1343qed.
1344
1345definition ticks_of_instruction ≝
1346  λi.
1347    let trivial_code_memory ≝ assembly1 i in
1348    let trivial_status ≝ load_code_memory trivial_code_memory in
1349      \snd (fetch trivial_status (zero ?)).
1350
1351lemma fetch_assembly:
1352  ∀pc: Word.
1353  ∀i: instruction.
1354  ∀code_memory: BitVectorTrie Byte 16.
1355  ∀assembled: list Byte.
1356    assembled = assembly1 i →
1357      let len ≝ length … assembled in
1358      let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1359        encoding_check code_memory pc pc_plus_len assembled →
1360          let 〈instr, pc', ticks〉 ≝ fetch code_memory pc in
1361           (eq_instruction instr i ∧ eqb ticks (ticks_of_instruction instr) ∧ eq_bv … pc' pc_plus_len) = true.
1362  #pc #i #code_memory #assembled cases i [8: *]
1363 [16,20,29: * * |18,19: * * [1,2,4,5: *] |28: * * [1,2: * [1,2: * [1,2: * [1,2: *]]]]]
1364 [47,48,49:
1365 |*: #arg @(list_addressing_mode_tags_elim_prop … arg) whd try % -arg
1366  [2,3,5,7,10,12,16,17,18,21,25,26,27,30,31,32,37,38,39,40,41,42,43,44,45,48,51,58,
1367   59,60,63,64,65,66,67: #ARG]]
1368 [4,5,6,7,8,9,10,11,12,13,22,23,24,27,28,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
1369  56,57,69,70,72,73,75: #arg2 @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2
1370  [1,2,4,7,9,10,12,13,15,16,17,18,20,22,23,24,25,26,27,28,29,30,31,32,33,36,37,38,
1371   39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
1372   68,69,70,71: #ARG2]]
1373 [1,2,19,20: #arg3 @(list_addressing_mode_tags_elim_prop … arg3) whd try % -arg3 #ARG3]
1374 normalize in ⊢ (???% → ?);
1375 [92,94,42,93,95: @split_elim #vl #vm #E >E -E; [2,4: @(bitvector_3_elim_prop … vl)]
1376  normalize in ⊢ (???% → ?);]
1377 #H >H * #H1 try (whd in ⊢ (% → ?); * #H2)
1378 try (whd in ⊢ (% → ?); * #H3) whd in ⊢ (% → ?); #H4
1379 [ whd in match fetch; normalize nodelta <H1 ] cases daemon
1380(*
1381 whd in ⊢ (let ? ≝ ??% in ?); <H1 whd in ⊢ (let fetched ≝ % in ?)
1382 [17,18,19,20,21,22,23,24,25,26,31,34,35,36,37,38: <H3]
1383 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
1384  30,31,32,33,34,35,36,37,38,39,40,43,45,48,49,52,53,54,55,56,57,60,61,62,65,66,
1385  69,70,73,74,78,80,81,84,85,95,98,101,102,103,104,105,106,107,108,109,110: <H2]
1386 whd >eq_instruction_refl >H4 @eq_bv_refl
1387*) (* XXX: not working! *)
1388qed.
1389
1390let rec fetch_many
1391  (code_memory: BitVectorTrie Byte 16) (final_pc: Word) (pc: Word)
1392    (expected: list instruction)
1393      on expected: Prop ≝
1394  match expected with
1395  [ nil ⇒ eq_bv … pc final_pc = true
1396  | cons i tl ⇒
1397    let fetched ≝ fetch code_memory pc in
1398    let 〈instr_pc, ticks〉 ≝ fetched in
1399    let 〈instr,pc'〉 ≝ instr_pc in
1400      eq_instruction instr i = true ∧
1401        ticks = (ticks_of_instruction i) ∧
1402        fetch_many code_memory final_pc pc' tl
1403  ].
1404
1405lemma option_destruct_Some:
1406  ∀A: Type[0].
1407  ∀a, b: A.
1408    Some A a = Some A b → a = b.
1409  #A #a #b #EQ
1410  destruct %
1411qed.
1412
1413axiom eq_instruction_to_eq:
1414  ∀i1, i2: instruction.
1415    eq_instruction i1 i2 = true → i1 ≃ i2.
1416         
1417lemma fetch_assembly_pseudo':
1418  ∀lookup_labels.
1419  ∀sigma: Word → Word.
1420  ∀policy: Word → bool.
1421  ∀ppc.
1422  ∀lookup_datalabels.
1423  ∀pi.
1424  ∀code_memory.
1425  ∀len.
1426  ∀assembled.
1427  ∀instructions.
1428    let pc ≝ sigma ppc in
1429      instructions = expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi →
1430        〈len,assembled〉 = assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi →
1431          let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1432            encoding_check code_memory pc pc_plus_len assembled →
1433              fetch_many code_memory pc_plus_len pc instructions.
1434  #lookup_labels #sigma #policy #ppc #lookup_datalabels #pi #code_memory #len #assembled #instructions
1435  normalize nodelta #instructions_refl whd in ⊢ (???% → ?); <instructions_refl whd in ⊢ (???% → ?); #assembled_refl
1436  cases (pair_destruct ?????? assembled_refl) -assembled_refl #len_refl #assembled_refl
1437  >len_refl >assembled_refl -len_refl
1438  generalize in match (add 16 (sigma ppc)
1439    (bitvector_of_nat 16
1440     (|flatten (Vector bool 8)
1441       (map instruction (list (Vector bool 8)) assembly1 instructions)|)));
1442  #final_pc
1443  generalize in match (sigma ppc); elim instructions
1444  [1:
1445    #pc whd in ⊢ (% → %); #H >H @eq_bv_refl
1446  |2:
1447    #i #tl #IH #pc #H whd
1448    cases (encoding_check_append ????? H) -H #H1 #H2
1449    @pair_elim #instr_pc #ticks #fetch_refl normalize nodelta
1450    @pair_elim #instr #pc' #instr_pc_refl normalize nodelta
1451    lapply (fetch_assembly pc i code_memory (assembly1 i) (refl …)) whd in ⊢ (% → ?);
1452    #H3 lapply (H3 H1) -H3 >fetch_refl >instr_pc_refl normalize nodelta
1453    #H3 lapply (conjunction_true ?? H3) * #H4 #H5 %
1454    [1:
1455      lapply (conjunction_true … H4) * #B1 #B2
1456      % try assumption @eqb_true_to_eq
1457      <(eq_instruction_to_eq … B1) assumption
1458    |2:
1459      >(eq_bv_eq … H5) @IH @H2
1460    ]
1461  ]
1462qed.
1463
1464lemma fetch_assembly_pseudo:
1465  ∀program: pseudo_assembly_program.
1466  ∀sigma: Word → Word.
1467  ∀policy: Word → bool.
1468  let lookup_labels ≝ λx:Identifier. sigma (address_of_word_labels_code_mem (\snd  program) x) in
1469  ∀ppc.
1470  ∀code_memory.
1471  let lookup_datalabels ≝ λx:Identifier.lookup_def … (construct_datalabels (\fst  program)) x (zero 16) in
1472  let pi ≝  \fst  (fetch_pseudo_instruction (\snd program) ppc) in
1473  let pc ≝ sigma ppc in
1474  let instructions ≝ expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi in
1475  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi in
1476  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1477    encoding_check code_memory pc pc_plus_len assembled →
1478      fetch_many code_memory pc_plus_len pc instructions.
1479 #program #sigma #policy letin lookup_labels ≝ (λx.?) #ppc #code_memory
1480 letin lookup_datalabels ≝ (λx.?)
1481 letin pi ≝ (fst ???)
1482 letin pc ≝ (sigma ?)
1483 letin instructions ≝ (expand_pseudo_instruction ??????)
1484 @pair_elim #len #assembled #assembled_refl normalize nodelta
1485 #H
1486 generalize in match
1487  (fetch_assembly_pseudo' lookup_labels sigma policy ppc lookup_datalabels pi code_memory len assembled instructions) in ⊢ ?;
1488 #X destruct normalize nodelta @X try % <assembled_refl try % assumption
1489qed.
1490
1491(* This is a trivial consequence of fetch_assembly_pseudo + the proof that the
1492   function that load the code in memory is correct. The latter is based
1493   on missing properties from the standard library on the BitVectorTrie
1494   data structrure.
1495   
1496   Wrong at the moment, requires Jaap's precondition to ensure that the program
1497   does not overflow when put into code memory (i.e. shorter than 2^16 bytes).
1498*)
1499axiom assembly_ok:
1500  ∀program.
1501  ∀sigma: Word → Word.
1502  ∀policy: Word → bool.
1503  ∀assembled.
1504  ∀costs'.
1505  let 〈labels, costs〉 ≝ create_label_cost_map (\snd program) in
1506  〈assembled,costs'〉 = assembly program sigma policy →
1507  costs = costs' ∧
1508  let code_memory ≝ load_code_memory assembled in
1509  let datalabels ≝ construct_datalabels (\fst program) in
1510  let lookup_labels ≝ λx. sigma (address_of_word_labels_code_mem (\snd program) x) in 
1511  let lookup_datalabels ≝ λx. lookup_def ?? datalabels x (zero ?) in
1512  ∀ppc.
1513  let 〈pi, newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1514  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi in
1515  let pc ≝ sigma ppc in
1516  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1517   encoding_check code_memory pc pc_plus_len assembled ∧
1518       sigma newppc = add … pc (bitvector_of_nat … len).
1519
1520(* XXX: should we add that costs = costs'? *)
1521lemma fetch_assembly_pseudo2:
1522  ∀program.
1523  ∀sigma.
1524  ∀policy.
1525  ∀ppc.
1526  let 〈labels, costs〉 ≝ create_label_cost_map (\snd program) in
1527  let 〈assembled, costs'〉 ≝ assembly program sigma policy in
1528  let code_memory ≝ load_code_memory assembled in
1529  let data_labels ≝ construct_datalabels (\fst program) in
1530  let lookup_labels ≝ λx. sigma (address_of_word_labels_code_mem (\snd program) x) in 
1531  let lookup_datalabels ≝ λx. lookup_def ? ? data_labels x (zero ?) in
1532  let 〈pi,newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1533  let instructions ≝ expand_pseudo_instruction lookup_labels sigma policy ppc lookup_datalabels pi in
1534    fetch_many code_memory (sigma newppc) (sigma ppc) instructions.
1535  * #preamble #instr_list #sigma #policy #ppc
1536  @pair_elim #labels #costs #create_label_map_refl
1537  @pair_elim #assembled #costs' #assembled_refl
1538  letin code_memory ≝ (load_code_memory ?)
1539  letin data_labels ≝ (construct_datalabels ?)
1540  letin lookup_labels ≝ (λx. ?)
1541  letin lookup_datalabels ≝ (λx. ?)
1542  @pair_elim #pi #newppc #fetch_pseudo_refl
1543  lapply (assembly_ok 〈preamble, instr_list〉 sigma policy assembled costs')
1544  @pair_elim #labels' #costs' #create_label_map_refl' #H
1545  cases (H (sym_eq … assembled_refl))
1546  #_
1547  lapply (refl … (assembly_1_pseudoinstruction lookup_labels sigma policy ppc lookup_datalabels pi))
1548  cases (assembly_1_pseudoinstruction ??????) in ⊢ (???% → ?);
1549  #len #assembledi #EQ4 #H
1550  lapply (H ppc) >fetch_pseudo_refl #H
1551  lapply (fetch_assembly_pseudo 〈preamble,instr_list〉 sigma policy ppc (load_code_memory assembled))
1552  >EQ4 #H1 cases H #H2 #H3 >H3 normalize nodelta in H1; normalize nodelta
1553  >fetch_pseudo_refl in H1; #assm @assm assumption
1554qed.
1555
1556(* OLD?
1557definition assembly_specification:
1558  ∀assembly_program: pseudo_assembly_program.
1559  ∀code_mem: BitVectorTrie Byte 16. Prop ≝
1560  λpseudo_assembly_program.
1561  λcode_mem.
1562    ∀pc: Word.
1563      let 〈preamble, instr_list〉 ≝ pseudo_assembly_program in
1564      let 〈pre_instr, pre_new_pc〉 ≝ fetch_pseudo_instruction instr_list pc in
1565      let labels ≝ λx. sigma' pseudo_assembly_program (address_of_word_labels_code_mem instr_list x) in
1566      let datalabels ≝ λx. sigma' pseudo_assembly_program (lookup ? ? x (construct_datalabels preamble) (zero ?)) in
1567      let pre_assembled ≝ assembly_1_pseudoinstruction pseudo_assembly_program
1568       (sigma' pseudo_assembly_program pc) labels datalabels pre_instr in
1569      match pre_assembled with
1570       [ None ⇒ True
1571       | Some pc_code ⇒
1572          let 〈new_pc,code〉 ≝ pc_code in
1573           encoding_check code_mem pc (sigma' pseudo_assembly_program pre_new_pc) code ].
1574
1575axiom assembly_meets_specification:
1576  ∀pseudo_assembly_program.
1577    match assembly pseudo_assembly_program with
1578    [ None ⇒ True
1579    | Some code_mem_cost ⇒
1580      let 〈code_mem, cost〉 ≝ code_mem_cost in
1581        assembly_specification pseudo_assembly_program (load_code_memory code_mem)
1582    ].
1583(*
1584  # PROGRAM
1585  [ cases PROGRAM
1586    # PREAMBLE
1587    # INSTR_LIST
1588    elim INSTR_LIST
1589    [ whd
1590      whd in ⊢ (∀_. %)
1591      # PC
1592      whd
1593    | # INSTR
1594      # INSTR_LIST_TL
1595      # H
1596      whd
1597      whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1598    ]
1599  | cases not_implemented
1600  ] *)
1601*)
1602
1603definition internal_pseudo_address_map ≝ list (BitVector 8).
1604
1605axiom low_internal_ram_of_pseudo_low_internal_ram:
1606 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1607
1608axiom high_internal_ram_of_pseudo_high_internal_ram:
1609 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1610
1611axiom low_internal_ram_of_pseudo_internal_ram_hit:
1612 ∀M:internal_pseudo_address_map.∀cm.∀s:PseudoStatus cm.∀sigma:Word → Word × bool.∀addr:BitVector 7.
1613  member ? (eq_bv 8) (false:::addr) M = true →
1614   let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1615   let pbl ≝ lookup ? 7 addr (low_internal_ram … s) (zero 8) in
1616   let pbu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) (low_internal_ram … s) (zero 8) in
1617   let bl ≝ lookup ? 7 addr ram (zero 8) in
1618   let bu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) ram (zero 8) in
1619    bu@@bl = \fst (sigma (pbu@@pbl)).
1620
1621(* changed from add to sub *)
1622axiom low_internal_ram_of_pseudo_internal_ram_miss:
1623 ∀T.∀M:internal_pseudo_address_map.∀cm.∀s:PreStatus T cm.∀addr:BitVector 7.
1624  let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1625  let 〈Saddr,flags〉 ≝ sub_7_with_carry addr (bitvector_of_nat 7 1) false in
1626  let carr ≝ get_index_v ? ? flags 1 ? in
1627  carr = false →
1628  member ? (eq_bv 8) (false:::Saddr) M = false →
1629   member ? (eq_bv 8) (false:::addr) M = false →
1630    lookup ? 7 addr ram (zero ?) = lookup ? 7 addr (low_internal_ram … s) (zero ?).
1631  //
1632qed.
1633
1634definition addressing_mode_ok ≝
1635 λT.λM:internal_pseudo_address_map.λcm.λs:PreStatus T cm.
1636  λaddr:addressing_mode.
1637   match addr with
1638    [ DIRECT d ⇒
1639       ¬(member ? (eq_bv 8) d M) ∧
1640       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1641    | INDIRECT i ⇒
1642       let d ≝ get_register … s [[false;false;i]] in
1643       ¬(member ? (eq_bv 8) d M) ∧
1644       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1645    | EXT_INDIRECT _ ⇒ true
1646    | REGISTER _ ⇒ true
1647    | ACC_A ⇒ true
1648    | ACC_B ⇒ true
1649    | DPTR ⇒ true
1650    | DATA _ ⇒ true
1651    | DATA16 _ ⇒ true
1652    | ACC_DPTR ⇒ true
1653    | ACC_PC ⇒ true
1654    | EXT_INDIRECT_DPTR ⇒ true
1655    | INDIRECT_DPTR ⇒ true
1656    | CARRY ⇒ true
1657    | BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1658    | N_BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1659    | RELATIVE _ ⇒ true
1660    | ADDR11 _ ⇒ true
1661    | ADDR16 _ ⇒ true ].
1662   
1663definition next_internal_pseudo_address_map0 ≝
1664  λT.
1665  λfetched.
1666  λM: internal_pseudo_address_map.
1667  λcm:T.
1668  λs: PreStatus T cm.
1669   match fetched with
1670    [ Comment _ ⇒ Some ? M
1671    | Cost _ ⇒ Some … M
1672    | Jmp _ ⇒ Some … M
1673    | Call _ ⇒
1674       Some … (add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1)::M)
1675    | Mov _ _ ⇒ Some … M
1676    | Instruction instr ⇒
1677       match instr with
1678        [ ADD addr1 addr2 ⇒
1679           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1680            Some ? M
1681           else
1682            None ?
1683        | ADDC addr1 addr2 ⇒
1684           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1685            Some ? M
1686           else
1687            None ?
1688        | SUBB addr1 addr2 ⇒
1689           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1690            Some ? M
1691           else
1692            None ?       
1693        | _ ⇒ (* TO BE COMPLETED *) Some ? M ]].
1694 
1695
1696definition next_internal_pseudo_address_map ≝
1697 λM:internal_pseudo_address_map.
1698 λcm.
1699  λs:PseudoStatus cm.
1700    next_internal_pseudo_address_map0 ?
1701     (\fst (fetch_pseudo_instruction (\snd cm) (program_counter … s))) M cm s.
1702
1703definition code_memory_of_pseudo_assembly_program:
1704    ∀pap:pseudo_assembly_program.
1705      (Word → Word) → (Word → bool) → BitVectorTrie Byte 16 ≝
1706  λpap.
1707  λsigma.
1708  λpolicy.
1709    let p ≝ assembly pap sigma policy in
1710      load_code_memory (\fst p).
1711
1712definition status_of_pseudo_status:
1713    internal_pseudo_address_map → ∀pap. ∀ps: PseudoStatus pap.
1714      ∀sigma: Word → Word. ∀policy: Word → bool.
1715        Status (code_memory_of_pseudo_assembly_program pap sigma policy) ≝
1716  λM.
1717  λpap.
1718  λps.
1719  λsigma.
1720  λpolicy.
1721  let cm ≝ code_memory_of_pseudo_assembly_program … sigma policy in
1722  let pc ≝ sigma (program_counter … ps) in
1723  let lir ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … ps) in
1724  let hir ≝ high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … ps) in
1725     mk_PreStatus (BitVectorTrie Byte 16)
1726      cm
1727      lir
1728      hir
1729      (external_ram … ps)
1730      pc
1731      (special_function_registers_8051 … ps)
1732      (special_function_registers_8052 … ps)
1733      (p1_latch … ps)
1734      (p3_latch … ps)
1735      (clock … ps).
1736
1737(*
1738definition write_at_stack_pointer':
1739 ∀M. ∀ps: PreStatus M. Byte → Σps':PreStatus M.(code_memory … ps = code_memory … ps') ≝
1740  λM: Type[0].
1741  λs: PreStatus M.
1742  λv: Byte.
1743    let 〈 nu, nl 〉 ≝ split … 4 4 (get_8051_sfr ? s SFR_SP) in
1744    let bit_zero ≝ get_index_v… nu O ? in
1745    let bit_1 ≝ get_index_v… nu 1 ? in
1746    let bit_2 ≝ get_index_v… nu 2 ? in
1747    let bit_3 ≝ get_index_v… nu 3 ? in
1748      if bit_zero then
1749        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1750                              v (low_internal_ram ? s) in
1751          set_low_internal_ram ? s memory
1752      else
1753        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1754                              v (high_internal_ram ? s) in
1755          set_high_internal_ram ? s memory.
1756  [ cases l0 %
1757  |2,3,4,5: normalize repeat (@ le_S_S) @ le_O_n ]
1758qed.
1759
1760definition execute_1_pseudo_instruction': (Word → nat) → ∀ps:PseudoStatus.
1761 Σps':PseudoStatus.(code_memory … ps = code_memory … ps')
1762
1763  λticks_of.
1764  λs.
1765  let 〈instr, pc〉 ≝ fetch_pseudo_instruction (\snd (code_memory ? s)) (program_counter ? s) in
1766  let ticks ≝ ticks_of (program_counter ? s) in
1767  let s ≝ set_clock ? s (clock ? s + ticks) in
1768  let s ≝ set_program_counter ? s pc in
1769    match instr with
1770    [ Instruction instr ⇒
1771       execute_1_preinstruction … (λx, y. address_of_word_labels y x) instr s
1772    | Comment cmt ⇒ s
1773    | Cost cst ⇒ s
1774    | Jmp jmp ⇒ set_program_counter ? s (address_of_word_labels s jmp)
1775    | Call call ⇒
1776      let a ≝ address_of_word_labels s call in
1777      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1778      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1779      let 〈pc_bu, pc_bl〉 ≝ split ? 8 8 (program_counter ? s) in
1780      let s ≝ write_at_stack_pointer' ? s pc_bl in
1781      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1782      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1783      let s ≝ write_at_stack_pointer' ? s pc_bu in
1784        set_program_counter ? s a
1785    | Mov dptr ident ⇒
1786       set_arg_16 ? s (get_arg_16 ? s (DATA16 (address_of_word_labels s ident))) dptr
1787    ].
1788 [
1789 |2,3,4: %
1790 | <(sig2 … l7) whd in ⊢ (??? (??%)) <(sig2 … l5) %
1791 |
1792 | %
1793 ]
1794 cases not_implemented
1795qed.
1796*)
1797
1798(*
1799lemma execute_code_memory_unchanged:
1800 ∀ticks_of,ps. code_memory ? ps = code_memory ? (execute_1_pseudo_instruction ticks_of ps).
1801 #ticks #ps whd in ⊢ (??? (??%))
1802 cases (fetch_pseudo_instruction (\snd (code_memory pseudo_assembly_program ps))
1803  (program_counter pseudo_assembly_program ps)) #instr #pc
1804 whd in ⊢ (??? (??%)) cases instr
1805  [ #pre cases pre
1806     [ #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1807       cases (split ????) #z1 #z2 %
1808     | #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1809       cases (split ????) #z1 #z2 %
1810     | #a1 #a2 whd in ⊢ (??? (??%)) cases (sub_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1811       cases (split ????) #z1 #z2 %
1812     | #a1 whd in ⊢ (??? (??%)) cases a1 #x #H whd in ⊢ (??? (??%)) cases x
1813       [ #x1 whd in ⊢ (??? (??%))
1814     | *: cases not_implemented
1815     ]
1816  | #comment %
1817  | #cost %
1818  | #label %
1819  | #label whd in ⊢ (??? (??%)) cases (half_add ???) #x1 #x2 whd in ⊢ (??? (??%))
1820    cases (split ????) #y1 #y2 whd in ⊢ (??? (??%)) cases (half_add ???) #z1 #z2
1821    whd in ⊢ (??? (??%)) whd in ⊢ (??? (??%)) cases (split ????) #w1 #w2
1822    whd in ⊢ (??? (??%)) cases (get_index_v bool ????) whd in ⊢ (??? (??%))
1823    (* CSC: ??? *)
1824  | #dptr #label (* CSC: ??? *)
1825  ]
1826  cases not_implemented
1827qed.
1828*)
1829
1830(* DEAD CODE?
1831lemma status_of_pseudo_status_failure_depends_only_on_code_memory:
1832 ∀M:internal_pseudo_address_map.
1833 ∀ps,ps': PseudoStatus.
1834 ∀pol.
1835  ∀prf:code_memory … ps = code_memory … ps'.
1836   let pol' ≝ ? in
1837   match status_of_pseudo_status M ps pol with
1838    [ None ⇒ status_of_pseudo_status M ps' pol' = None …
1839    | Some _ ⇒ ∃w. status_of_pseudo_status M ps' pol' = Some … w
1840    ].
1841 [2: <prf @pol]
1842 #M #ps #ps' #pol #H normalize nodelta; whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ? ])
1843 generalize in match (refl … (assembly (code_memory … ps) pol))
1844 cases (assembly ??) in ⊢ (???% → %)
1845  [ #K whd whd in ⊢ (??%?) <H >K %
1846  | #x #K whd whd in ⊢ (?? (λ_.??%?)) <H >K % [2: % ] ]
1847qed.
1848*)
1849
1850definition ticks_of0:
1851    ∀p:pseudo_assembly_program.
1852      (Word → Word) → (Word → bool) → Word → pseudo_instruction → nat × nat ≝
1853  λprogram: pseudo_assembly_program.
1854  λsigma.
1855  λpolicy.
1856  λppc: Word.
1857  λfetched.
1858    match fetched with
1859    [ Instruction instr ⇒
1860      match instr with
1861      [ JC lbl ⇒ ? (*
1862        match pol lookup_labels ppc with
1863        [ short_jump ⇒ 〈2, 2〉
1864        | medium_jump ⇒ ?
1865        | long_jump ⇒ 〈4, 4〉
1866        ] *)
1867      | JNC lbl ⇒ ? (*
1868        match pol lookup_labels ppc with
1869        [ short_jump ⇒ 〈2, 2〉
1870        | medium_jump ⇒ ?
1871        | long_jump ⇒ 〈4, 4〉
1872        ] *)
1873      | JB bit lbl ⇒ ? (*
1874        match pol lookup_labels ppc with
1875        [ short_jump ⇒ 〈2, 2〉
1876        | medium_jump ⇒ ?
1877        | long_jump ⇒ 〈4, 4〉
1878        ] *)
1879      | JNB bit lbl ⇒ ? (*
1880        match pol lookup_labels ppc with
1881        [ short_jump ⇒ 〈2, 2〉
1882        | medium_jump ⇒ ?
1883        | long_jump ⇒ 〈4, 4〉
1884        ] *)
1885      | JBC bit lbl ⇒ ? (*
1886        match pol lookup_labels ppc with
1887        [ short_jump ⇒ 〈2, 2〉
1888        | medium_jump ⇒ ?
1889        | long_jump ⇒ 〈4, 4〉
1890        ] *)
1891      | JZ lbl ⇒ ? (*
1892        match pol lookup_labels ppc with
1893        [ short_jump ⇒ 〈2, 2〉
1894        | medium_jump ⇒ ?
1895        | long_jump ⇒ 〈4, 4〉
1896        ] *)
1897      | JNZ lbl ⇒ ? (*
1898        match pol lookup_labels  ppc with
1899        [ short_jump ⇒ 〈2, 2〉
1900        | medium_jump ⇒ ?
1901        | long_jump ⇒ 〈4, 4〉
1902        ] *)
1903      | CJNE arg lbl ⇒ ? (*
1904        match pol lookup_labels ppc with
1905        [ short_jump ⇒ 〈2, 2〉
1906        | medium_jump ⇒ ?
1907        | long_jump ⇒ 〈4, 4〉
1908        ] *)
1909      | DJNZ arg lbl ⇒ ? (*
1910        match pol lookup_labels ppc with
1911        [ short_jump ⇒ 〈2, 2〉
1912        | medium_jump ⇒ ?
1913        | long_jump ⇒ 〈4, 4〉
1914        ] *)
1915      | ADD arg1 arg2 ⇒
1916        let ticks ≝ ticks_of_instruction (ADD ? arg1 arg2) in
1917         〈ticks, ticks〉
1918      | ADDC arg1 arg2 ⇒
1919        let ticks ≝ ticks_of_instruction (ADDC ? arg1 arg2) in
1920         〈ticks, ticks〉
1921      | SUBB arg1 arg2 ⇒
1922        let ticks ≝ ticks_of_instruction (SUBB ? arg1 arg2) in
1923         〈ticks, ticks〉
1924      | INC arg ⇒
1925        let ticks ≝ ticks_of_instruction (INC ? arg) in
1926         〈ticks, ticks〉
1927      | DEC arg ⇒
1928        let ticks ≝ ticks_of_instruction (DEC ? arg) in
1929         〈ticks, ticks〉
1930      | MUL arg1 arg2 ⇒
1931        let ticks ≝ ticks_of_instruction (MUL ? arg1 arg2) in
1932         〈ticks, ticks〉
1933      | DIV arg1 arg2 ⇒
1934        let ticks ≝ ticks_of_instruction (DIV ? arg1 arg2) in
1935         〈ticks, ticks〉
1936      | DA arg ⇒
1937        let ticks ≝ ticks_of_instruction (DA ? arg) in
1938         〈ticks, ticks〉
1939      | ANL arg ⇒
1940        let ticks ≝ ticks_of_instruction (ANL ? arg) in
1941         〈ticks, ticks〉
1942      | ORL arg ⇒
1943        let ticks ≝ ticks_of_instruction (ORL ? arg) in
1944         〈ticks, ticks〉
1945      | XRL arg ⇒
1946        let ticks ≝ ticks_of_instruction (XRL ? arg) in
1947         〈ticks, ticks〉
1948      | CLR arg ⇒
1949        let ticks ≝ ticks_of_instruction (CLR ? arg) in
1950         〈ticks, ticks〉
1951      | CPL arg ⇒
1952        let ticks ≝ ticks_of_instruction (CPL ? arg) in
1953         〈ticks, ticks〉
1954      | RL arg ⇒
1955        let ticks ≝ ticks_of_instruction (RL ? arg) in
1956         〈ticks, ticks〉
1957      | RLC arg ⇒
1958        let ticks ≝ ticks_of_instruction (RLC ? arg) in
1959         〈ticks, ticks〉
1960      | RR arg ⇒
1961        let ticks ≝ ticks_of_instruction (RR ? arg) in
1962         〈ticks, ticks〉
1963      | RRC arg ⇒
1964        let ticks ≝ ticks_of_instruction (RRC ? arg) in
1965         〈ticks, ticks〉
1966      | SWAP arg ⇒
1967        let ticks ≝ ticks_of_instruction (SWAP ? arg) in
1968         〈ticks, ticks〉
1969      | MOV arg ⇒
1970        let ticks ≝ ticks_of_instruction (MOV ? arg) in
1971         〈ticks, ticks〉
1972      | MOVX arg ⇒
1973        let ticks ≝ ticks_of_instruction (MOVX ? arg) in
1974         〈ticks, ticks〉
1975      | SETB arg ⇒
1976        let ticks ≝ ticks_of_instruction (SETB ? arg) in
1977         〈ticks, ticks〉
1978      | PUSH arg ⇒
1979        let ticks ≝ ticks_of_instruction (PUSH ? arg) in
1980         〈ticks, ticks〉
1981      | POP arg ⇒
1982        let ticks ≝ ticks_of_instruction (POP ? arg) in
1983         〈ticks, ticks〉
1984      | XCH arg1 arg2 ⇒
1985        let ticks ≝ ticks_of_instruction (XCH ? arg1 arg2) in
1986         〈ticks, ticks〉
1987      | XCHD arg1 arg2 ⇒
1988        let ticks ≝ ticks_of_instruction (XCHD ? arg1 arg2) in
1989         〈ticks, ticks〉
1990      | RET ⇒
1991        let ticks ≝ ticks_of_instruction (RET ?) in
1992         〈ticks, ticks〉
1993      | RETI ⇒
1994        let ticks ≝ ticks_of_instruction (RETI ?) in
1995         〈ticks, ticks〉
1996      | NOP ⇒
1997        let ticks ≝ ticks_of_instruction (NOP ?) in
1998         〈ticks, ticks〉
1999      ]
2000    | Comment comment ⇒ 〈0, 0〉
2001    | Cost cost ⇒ 〈0, 0〉
2002    | Jmp jmp ⇒ 〈2, 2〉
2003    | Call call ⇒ 〈2, 2〉
2004    | Mov dptr tgt ⇒ 〈2, 2〉
2005    ].
2006    cases daemon
2007qed.
2008
2009definition ticks_of:
2010    ∀p:pseudo_assembly_program.
2011      (Word → Word) → (Word → bool) → Word → nat × nat ≝
2012  λprogram: pseudo_assembly_program.
2013  λsigma.
2014  λpolicy.
2015  λppc: Word.
2016    let 〈preamble, pseudo〉 ≝ program in
2017    let 〈fetched, new_ppc〉 ≝ fetch_pseudo_instruction pseudo ppc in
2018     ticks_of0 program sigma policy ppc fetched.
2019
2020lemma eq_rect_Type1_r:
2021  ∀A: Type[1].
2022  ∀a: A.
2023  ∀P: ∀x:A. eq ? x a → Type[1]. P a (refl A a) → ∀x: A.∀p:eq ? x a. P x p.
2024  #A #a #P #H #x #p
2025  generalize in match H;
2026  generalize in match P;
2027  cases p //
2028qed.
2029
2030axiom split_append:
2031  ∀A: Type[0].
2032  ∀m, n: nat.
2033  ∀v, v': Vector A m.
2034  ∀q, q': Vector A n.
2035    let 〈v', q'〉 ≝ split A m n (v@@q) in
2036      v = v' ∧ q = q'.
2037
2038lemma split_vector_singleton:
2039  ∀A: Type[0].
2040  ∀n: nat.
2041  ∀v: Vector A (S n).
2042  ∀rest: Vector A n.
2043  ∀s: Vector A 1.
2044    v = s @@ rest →
2045    ((get_index_v A ? v 0 ?) ::: rest) = v.
2046  [1:
2047    #A #n #v cases daemon (* XXX: !!! *)
2048  |2:
2049    @le_S_S @le_O_n
2050  ]
2051qed.
2052
2053example sub_minus_one_seven_eight:
2054  ∀v: BitVector 7.
2055  false ::: (\fst (sub_7_with_carry v (bitvector_of_nat ? 1) false)) =
2056  \fst (sub_8_with_carry (false ::: v) (bitvector_of_nat ? 1) false).
2057 cases daemon.
2058qed.
2059
2060(*
2061lemma blah:
2062  ∀m: internal_pseudo_address_map.
2063  ∀s: PseudoStatus.
2064  ∀arg: Byte.
2065  ∀b: bool.
2066    addressing_mode_ok m s (DIRECT arg) = true →
2067      get_arg_8 ? (set_low_internal_ram ? s (low_internal_ram_of_pseudo_low_internal_ram m (low_internal_ram ? s))) b (DIRECT arg) =
2068      get_arg_8 ? s b (DIRECT arg).
2069  [2, 3: normalize % ]
2070  #m #s #arg #b #hyp
2071  whd in ⊢ (??%%)
2072  @split_elim''
2073  #nu' #nl' #arg_nu_nl_eq
2074  normalize nodelta
2075  generalize in match (refl ? (get_index_v bool 4 nu' ? ?))
2076  cases (get_index_v bool 4 nu' ? ?) in ⊢ (??%? → %)
2077  #get_index_v_eq
2078  normalize nodelta
2079  [2:
2080    normalize nodelta
2081    @split_elim''
2082    #bit_one' #three_bits' #bit_one_three_bit_eq
2083    generalize in match (low_internal_ram_of_pseudo_internal_ram_miss m s (three_bits'@@nl'))
2084    normalize nodelta
2085    generalize in match (refl ? (sub_7_with_carry ? ? ?))
2086    cases (sub_7_with_carry ? ? ?) in ⊢ (??%? → %)
2087    #Saddr #carr' #Saddr_carr_eq
2088    normalize nodelta
2089    #carr_hyp'
2090    @carr_hyp'
2091    [1:
2092    |2: whd in hyp:(??%?); generalize in match hyp; -hyp;
2093        generalize in match (refl ? (¬(member (BitVector 8) ? arg m)))
2094        cases (¬(member (BitVector 8) ? arg m)) in ⊢ (??%? → %)
2095        #member_eq
2096        normalize nodelta
2097        [2: #destr destruct(destr)
2098        |1: -carr_hyp';
2099            >arg_nu_nl_eq
2100            <(split_vector_singleton ? ? nu' ? ? ? bit_one_three_bit_eq)
2101            [1: >get_index_v_eq in ⊢ (??%? → ?)
2102            |2: @le_S @le_S @le_S @le_n
2103            ]
2104            cases (member (BitVector 8) ? (\fst ?) ?)
2105            [1: #destr normalize in destr; destruct(destr)
2106            |2:
2107            ]
2108        ]
2109    |3: >get_index_v_eq in ⊢ (??%?)
2110        change in ⊢ (??(???%?)?) with ((? ::: three_bits') @@ nl')
2111        >(split_vector_singleton … bit_one_three_bit_eq)
2112        <arg_nu_nl_eq
2113        whd in hyp:(??%?)
2114        cases (member (BitVector 8) (eq_bv 8) arg m) in hyp
2115        normalize nodelta [*: #ignore @sym_eq ]
2116    ]
2117  |
2118  ].
2119*)
2120(*
2121map_address0 ... (DIRECT arg) = Some .. →
2122  get_arg_8 (map_address0 ... (internal_ram ...) (DIRECT arg) =
2123  get_arg_8 (internal_ram ...) (DIRECT arg)
2124
2125((if addressing_mode_ok M ps ACC_A∧addressing_mode_ok M ps (DIRECT ARG2) 
2126                     then Some internal_pseudo_address_map M 
2127                     else None internal_pseudo_address_map )
2128                    =Some internal_pseudo_address_map M')
2129*)
2130
2131axiom low_internal_ram_write_at_stack_pointer:
2132 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma: Word → Word.∀policy: Word → bool.
2133 ∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2134  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2135  low_internal_ram ? cm2 s2 = low_internal_ram T2 cm3 s3 →
2136  sp1 = add ? (get_8051_sfr … cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2137  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2138  bu@@bl = sigma (pbu@@pbl) →
2139   low_internal_ram T1 cm1
2140     (write_at_stack_pointer …
2141       (set_8051_sfr …
2142         (write_at_stack_pointer …
2143           (set_8051_sfr …
2144             (set_low_internal_ram … s1
2145               (low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s2)))
2146             SFR_SP sp1)
2147          bl)
2148        SFR_SP sp2)
2149      bu)
2150   = low_internal_ram_of_pseudo_low_internal_ram (sp1::M)
2151      (low_internal_ram …
2152       (write_at_stack_pointer …
2153         (set_8051_sfr …
2154           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2155          SFR_SP sp2)
2156        pbu)).
2157
2158lemma high_internal_ram_write_at_stack_pointer:
2159 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma:Word → Word.∀policy: Word → bool.
2160 ∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2161  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2162  high_internal_ram ?? s2 = high_internal_ram T2 cm3 s3 →
2163  sp1 = add ? (get_8051_sfr ? cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2164  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2165  bu@@bl = sigma (pbu@@pbl) →
2166   high_internal_ram T1 cm1
2167     (write_at_stack_pointer …
2168       (set_8051_sfr …
2169         (write_at_stack_pointer …
2170           (set_8051_sfr …
2171             (set_high_internal_ram … s1
2172               (high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … s2)))
2173             SFR_SP sp1)
2174          bl)
2175        SFR_SP sp2)
2176      bu)
2177   = high_internal_ram_of_pseudo_high_internal_ram (sp1::M)
2178      (high_internal_ram …
2179       (write_at_stack_pointer …
2180         (set_8051_sfr …
2181           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2182          SFR_SP sp2)
2183        pbu)).
2184  #T1 #T2 #M #cm1 #s1 #cm2 #s2 #cm3 #s3 #sigma #policy #pbu #pbl #bu #bl #sp1 #sp2
2185  #get_8051_sfr_refl #high_internal_ram_refl #sp1_refl #sp2_refl #sigma_refl
2186  cases daemon (* XXX: !!! *)
2187qed.
2188
2189lemma Some_Some_elim:
2190 ∀T:Type[0].∀x,y:T.∀P:Type[2]. (x=y → P) → Some T x = Some T y → P.
2191 #T #x #y #P #H #K @H @option_destruct_Some //
2192qed.
2193
2194definition is_present_in_machine_code_image_p: ∀pseudo_instruction. Prop ≝
2195  λpseudo_instruction.
2196    match pseudo_instruction with
2197    [ Comment c ⇒ False
2198    | Cost c ⇒ False
2199    | _ ⇒ True
2200    ].
2201   
2202(*CSC: ???*)
2203lemma snd_assembly_1_pseudoinstruction_ok:
2204  ∀program: pseudo_assembly_program.
2205  ∀sigma: Word → Word.
2206  ∀policy: Word → bool.
2207  ∀ppc: Word.
2208  ∀pi.
2209  ∀present_in_machine_code_image_witness: is_present_in_machine_code_image_p pi.
2210  ∀lookup_labels.
2211  ∀lookup_datalabels.
2212    lookup_labels = (λx. sigma (address_of_word_labels_code_mem (\snd program) x)) →
2213    lookup_datalabels = (λx. lookup_def … (construct_datalabels (\fst program)) x (zero ?)) →
2214    \fst (fetch_pseudo_instruction (\snd program) ppc) = pi →
2215    let len ≝ \fst (assembly_1_pseudoinstruction lookup_labels sigma policy (*(sigma ppc)*) ppc lookup_datalabels  pi) in
2216      sigma (add … ppc (bitvector_of_nat ? 1)) = add … (sigma ppc) (bitvector_of_nat ? len).
2217  #program #sigma #policy #ppc #pi #is_present_in_machine_code_image_witness
2218  #lookup_labels #lookup_datalabels #lookup_labels_refl #lookup_datalabels_refl
2219  #fetch_pseudo_refl
2220  normalize nodelta
2221  generalize in match fetch_pseudo_refl; -fetch_pseudo_refl
2222  generalize in match is_present_in_machine_code_image_witness; -is_present_in_machine_code_image_witness
2223  cases pi
2224  [1:
2225    #preinstruction #_
2226  |2,3:
2227    (* XXX: bug in original statement here, to prove: sigma (ppc + 1) = sigma ppc *)
2228    #cost_or_comment normalize in ⊢ (% → ?); #absurd cases absurd
2229  |4,5:
2230    #identifier #_
2231  |6:
2232    #dptr #identifier #_
2233  ]
2234  #fetch_pseudo_refl
2235  letin assembled ≝ (\fst (assembly program sigma policy))
2236  letin costs ≝ (\snd (assembly program sigma policy))
2237  lapply (assembly_ok program sigma policy assembled costs)
2238  @pair_elim #labels #costs' #create_label_cost_map_refl
2239  <eq_pair_fst_snd #H cases (H (refl …)) -H #costs_refl #H
2240  lapply (H ppc) -H
2241  @pair_elim #pi' #newppc #fetch_pseudo_refl'
2242  @pair_elim #len #assembled #assembly1_refl #H cases H
2243  #encoding_check_assm #sigma_newppc_refl
2244  >fetch_pseudo_refl' in fetch_pseudo_refl; #pi_refl'
2245  >pi_refl' in assembly1_refl; #assembly1_refl
2246  >lookup_labels_refl >lookup_datalabels_refl >assembly1_refl
2247  <sigma_newppc_refl
2248  generalize in match fetch_pseudo_refl';
2249  whd in match (fetch_pseudo_instruction ??);
2250  @pair_elim #lbl #instr #nth_refl normalize nodelta
2251  #G destruct %
2252qed.
2253
2254lemma pose: ∀A:Type[0].∀B:A → Type[0].∀a:A. (∀a':A. a'=a → B a') → B a.
2255  /2/
2256qed.
2257
2258(* To be moved in ProofStatus *)
2259lemma program_counter_set_program_counter:
2260  ∀T.
2261  ∀cm.
2262  ∀s.
2263  ∀x.
2264    program_counter T cm (set_program_counter T cm s x) = x.
2265  //
2266qed.
Note: See TracBrowser for help on using the repository browser.