# source:src/ASM/AssemblyProof.ma@1946

Last change on this file since 1946 was 1946, checked in by sacerdot, 8 years ago

File size: 89.7 KB
Line
1include "ASM/Assembly.ma".
2include "ASM/Interpret.ma".
3include "ASM/StatusProofs.ma".
4include alias "arithmetics/nat.ma".
5
6definition bit_elim_prop: ∀P: bool → Prop. Prop ≝
7  λP.
8    P true ∧ P false.
9
10let rec bitvector_elim_prop_internal
11  (n: nat) (P: BitVector n → Prop) (m: nat)
12    on m:
13      m ≤ n → BitVector (n - m) → Prop ≝
14  match m return λm. m ≤ n → BitVector (n - m) → Prop with
15  [ O    ⇒ λprf1. λprefix. P ?
16  | S n' ⇒ λprf2. λprefix.
17      bit_elim_prop (λbit. bitvector_elim_prop_internal n P n' …)
18  ].
19  [1:
20    applyS prefix
21  |2:
22    letin res ≝ (bit ::: prefix)
23    <minus_S_S >minus_Sn_m
24    try assumption @res
25  |3:
26    @le_S_to_le
27    assumption
28  ]
29qed.
30
31definition bitvector_elim_prop ≝
32  λn: nat.
33  λP: BitVector n → Prop.
34    bitvector_elim_prop_internal n P n ? ?.
35  [ @(le_n ?)
36  | <(minus_n_n ?)
37    @[[ ]]
38  ]
39qed.
40
41lemma bool_eq_internal_eq:
42  ∀b, c.
43    (λb. λc. (if b then c else (if c then false else true))) b c = true → b = c.
44  #b #c
45  cases b
46  [1:
47    normalize //
48  |2:
49    normalize
50    cases c normalize //
51  ]
52qed.
53
54definition bit_elim: ∀P: bool → bool. bool ≝
55  λP.
56    P true ∧ P false.
57
58let rec bitvector_elim_internal
59  (n: nat) (P: BitVector n → bool) (m: nat)
60    on m:
61      m ≤ n → BitVector (n - m) → bool ≝
62  match m return λm. m ≤ n → BitVector (n - m) → bool with
63  [ O    ⇒ λprf1. λprefix. P ?
64  | S n' ⇒ λprf2. λprefix. bit_elim (λbit. bitvector_elim_internal n P n' ? ?)
65  ].
66  [1:
67    applyS prefix
68  |2:
69    letin res ≝ (bit ::: prefix)
70    <(minus_S_S ? ?) >(minus_Sn_m ? ?)
71    try @prf2 @res
72  |3:
73    /2/
74  ].
75qed.
76
77definition bitvector_elim ≝
78  λn: nat.
79  λP: BitVector n → bool.
80    bitvector_elim_internal n P n ? ?.
81  try @le_n
82  <minus_n_n @[[]]
83qed.
84
85lemma super_rewrite2:
86  ∀A:Type[0].
87  ∀n, m: nat.
88  ∀v1: Vector A n.
89  ∀v2: Vector A m.
90  ∀P: ∀m. Vector A m → Prop.
91    n = m → v1 ≃ v2 → P n v1 → P m v2.
92  #A #n #m #v1 #v2 #P #eq #jmeq
93  destruct #assm assumption
94qed.
95
96lemma vector_cons_append:
97  ∀A: Type[0].
98  ∀n: nat.
99  ∀e: A.
100  ∀v: Vector A n.
101    e ::: v = [[ e ]] @@ v.
102  #A #n #e #v
103  cases v try %
104  #n' #hd #tl %
105qed.
106
107lemma vector_cons_append2:
108  ∀A: Type[0].
109  ∀n, m: nat.
110  ∀v: Vector A n.
111  ∀q: Vector A m.
112  ∀hd: A.
113    hd:::(v@@q) = (hd:::v)@@q.
114  #A #n #m #v #q
115  elim v try (#hd %)
116  #n' #hd' #tl' #ih #hd'
117  <ih %
118qed.
119
120lemma jmeq_cons_vector_monotone:
121  ∀A: Type[0].
122  ∀m, n: nat.
123  ∀v: Vector A m.
124  ∀q: Vector A n.
125  ∀prf: m = n.
126  ∀hd: A.
127    v ≃ q → hd:::v ≃ hd:::q.
128  #A #m #n #v #q #prf #hd #E
129  @(super_rewrite2 A … E)
130  try assumption %
131qed.
132
133lemma vector_associative_append:
134  ∀A: Type[0].
135  ∀n, m, o:  nat.
136  ∀v: Vector A n.
137  ∀q: Vector A m.
138  ∀r: Vector A o.
139    (v @@ q) @@ r ≃ v @@ (q @@ r).
140  #A #n #m #o #v #q #r
141  elim v try %
142  #n' #hd #tl #ih
143  <(vector_cons_append2 A … hd)
144  @jmeq_cons_vector_monotone
145  try assumption
146  @associative_plus
147qed.
148
149lemma mem_middle_vector:
150  ∀A: Type[0].
151  ∀m, o: nat.
152  ∀eq: A → A → bool.
153  ∀reflex: ∀a. eq a a = true.
154  ∀p: Vector A m.
155  ∀a: A.
156  ∀r: Vector A o.
157    mem A eq ? (p@@(a:::r)) a = true.
158  #A #m #o #eq #reflex #p #a
159  elim p try (normalize >reflex #H %)
160  #m' #hd #tl #inductive_hypothesis
161  normalize
162  cases (eq ??) normalize nodelta
163  try (#irrelevant %)
164  @inductive_hypothesis
165qed.
166
167lemma mem_monotonic_wrt_append:
168  ∀A: Type[0].
169  ∀m, o: nat.
170  ∀eq: A → A → bool.
171  ∀reflex: ∀a. eq a a = true.
172  ∀p: Vector A m.
173  ∀a: A.
174  ∀r: Vector A o.
175    mem A eq ? r a = true → mem A eq ? (p @@ r) a = true.
176  #A #m #o #eq #reflex #p #a
177  elim p try (#r #assm assumption)
178  #m' #hd #tl #inductive_hypothesis #r #assm
179  normalize
180  cases (eq ??) try %
181  @inductive_hypothesis assumption
182qed.
183
184lemma subvector_multiple_append:
185  ∀A: Type[0].
186  ∀o, n: nat.
187  ∀eq: A → A → bool.
188  ∀refl: ∀a. eq a a = true.
189  ∀h: Vector A o.
190  ∀v: Vector A n.
191  ∀m: nat.
192  ∀q: Vector A m.
193    bool_to_Prop (subvector_with A ? ? eq v (h @@ q @@ v)).
194  #A #o #n #eq #reflex #h #v
195  elim v try (normalize #m #irrelevant @I)
196  #m' #hd #tl #inductive_hypothesis #m #q
197  change with (bool_to_Prop (andb ??))
198  cut ((mem A eq (o + (m + S m')) (h@@q@@hd:::tl) hd) = true)
199  [1:
200    @mem_monotonic_wrt_append try assumption
201    @mem_monotonic_wrt_append try assumption
202    normalize >reflex %
203  |2:
204    #assm >assm
205    >vector_cons_append
206    change with (bool_to_Prop (subvector_with ??????))
207    @(super_rewrite2 … (vector_associative_append … q [[hd]] tl))
208    try @associative_plus
209    @inductive_hypothesis
210  ]
211qed.
212
213lemma vector_cons_empty:
214  ∀A: Type[0].
215  ∀n: nat.
216  ∀v: Vector A n.
217    [[ ]] @@ v = v.
218  #A #n #v
219  cases v try %
220  #n' #hd #tl %
221qed.
222
223corollary subvector_hd_tl:
224  ∀A: Type[0].
225  ∀o: nat.
226  ∀eq: A → A → bool.
227  ∀refl: ∀a. eq a a = true.
228  ∀h: A.
229  ∀v: Vector A o.
230    bool_to_Prop (subvector_with A ? ? eq v (h ::: v)).
231  #A #o #eq #reflex #h #v
232  >(vector_cons_append … h v)
233  <(vector_cons_empty … ([[h]] @@ v))
234  @(subvector_multiple_append … eq reflex [[ ]] v ? [[h]])
235qed.
236
237lemma eq_a_reflexive:
238  ∀a. eq_a a a = true.
239  #a cases a %
240qed.
241
242lemma is_in_monotonic_wrt_append:
243  ∀m, n: nat.
244  ∀p: Vector addressing_mode_tag m.
245  ∀q: Vector addressing_mode_tag n.
247    bool_to_Prop (is_in ? p to_search) → bool_to_Prop (is_in ? (q @@ p) to_search).
248  #m #n #p #q #to_search #assm
249  elim q try assumption
250  #n' #hd #tl #inductive_hypothesis
251  normalize
252  cases (is_a ??) try @I
253  >inductive_hypothesis @I
254qed.
255
256corollary is_in_hd_tl:
259  ∀n: nat.
260  ∀v: Vector addressing_mode_tag n.
261    bool_to_Prop (is_in ? v to_search) → bool_to_Prop (is_in ? (hd:::v) to_search).
262  #to_search #hd #n #v
263  elim v
264  [1:
265    #absurd
266    normalize in absurd; cases absurd
267  |2:
268    #n' #hd' #tl #inductive_hypothesis #assm
269    >vector_cons_append >(vector_cons_append … hd' tl)
270    @(is_in_monotonic_wrt_append … ([[hd']]@@tl) [[hd]] to_search)
271    assumption
272  ]
273qed.
274
276  (n: nat) (l: Vector addressing_mode_tag (S n))
277    on l: (l → bool) → bool ≝
278  match l return λx.
279    match x with
280    [ O ⇒ λl: Vector … O. bool
281    | S x' ⇒ λl: Vector addressing_mode_tag (S x'). (l → bool) → bool
282    ] with
283  [ VEmpty      ⇒  true
284  | VCons len hd tl ⇒ λP.
285    let process_hd ≝
286      match hd return λhd. ∀P: hd:::tl → bool. bool with
287      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
288      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
289      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
290      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
291      | acc_a ⇒ λP.P ACC_A
292      | acc_b ⇒ λP.P ACC_B
293      | dptr ⇒ λP.P DPTR
294      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
295      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
296      | acc_dptr ⇒ λP.P ACC_DPTR
297      | acc_pc ⇒ λP.P ACC_PC
298      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
299      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
300      | carry ⇒ λP.P CARRY
301      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
302      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
303      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
304      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
305      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
306      ]
307    in
308      andb (process_hd P)
309       (match len return λx. x = len → bool with
310         [ O ⇒ λprf. true
311         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
312  ].
313  try %
314  [2:
315    cases (sym_eq ??? prf); assumption
316  |1:
317    generalize in match H; generalize in match tl;
318    destruct #tl
319    normalize in ⊢ (∀_: %. ?);
320    #H
321    whd normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?]);
322    cases (is_a hd (subaddressing_modeel y tl H))
323    whd try @I normalize nodelta //
324  ]
325qed.
326
327definition product_elim ≝
328  λm, n: nat.
329  λv: Vector addressing_mode_tag (S m).
330  λq: Vector addressing_mode_tag (S n).
331  λP: (v × q) → bool.
332    list_addressing_mode_tags_elim ? v (λx. list_addressing_mode_tags_elim ? q (λy. P 〈x, y〉)).
333
334definition union_elim ≝
335  λA, B: Type[0].
336  λelimA: (A → bool) → bool.
337  λelimB: (B → bool) → bool.
338  λelimU: A ⊎ B → bool.
339    elimA (λa. elimB (λb. elimU (inl ? ? a) ∧ elimU (inr ? ? b))).
340
341(*
342definition preinstruction_elim: ∀P: preinstruction [[ relative ]] → bool. bool ≝
343  λP.
344    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADD ? ACC_A addr)) ∧
345    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (ADDC ? ACC_A addr)) ∧
346    list_addressing_mode_tags_elim ? [[ registr ; direct ; indirect ; data ]] (λaddr. P (SUBB ? ACC_A addr)) ∧
347    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ; dptr ]] (λaddr. P (INC ? addr)) ∧
348    list_addressing_mode_tags_elim ? [[ acc_a ; registr ; direct ; indirect ]] (λaddr. P (DEC ? addr)) ∧
349    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (MUL ? ACC_A addr)) ∧
350    list_addressing_mode_tags_elim ? [[acc_b]] (λaddr. P (DIV ? ACC_A addr)) ∧
351    list_addressing_mode_tags_elim ? [[ registr ; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
352    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CLR ? addr)) ∧
353    list_addressing_mode_tags_elim ? [[ acc_a ; carry ; bit_addr ]] (λaddr. P (CPL ? addr)) ∧
354    P (DA ? ACC_A) ∧
355    bitvector_elim 8 (λr. P (JC ? (RELATIVE r))) ∧
356    bitvector_elim 8 (λr. P (JNC ? (RELATIVE r))) ∧
357    bitvector_elim 8 (λr. P (JZ ? (RELATIVE r))) ∧
358    bitvector_elim 8 (λr. P (JNZ ? (RELATIVE r))) ∧
359    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JB ? (BIT_ADDR b) (RELATIVE r))))) ∧
360    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JNB ? (BIT_ADDR b) (RELATIVE r))))) ∧
361    bitvector_elim 8 (λr. (bitvector_elim 8 (λb: BitVector 8. P (JBC ? (BIT_ADDR b) (RELATIVE r))))) ∧
362    list_addressing_mode_tags_elim ? [[ registr; direct ]] (λaddr. bitvector_elim 8 (λr. P (DJNZ ? addr (RELATIVE r)))) ∧
363    P (RL ? ACC_A) ∧
364    P (RLC ? ACC_A) ∧
365    P (RR ? ACC_A) ∧
366    P (RRC ? ACC_A) ∧
367    P (SWAP ? ACC_A) ∧
368    P (RET ?) ∧
369    P (RETI ?) ∧
370    P (NOP ?) ∧
371    bit_elim (λb. P (XCHD ? ACC_A (INDIRECT b))) ∧
373    bitvector_elim 8 (λaddr. P (PUSH ? (DIRECT addr))) ∧
374    bitvector_elim 8 (λaddr. P (POP ? (DIRECT addr))) ∧
375    union_elim ? ? (product_elim ? ? [[ acc_a ]] [[ direct; data ]])
376                   (product_elim ? ? [[ registr; indirect ]] [[ data ]])
377                   (λd. bitvector_elim 8 (λb. P (CJNE ? d (RELATIVE b)))) ∧
378    list_addressing_mode_tags_elim ? [[ registr; direct; indirect ]] (λaddr. P (XCH ? ACC_A addr)) ∧
379    union_elim ? ? (product_elim ? ? [[acc_a]] [[ data ; registr ; direct ; indirect ]])
380                   (product_elim ? ? [[direct]] [[ acc_a ; data ]])
381                   (λd. P (XRL ? d)) ∧
382    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
383                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
384                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
385                   (λd. P (ANL ? d)) ∧
386    union_elim ? ? (union_elim ? ? (product_elim ? ? [[acc_a]] [[ registr ; data ; direct ; indirect ]])
387                                   (product_elim ? ? [[direct]] [[ acc_a ; data ]]))
388                   (product_elim ? ? [[carry]] [[ bit_addr ; n_bit_addr]])
389                   (λd. P (ORL ? d)) ∧
390    union_elim ? ? (product_elim ? ? [[acc_a]] [[ ext_indirect ; ext_indirect_dptr ]])
391                   (product_elim ? ? [[ ext_indirect ; ext_indirect_dptr ]] [[acc_a]])
392                   (λd. P (MOVX ? d)) ∧
393    union_elim ? ? (
394      union_elim ? ? (
395        union_elim ? ? (
396          union_elim ? ? (
397            union_elim ? ?  (product_elim ? ? [[acc_a]] [[ registr ; direct ; indirect ; data ]])
398                            (product_elim ? ? [[ registr ; indirect ]] [[ acc_a ; direct ; data ]]))
399                            (product_elim ? ? [[direct]] [[ acc_a ; registr ; direct ; indirect ; data ]]))
400                            (product_elim ? ? [[dptr]] [[data16]]))
401                            (product_elim ? ? [[carry]] [[bit_addr]]))
402                            (product_elim ? ? [[bit_addr]] [[carry]])
403                            (λd. P (MOV ? d)).
404  %
405qed.
406
407definition instruction_elim: ∀P: instruction → bool. bool ≝
408  λP. (*
409    bitvector_elim 11 (λx. P (ACALL (ADDR11 x))) ∧
410    bitvector_elim 16 (λx. P (LCALL (ADDR16 x))) ∧
411    bitvector_elim 11 (λx. P (AJMP (ADDR11 x))) ∧
412    bitvector_elim 16 (λx. P (LJMP (ADDR16 x))) ∧ *)
413    bitvector_elim 8 (λx. P (SJMP (RELATIVE x))). (*  ∧
414    P (JMP INDIRECT_DPTR) ∧
415    list_addressing_mode_tags_elim ? [[ acc_dptr; acc_pc ]] (λa. P (MOVC ACC_A a)) ∧
416    preinstruction_elim (λp. P (RealInstruction p)). *)
417  %
418qed.
419
420
421axiom instruction_elim_complete:
422 ∀P. instruction_elim P = true → ∀i. P i = true.
423*)
424(*definition eq_instruction ≝
425  λi, j: instruction.
426    true.*)
427
429  λa, b: addressing_mode.
430  match a with
431  [ DIRECT d ⇒
432    match b with
433    [ DIRECT e ⇒ eq_bv ? d e
434    | _ ⇒ false
435    ]
436  | INDIRECT b' ⇒
437    match b with
438    [ INDIRECT e ⇒ eq_b b' e
439    | _ ⇒ false
440    ]
441  | EXT_INDIRECT b' ⇒
442    match b with
443    [ EXT_INDIRECT e ⇒ eq_b b' e
444    | _ ⇒ false
445    ]
446  | REGISTER bv ⇒
447    match b with
448    [ REGISTER bv' ⇒ eq_bv ? bv bv'
449    | _ ⇒ false
450    ]
451  | ACC_A ⇒ match b with [ ACC_A ⇒ true | _ ⇒ false ]
452  | ACC_B ⇒ match b with [ ACC_B ⇒ true | _ ⇒ false ]
453  | DPTR ⇒ match b with [ DPTR ⇒ true | _ ⇒ false ]
454  | DATA b' ⇒
455    match b with
456    [ DATA e ⇒ eq_bv ? b' e
457    | _ ⇒ false
458    ]
459  | DATA16 w ⇒
460    match b with
461    [ DATA16 e ⇒ eq_bv ? w e
462    | _ ⇒ false
463    ]
464  | ACC_DPTR ⇒ match b with [ ACC_DPTR ⇒ true | _ ⇒ false ]
465  | ACC_PC ⇒ match b with [ ACC_PC ⇒ true | _ ⇒ false ]
466  | EXT_INDIRECT_DPTR ⇒ match b with [ EXT_INDIRECT_DPTR ⇒ true | _ ⇒ false ]
467  | INDIRECT_DPTR ⇒ match b with [ INDIRECT_DPTR ⇒ true | _ ⇒ false ]
468  | CARRY ⇒ match b with [ CARRY ⇒ true | _ ⇒ false ]
469  | BIT_ADDR b' ⇒
470    match b with
471    [ BIT_ADDR e ⇒ eq_bv ? b' e
472    | _ ⇒ false
473    ]
474  | N_BIT_ADDR b' ⇒
475    match b with
476    [ N_BIT_ADDR e ⇒ eq_bv ? b' e
477    | _ ⇒ false
478    ]
479  | RELATIVE n ⇒
480    match b with
481    [ RELATIVE e ⇒ eq_bv ? n e
482    | _ ⇒ false
483    ]
484  | ADDR11 w ⇒
485    match b with
486    [ ADDR11 e ⇒ eq_bv ? w e
487    | _ ⇒ false
488    ]
489  | ADDR16 w ⇒
490    match b with
491    [ ADDR16 e ⇒ eq_bv ? w e
492    | _ ⇒ false
493    ]
494  ].
495
496lemma eq_bv_refl:
497  ∀n, b.
498    eq_bv n b b = true.
499  #n #b cases b //
500qed.
501
502lemma eq_b_refl:
503  ∀b.
504    eq_b b b = true.
505  #b cases b //
506qed.
507
509  ∀a. eq_addressing_mode a a = true.
510  #a
511  cases a try #arg1 try #arg2
512  try @eq_bv_refl try @eq_b_refl
513  try normalize %
514qed.
515
516definition eq_sum:
517    ∀A, B. (A → A → bool) → (B → B → bool) → (A ⊎ B) → (A ⊎ B) → bool ≝
518  λlt, rt, leq, req, left, right.
519    match left with
520    [ inl l ⇒
521      match right with
522      [ inl l' ⇒ leq l l'
523      | _ ⇒ false
524      ]
525    | inr r ⇒
526      match right with
527      [ inr r' ⇒ req r r'
528      | _ ⇒ false
529      ]
530    ].
531
532definition eq_prod: ∀A, B. (A → A → bool) → (B → B → bool) → (A × B) → (A × B) → bool ≝
533  λlt, rt, leq, req, left, right.
534    let 〈l, r〉 ≝ left in
535    let 〈l', r'〉 ≝ right in
536      leq l l' ∧ req r r'.
537
538definition eq_preinstruction: preinstruction [[relative]] → preinstruction [[relative]] → bool ≝
539  λi, j.
540  match i with
541  [ ADD arg1 arg2 ⇒
542    match j with
543    [ ADD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
544    | _ ⇒ false
545    ]
546  | ADDC arg1 arg2 ⇒
547    match j with
548    [ ADDC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
549    | _ ⇒ false
550    ]
551  | SUBB arg1 arg2 ⇒
552    match j with
553    [ SUBB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
554    | _ ⇒ false
555    ]
556  | INC arg ⇒
557    match j with
558    [ INC arg' ⇒ eq_addressing_mode arg arg'
559    | _ ⇒ false
560    ]
561  | DEC arg ⇒
562    match j with
563    [ DEC arg' ⇒ eq_addressing_mode arg arg'
564    | _ ⇒ false
565    ]
566  | MUL arg1 arg2 ⇒
567    match j with
568    [ MUL arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
569    | _ ⇒ false
570    ]
571  | DIV arg1 arg2 ⇒
572    match j with
573    [ DIV arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
574    | _ ⇒ false
575    ]
576  | DA arg ⇒
577    match j with
578    [ DA arg' ⇒ eq_addressing_mode arg arg'
579    | _ ⇒ false
580    ]
581  | JC arg ⇒
582    match j with
583    [ JC arg' ⇒ eq_addressing_mode arg arg'
584    | _ ⇒ false
585    ]
586  | JNC arg ⇒
587    match j with
588    [ JNC arg' ⇒ eq_addressing_mode arg arg'
589    | _ ⇒ false
590    ]
591  | JB arg1 arg2 ⇒
592    match j with
593    [ JB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
594    | _ ⇒ false
595    ]
596  | JNB arg1 arg2 ⇒
597    match j with
598    [ JNB arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
599    | _ ⇒ false
600    ]
601  | JBC arg1 arg2 ⇒
602    match j with
603    [ JBC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
604    | _ ⇒ false
605    ]
606  | JZ arg ⇒
607    match j with
608    [ JZ arg' ⇒ eq_addressing_mode arg arg'
609    | _ ⇒ false
610    ]
611  | JNZ arg ⇒
612    match j with
613    [ JNZ arg' ⇒ eq_addressing_mode arg arg'
614    | _ ⇒ false
615    ]
616  | CJNE arg1 arg2 ⇒
617    match j with
618    [ CJNE arg1' arg2' ⇒
619      let prod_eq_left ≝ eq_prod [[acc_a]] [[direct; data]] eq_addressing_mode eq_addressing_mode in
620      let prod_eq_right ≝ eq_prod [[registr; indirect]] [[data]] eq_addressing_mode eq_addressing_mode in
621      let arg1_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
622        arg1_eq arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
623    | _ ⇒ false
624    ]
625  | DJNZ arg1 arg2 ⇒
626    match j with
627    [ DJNZ arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
628    | _ ⇒ false
629    ]
630  | CLR arg ⇒
631    match j with
632    [ CLR arg' ⇒ eq_addressing_mode arg arg'
633    | _ ⇒ false
634    ]
635  | CPL arg ⇒
636    match j with
637    [ CPL arg' ⇒ eq_addressing_mode arg arg'
638    | _ ⇒ false
639    ]
640  | RL arg ⇒
641    match j with
642    [ RL arg' ⇒ eq_addressing_mode arg arg'
643    | _ ⇒ false
644    ]
645  | RLC arg ⇒
646    match j with
647    [ RLC arg' ⇒ eq_addressing_mode arg arg'
648    | _ ⇒ false
649    ]
650  | RR arg ⇒
651    match j with
652    [ RR arg' ⇒ eq_addressing_mode arg arg'
653    | _ ⇒ false
654    ]
655  | RRC arg ⇒
656    match j with
657    [ RRC arg' ⇒ eq_addressing_mode arg arg'
658    | _ ⇒ false
659    ]
660  | SWAP arg ⇒
661    match j with
662    [ SWAP arg' ⇒ eq_addressing_mode arg arg'
663    | _ ⇒ false
664    ]
665  | SETB arg ⇒
666    match j with
667    [ SETB arg' ⇒ eq_addressing_mode arg arg'
668    | _ ⇒ false
669    ]
670  | PUSH arg ⇒
671    match j with
672    [ PUSH arg' ⇒ eq_addressing_mode arg arg'
673    | _ ⇒ false
674    ]
675  | POP arg ⇒
676    match j with
677    [ POP arg' ⇒ eq_addressing_mode arg arg'
678    | _ ⇒ false
679    ]
680  | XCH arg1 arg2 ⇒
681    match j with
682    [ XCH arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
683    | _ ⇒ false
684    ]
685  | XCHD arg1 arg2 ⇒
686    match j with
687    [ XCHD arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
688    | _ ⇒ false
689    ]
690  | RET ⇒ match j with [ RET ⇒ true | _ ⇒ false ]
691  | RETI ⇒ match j with [ RETI ⇒ true | _ ⇒ false ]
692  | NOP ⇒ match j with [ NOP ⇒ true | _ ⇒ false ]
693  | MOVX arg ⇒
694    match j with
695    [ MOVX arg' ⇒
696      let prod_eq_left ≝ eq_prod [[acc_a]] [[ext_indirect; ext_indirect_dptr]] eq_addressing_mode eq_addressing_mode in
697      let prod_eq_right ≝ eq_prod [[ext_indirect; ext_indirect_dptr]] [[acc_a]] eq_addressing_mode eq_addressing_mode in
698      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
699        sum_eq arg arg'
700    | _ ⇒ false
701    ]
702  | XRL arg ⇒
703    match j with
704    [ XRL arg' ⇒
705      let prod_eq_left ≝ eq_prod [[acc_a]] [[ data ; registr ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
706      let prod_eq_right ≝ eq_prod [[direct]] [[ acc_a ; data ]] eq_addressing_mode eq_addressing_mode in
707      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
708        sum_eq arg arg'
709    | _ ⇒ false
710    ]
711  | ORL arg ⇒
712    match j with
713    [ ORL arg' ⇒
714      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; data ; direct ; indirect ]] eq_addressing_mode eq_addressing_mode in
715      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
716      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
718      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
719        sum_eq arg arg'
720    | _ ⇒ false
721    ]
722  | ANL arg ⇒
723    match j with
724    [ ANL arg' ⇒
725      let prod_eq_left1 ≝ eq_prod [[acc_a]] [[ registr ; direct ; indirect ; data ]] eq_addressing_mode eq_addressing_mode in
726      let prod_eq_left2 ≝ eq_prod [[direct]] [[ acc_a; data ]] eq_addressing_mode eq_addressing_mode in
727      let prod_eq_left ≝ eq_sum ? ? prod_eq_left1 prod_eq_left2 in
729      let sum_eq ≝ eq_sum ? ? prod_eq_left prod_eq_right in
730        sum_eq arg arg'
731    | _ ⇒ false
732    ]
733  | MOV arg ⇒
734    match j with
735    [ MOV arg' ⇒
736      let prod_eq_6 ≝ eq_prod [[acc_a]] [[registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
737      let prod_eq_5 ≝ eq_prod [[registr; indirect]] [[acc_a; direct; data]] eq_addressing_mode eq_addressing_mode in
738      let prod_eq_4 ≝ eq_prod [[direct]] [[acc_a; registr; direct; indirect; data]] eq_addressing_mode eq_addressing_mode in
739      let prod_eq_3 ≝ eq_prod [[dptr]] [[data16]] eq_addressing_mode eq_addressing_mode in
740      let prod_eq_2 ≝ eq_prod [[carry]] [[bit_addr]] eq_addressing_mode eq_addressing_mode in
741      let prod_eq_1 ≝ eq_prod [[bit_addr]] [[carry]] eq_addressing_mode eq_addressing_mode in
742      let sum_eq_1 ≝ eq_sum ? ? prod_eq_6 prod_eq_5 in
743      let sum_eq_2 ≝ eq_sum ? ? sum_eq_1 prod_eq_4 in
744      let sum_eq_3 ≝ eq_sum ? ? sum_eq_2 prod_eq_3 in
745      let sum_eq_4 ≝ eq_sum ? ? sum_eq_3 prod_eq_2 in
746      let sum_eq_5 ≝ eq_sum ? ? sum_eq_4 prod_eq_1 in
747        sum_eq_5 arg arg'
748    | _ ⇒ false
749    ]
750  ].
751
752lemma eq_sum_refl:
753  ∀A, B: Type[0].
754  ∀leq, req.
755  ∀s.
756  ∀leq_refl: (∀t. leq t t = true).
757  ∀req_refl: (∀u. req u u = true).
758    eq_sum A B leq req s s = true.
759  #A #B #leq #req #s #leq_refl #req_refl
760  cases s assumption
761qed.
762
763lemma eq_prod_refl:
764  ∀A, B: Type[0].
765  ∀leq, req.
766  ∀s.
767  ∀leq_refl: (∀t. leq t t = true).
768  ∀req_refl: (∀u. req u u = true).
769    eq_prod A B leq req s s = true.
770  #A #B #leq #req #s #leq_refl #req_refl
771  cases s
772  whd in ⊢ (? → ? → ??%?);
773  #l #r
774  >leq_refl @req_refl
775qed.
776
777lemma eq_preinstruction_refl:
778  ∀i.
779    eq_preinstruction i i = true.
780  #i cases i try #arg1 try #arg2
782  [1,2,3,4,5,6,7,8,10,16,17,18,19,20:
783    whd in ⊢ (??%?); try %
786  |13,15:
787    whd in ⊢ (??%?);
788    cases arg1
789    [*:
790      #arg1_left normalize nodelta
791      >eq_prod_refl [*: try % #argr @eq_addressing_mode_refl]
792    ]
793  |11,12:
794    whd in ⊢ (??%?);
795    cases arg1
796    [1:
797      #arg1_left normalize nodelta
798      >(eq_sum_refl …)
799      [1: % | 2,3: #arg @eq_prod_refl ]
801    |2:
802      #arg1_left normalize nodelta
803      @eq_prod_refl [*: @eq_addressing_mode_refl ]
804    |3:
805      #arg1_left normalize nodelta
806      >(eq_sum_refl …)
807      [1:
808        %
809      |2,3:
810        #arg @eq_prod_refl #arg @eq_addressing_mode_refl
811      ]
812    |4:
813      #arg1_left normalize nodelta
814      @eq_prod_refl [*: #arg @eq_addressing_mode_refl ]
815    ]
816  |14:
817    whd in ⊢ (??%?);
818    cases arg1
819    [1:
820      #arg1_left normalize nodelta
821      @eq_sum_refl
822      [1:
823        #arg @eq_sum_refl
824        [1:
825          #arg @eq_sum_refl
826          [1:
827            #arg @eq_sum_refl
828            [1:
829              #arg @eq_prod_refl
830              [*:
832              ]
833            |2:
834              #arg @eq_prod_refl
835              [*:
837              ]
838            ]
839          |2:
840            #arg @eq_prod_refl
841            [*:
843            ]
844          ]
845        |2:
846          #arg @eq_prod_refl
847          [*:
849          ]
850        ]
851      |2:
852        #arg @eq_prod_refl
853        [*:
855        ]
856      ]
857    |2:
858      #arg1_right normalize nodelta
859      @eq_prod_refl
860      [*:
862      ]
863    ]
864  |*:
865    whd in ⊢ (??%?);
866    cases arg1
867    [*:
868      #arg1 >eq_sum_refl
869      [1,4:
871      |2,3,5,6:
872        #arg @eq_prod_refl
873        [*:
875        ]
876      ]
877    ]
878  ]
879qed.
880
881definition eq_instruction: instruction → instruction → bool ≝
882  λi, j.
883  match i with
884  [ ACALL arg ⇒
885    match j with
886    [ ACALL arg' ⇒ eq_addressing_mode arg arg'
887    | _ ⇒ false
888    ]
889  | LCALL arg ⇒
890    match j with
891    [ LCALL arg' ⇒ eq_addressing_mode arg arg'
892    | _ ⇒ false
893    ]
894  | AJMP arg ⇒
895    match j with
896    [ AJMP arg' ⇒ eq_addressing_mode arg arg'
897    | _ ⇒ false
898    ]
899  | LJMP arg ⇒
900    match j with
901    [ LJMP arg' ⇒ eq_addressing_mode arg arg'
902    | _ ⇒ false
903    ]
904  | SJMP arg ⇒
905    match j with
906    [ SJMP arg' ⇒ eq_addressing_mode arg arg'
907    | _ ⇒ false
908    ]
909  | JMP arg ⇒
910    match j with
911    [ JMP arg' ⇒ eq_addressing_mode arg arg'
912    | _ ⇒ false
913    ]
914  | MOVC arg1 arg2 ⇒
915    match j with
916    [ MOVC arg1' arg2' ⇒ eq_addressing_mode arg1 arg1' ∧ eq_addressing_mode arg2 arg2'
917    | _ ⇒ false
918    ]
919  | RealInstruction instr ⇒
920    match j with
921    [ RealInstruction instr' ⇒ eq_preinstruction instr instr'
922    | _ ⇒ false
923    ]
924  ].
925
926lemma eq_instruction_refl:
927  ∀i. eq_instruction i i = true.
928  #i cases i [*: #arg1 ]
930  try @eq_preinstruction_refl
931  #arg2 whd in ⊢ (??%?);
933qed.
934
935let rec vect_member
936  (A: Type[0]) (n: nat) (eq: A → A → bool) (v: Vector A n) (a: A)
937    on v: bool ≝
938  match v with
939  [ VEmpty          ⇒ false
940  | VCons len hd tl ⇒
941      eq hd a ∨ (vect_member A ? eq tl a)
942  ].
943
945  (n: nat)
946  (l: Vector addressing_mode_tag (S n))
947  on l:
948  ∀P: l → Prop.
949  ∀direct_a. ∀indirect_a. ∀ext_indirect_a. ∀register_a. ∀acc_a_a.
950  ∀acc_b_a. ∀dptr_a. ∀data_a. ∀data16_a. ∀acc_dptr_a. ∀acc_pc_a.
951  ∀ext_indirect_dptr_a. ∀indirect_dptr_a. ∀carry_a. ∀bit_addr_a.
953  ∀x: l. P x ≝
954  match l return
955    λy.
956      match y with
957      [ O    ⇒ λm: Vector addressing_mode_tag O. ∀prf: 0 = S n. True
958      | S y' ⇒ λl: Vector addressing_mode_tag (S y'). ∀prf: S y' = S n.∀P:l → Prop.
959               ∀direct_a: if vect_member … eq_a l direct then ∀x. P (DIRECT x) else True.
960               ∀indirect_a: if vect_member … eq_a l indirect then ∀x. P (INDIRECT x) else True.
961               ∀ext_indirect_a: if vect_member … eq_a l ext_indirect then ∀x. P (EXT_INDIRECT x) else True.
962               ∀register_a: if vect_member … eq_a l registr then ∀x. P (REGISTER x) else True.
963               ∀acc_a_a: if vect_member … eq_a l acc_a then P (ACC_A) else True.
964               ∀acc_b_a: if vect_member … eq_a l acc_b then P (ACC_B) else True.
965               ∀dptr_a: if vect_member … eq_a l dptr then P DPTR else True.
966               ∀data_a: if vect_member … eq_a l data then ∀x. P (DATA x) else True.
967               ∀data16_a: if vect_member … eq_a l data16 then ∀x. P (DATA16 x) else True.
968               ∀acc_dptr_a: if vect_member … eq_a l acc_dptr then P ACC_DPTR else True.
969               ∀acc_pc_a: if vect_member … eq_a l acc_pc then P ACC_PC else True.
970               ∀ext_indirect_dptr_a: if vect_member … eq_a l ext_indirect_dptr then P EXT_INDIRECT_DPTR else True.
971               ∀indirect_dptr_a: if vect_member … eq_a l indirect_dptr then P INDIRECT_DPTR else True.
972               ∀carry_a: if vect_member … eq_a l carry then P CARRY else True.
973               ∀bit_addr_a: if vect_member … eq_a l bit_addr then ∀x. P (BIT_ADDR x) else True.
974               ∀n_bit_addr_a: if vect_member … eq_a l n_bit_addr then ∀x. P (N_BIT_ADDR x) else True.
975               ∀relative_a: if vect_member … eq_a l relative then ∀x. P (RELATIVE x) else True.
976               ∀addr11_a: if vect_member … eq_a l addr11 then ∀x. P (ADDR11 x) else True.
977               ∀addr_16_a: if vect_member … eq_a l addr16 then ∀x. P (ADDR16 x) else True.
978               ∀x:l. P x
979      ] with
980  [ VEmpty          ⇒ λAbsurd. ⊥
981  | VCons len hd tl ⇒ λProof. ?
982  ] (refl ? (S n)). cases daemon. qed. (*
983  [ destruct(Absurd)
984  | # A1 # A2 # A3 # A4 # A5 # A6 # A7
985    # A8 # A9 # A10 # A11 # A12 # A13 # A14
986    # A15 # A16 # A17 # A18 # A19 # X
987    cases X
988    # SUB cases daemon ] qed.
989    cases SUB
990    [ # BYTE
991    normalize
992  ].
993
994
995(*    let prepare_hd ≝
996      match hd with
997      [ direct ⇒ λdirect_prf. ?
998      | indirect ⇒ λindirect_prf. ?
999      | ext_indirect ⇒ λext_indirect_prf. ?
1000      | registr ⇒ λregistr_prf. ?
1001      | acc_a ⇒ λacc_a_prf. ?
1002      | acc_b ⇒ λacc_b_prf. ?
1003      | dptr ⇒ λdptr_prf. ?
1004      | data ⇒ λdata_prf. ?
1005      | data16 ⇒ λdata16_prf. ?
1006      | acc_dptr ⇒ λacc_dptr_prf. ?
1007      | acc_pc ⇒ λacc_pc_prf. ?
1008      | ext_indirect_dptr ⇒ λext_indirect_prf. ?
1009      | indirect_dptr ⇒ λindirect_prf. ?
1010      | carry ⇒ λcarry_prf. ?
1013      | relative ⇒ λrelative_prf. ?
1016      ]
1017    in ? *)
1018  ].
1019  [ 1: destruct(absd)
1020  | 2: # A1 # A2 # A3 # A4 # A5 # A6
1021       # A7 # A8 # A9 # A10 # A11 # A12
1022       # A13 # A14 # A15 # A16 # A17 # A18
1023       # A19 *
1024  ].
1025
1026
1027  match l return λx.match x with [O ⇒ λl: Vector … O. bool | S x' ⇒ λl: Vector addressing_mode_tag (S x').
1028   (l → bool) → bool ] with
1029  [ VEmpty      ⇒  true
1030  | VCons len hd tl ⇒ λP.
1031    let process_hd ≝
1032      match hd return λhd. ∀P: hd:::tl → bool. bool with
1033      [ direct ⇒ λP.bitvector_elim 8 (λx. P (DIRECT x))
1034      | indirect ⇒ λP.bit_elim (λx. P (INDIRECT x))
1035      | ext_indirect ⇒ λP.bit_elim (λx. P (EXT_INDIRECT x))
1036      | registr ⇒ λP.bitvector_elim 3 (λx. P (REGISTER x))
1037      | acc_a ⇒ λP.P ACC_A
1038      | acc_b ⇒ λP.P ACC_B
1039      | dptr ⇒ λP.P DPTR
1040      | data ⇒ λP.bitvector_elim 8 (λx. P (DATA x))
1041      | data16 ⇒ λP.bitvector_elim 16 (λx. P (DATA16 x))
1042      | acc_dptr ⇒ λP.P ACC_DPTR
1043      | acc_pc ⇒ λP.P ACC_PC
1044      | ext_indirect_dptr ⇒ λP.P EXT_INDIRECT_DPTR
1045      | indirect_dptr ⇒ λP.P INDIRECT_DPTR
1046      | carry ⇒ λP.P CARRY
1047      | bit_addr ⇒ λP.bitvector_elim 8 (λx. P (BIT_ADDR x))
1048      | n_bit_addr ⇒ λP.bitvector_elim 8 (λx. P (N_BIT_ADDR x))
1049      | relative ⇒ λP.bitvector_elim 8 (λx. P (RELATIVE x))
1050      | addr11 ⇒ λP.bitvector_elim 11 (λx. P (ADDR11 x))
1051      | addr16 ⇒ λP.bitvector_elim 16 (λx. P (ADDR16 x))
1052      ]
1053    in
1054      andb (process_hd P)
1055       (match len return λx. x = len → bool with
1056         [ O ⇒ λprf. true
1057         | S y ⇒ λprf. list_addressing_mode_tags_elim y ? P ] (refl ? len))
1058  ].
1059  try %
1060  [ 2: cases (sym_eq ??? prf); @tl
1061  | generalize in match H; generalize in match tl; cases prf;
1062    (* cases prf in tl H; : ??? WAS WORKING BEFORE *)
1063    #tl
1064    normalize in ⊢ (∀_: %. ?)
1065    # H
1066    whd
1067    normalize in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1068    cases (is_a hd (subaddressing_modeel y tl H)) whd // ]
1069qed.
1070*)
1071
1073 fold_left_i_aux … (
1074   λi, mem, v.
1075     insert … (bitvector_of_nat … i) v mem) (Stub Byte 16).
1076
1077lemma split_zero:
1078  ∀A,m.
1079  ∀v: Vector A m.
1080    〈[[]], v〉 = split A 0 m v.
1081  #A #m #v
1082  cases v try %
1083  #n #hd #tl %
1084qed.
1085
1086lemma Vector_O:
1087  ∀A: Type[0].
1088  ∀v: Vector A 0.
1089    v ≃ VEmpty A.
1090 #A #v
1091 generalize in match (refl … 0);
1092 cases v in ⊢ (??%? → ?%%??); //
1093 #n #hd #tl #absurd
1094 destruct(absurd)
1095qed.
1096
1097lemma Vector_Sn:
1098  ∀A: Type[0].
1099  ∀n: nat.
1100  ∀v: Vector A (S n).
1101    ∃hd: A. ∃tl: Vector A n.
1102      v ≃ VCons A n hd tl.
1103  #A #n #v
1104  generalize in match (refl … (S n));
1105  cases v in ⊢ (??%? → ??(λ_.??(λ_.?%%??)));
1106  [1:
1107    #absurd destruct(absurd)
1108  |2:
1109    #m #hd #tl #eq
1110    <(injective_S … eq)
1111    %{hd} %{tl} %
1112  ]
1113qed.
1114
1115lemma vector_append_zero:
1116  ∀A,m.
1117  ∀v: Vector A m.
1118  ∀q: Vector A 0.
1119    v = q@@v.
1120  #A #m #v #q
1121  >(Vector_O A q) %
1122qed.
1123
1124lemma prod_eq_left:
1125  ∀A: Type[0].
1126  ∀p, q, r: A.
1127    p = q → 〈p, r〉 = 〈q, r〉.
1128  #A #p #q #r #hyp
1129  destruct %
1130qed.
1131
1132lemma prod_eq_right:
1133  ∀A: Type[0].
1134  ∀p, q, r: A.
1135    p = q → 〈r, p〉 = 〈r, q〉.
1136  #A #p #q #r #hyp
1137  destruct %
1138qed.
1139
1140corollary prod_vector_zero_eq_left:
1141  ∀A, n.
1142  ∀q: Vector A O.
1143  ∀r: Vector A n.
1144    〈q, r〉 = 〈[[ ]], r〉.
1145  #A #n #q #r
1146  generalize in match (Vector_O A q …);
1147  #hyp destruct %
1148qed.
1149
1151  ∀a: Type[0].
1152  ∀m, n: nat.
1153  ∀hd: a.
1154  ∀l: Vector a m.
1155  ∀r: Vector a n.
1156    tail a ? (hd:::(l@@r)) = l@@r.
1157  #a #m #n #hd #l #r
1158  cases l try %
1159  #m' #hd' #tl' %
1160qed.
1161
1163  ∀a: Type[0].
1164  ∀m: nat.
1165  ∀hd: a.
1166  ∀l: Vector a m.
1167    hd = head' … (hd:::l).
1168  #a #m #hd #l cases l try %
1169  #m' #hd' #tl %
1170qed.
1171
1172lemma split_succ:
1173  ∀A: Type[0].
1174  ∀m, n: nat.
1175  ∀l: Vector A m.
1176  ∀r: Vector A n.
1177  ∀v: Vector A (m + n).
1178  ∀hd: A.
1179    v = l@@r → (〈l, r〉 = split A m n v → 〈hd:::l, r〉 = split A (S m) n (hd:::v)).
1180  #A #m
1181  elim m
1182  [1:
1183    #n #l #r #v #hd #eq #hyp
1184    destruct >(Vector_O … l) %
1185  |2:
1186    #m' #inductive_hypothesis #n #l #r #v #hd #equal #hyp
1187    destruct
1188    cases (Vector_Sn … l) #hd' #tl'
1189    whd in ⊢ (???%);
1191    <(? : split A (S m') n (l@@r) = split' A (S m') n (l@@r))
1193    elim l normalize //
1194  ]
1195qed.
1196
1197lemma split_prod:
1198  ∀A: Type[0].
1199  ∀m, n: nat.
1200  ∀p: Vector A (m + n).
1201  ∀v: Vector A m.
1202  ∀q: Vector A n.
1203    p = v@@q → 〈v, q〉 = split A m n p.
1204  #A #m elim m
1205  [1:
1206    #n #p #v #q #hyp
1207    >hyp <(vector_append_zero A n q v)
1208    >(prod_vector_zero_eq_left A …)
1209    @split_zero
1210  |2:
1211    #r #ih #n #p #v #q #hyp
1212    >hyp
1213    cases (Vector_Sn A r v) #hd #exists
1214    cases exists #tl #jmeq
1215    >jmeq @split_succ try %
1216    @ih %
1217  ]
1218qed.
1219
1220(*
1221lemma split_prod_exists:
1222  ∀A, m, n.
1223  ∀p: Vector A (m + n).
1224  ∃v: Vector A m.
1225  ∃q: Vector A n.
1226    〈v, q〉 = split A m n p.
1227  #A #m #n #p
1228  elim m
1229  @ex_intro
1230  [1:
1231  |2: @ex_intro
1232      [1:
1233      |2:
1234      ]
1235  ]
1236*)
1237
1238definition split_elim:
1239  ∀A: Type[0].
1240  ∀l, m: nat.
1241  ∀v: Vector A (l + m).
1242  ∀P: (Vector A l) × (Vector A m) → Prop.
1243    (∀vl: Vector A l.
1244     ∀vm: Vector A m.
1245      v = vl@@vm → P 〈vl,vm〉) → P (split A l m v) ≝
1246  λa: Type[0].
1247  λl, m: nat.
1248  λv: Vector a (l + m).
1249  λP. ?.
1250  cases daemon
1251qed.
1252
1253(*
1254axiom not_eqvb_S:
1255 ∀pc.
1256 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S pc))).
1257
1258axiom not_eqvb_SS:
1259 ∀pc.
1260 (¬eq_bv 16 (bitvector_of_nat 16 pc) (bitvector_of_nat 16 (S (S pc)))).
1261
1262axiom bitvector_elim_complete:
1263 ∀n,P. bitvector_elim n P = true → ∀bv. P bv.
1264
1265lemma bitvector_elim_complete':
1266 ∀n,P. bitvector_elim n P = true → ∀bv. P bv = true.
1267 #n #P #H generalize in match (bitvector_elim_complete … H) #K #bv
1268 generalize in match (K bv) normalize cases (P bv) normalize // #abs @⊥ //
1269qed.
1270*)
1271
1272(*
1273lemma andb_elim':
1274 ∀b1,b2. (b1 = true) → (b2 = true) → (b1 ∧ b2) = true.
1275 #b1 #b2 #H1 #H2 @andb_elim cases b1 in H1; normalize //
1276qed.
1277*)
1278
1279let rec encoding_check
1280  (code_memory: BitVectorTrie Byte 16) (pc: Word) (final_pc: Word)
1281    (encoding: list Byte)
1282      on encoding: Prop ≝
1283  match encoding with
1284  [ nil ⇒ final_pc = pc
1285  | cons hd tl ⇒
1286    let 〈new_pc, byte〉 ≝ next code_memory pc in
1287      hd = byte ∧ encoding_check code_memory new_pc final_pc tl
1288  ].
1289
1291  ∀n, m: nat.
1292    add … (bitvector_of_nat … 1) (bitvector_of_nat … m) =
1293      bitvector_of_nat n (S m).
1294
1295lemma encoding_check_append:
1296  ∀code_memory: BitVectorTrie Byte 16.
1297  ∀final_pc: Word.
1298  ∀l1: list Byte.
1299  ∀pc: Word.
1300  ∀l2: list Byte.
1301    encoding_check code_memory pc final_pc (l1@l2) →
1302      let pc_plus_len ≝ add … pc (bitvector_of_nat … (length … l1)) in
1303        encoding_check code_memory pc pc_plus_len l1 ∧
1304          encoding_check code_memory pc_plus_len final_pc l2.
1305  #code_memory #final_pc #l1 elim l1
1306  [1:
1307    #pc #l2
1308    whd in ⊢ (????% → ?); #H
1310    whd whd in ⊢ (?%?); /2/
1311  |2:
1312    #hd #tl #IH #pc #l2 * #H1 #H2
1313(*    >add_SO in H2; #H2 *)
1314    cases (IH … H2) #E1 #E2 %
1315    [1:
1316      % try @H1
1317      <(add_bitvector_of_nat_Sm 16 (|tl|)) in E1;
1318      <add_associative #assm assumption
1319    |2:
1320      <add_associative in E2;
1321      <(add_bitvector_of_nat_Sm 16 (|tl|)) #assm
1322      assumption
1323    ]
1324  ]
1325qed.
1326
1327axiom bitvector_3_cases:
1328  ∀b: BitVector 3.
1329  ∃l, c, r: bool.
1330    b = [[l; c; r]].
1331
1332lemma bitvector_3_elim_prop:
1333  ∀P: BitVector 3 → Prop.
1334    P [[false;false;false]] → P [[false;false;true]] → P [[false;true;false]] →
1335    P [[false;true;true]] → P [[true;false;false]] → P [[true;false;true]] →
1336    P [[true;true;false]] → P [[true;true;true]] → ∀v. P v.
1337  #P #H1 #H2 #H3 #H4 #H5 #H6 #H7 #H8 #H9
1338  cases (bitvector_3_cases … H9) #l #assm cases assm
1339  -assm #c #assm cases assm
1340  -assm #r #assm cases assm destruct
1341  cases l cases c cases r //
1342qed.
1343
1344definition ticks_of_instruction ≝
1345  λi.
1346    let trivial_code_memory ≝ assembly1 i in
1347    let trivial_status ≝ load_code_memory trivial_code_memory in
1348      \snd (fetch trivial_status (zero ?)).
1349
1350lemma fetch_assembly:
1351  ∀pc: Word.
1352  ∀i: instruction.
1353  ∀code_memory: BitVectorTrie Byte 16.
1354  ∀assembled: list Byte.
1355    assembled = assembly1 i →
1356      let len ≝ length … assembled in
1357      let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1358        encoding_check code_memory pc pc_plus_len assembled →
1359          let 〈instr, pc', ticks〉 ≝ fetch code_memory pc in
1360           (eq_instruction instr i ∧ eqb ticks (ticks_of_instruction instr) ∧ eq_bv … pc' pc_plus_len) = true.
1361  #pc #i #code_memory #assembled cases i [8: *]
1362 [16,20,29: * * |18,19: * * [1,2,4,5: *] |28: * * [1,2: * [1,2: * [1,2: * [1,2: *]]]]]
1363 [47,48,49:
1364 |*: #arg @(list_addressing_mode_tags_elim_prop … arg) whd try % -arg
1365  [2,3,5,7,10,12,16,17,18,21,25,26,27,30,31,32,37,38,39,40,41,42,43,44,45,48,51,58,
1366   59,60,63,64,65,66,67: #ARG]]
1367 [4,5,6,7,8,9,10,11,12,13,22,23,24,27,28,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
1368  56,57,69,70,72,73,75: #arg2 @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2
1369  [1,2,4,7,9,10,12,13,15,16,17,18,20,22,23,24,25,26,27,28,29,30,31,32,33,36,37,38,
1370   39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
1371   68,69,70,71: #ARG2]]
1372 [1,2,19,20: #arg3 @(list_addressing_mode_tags_elim_prop … arg3) whd try % -arg3 #ARG3]
1373 normalize in ⊢ (???% → ?);
1374 [92,94,42,93,95: @split_elim #vl #vm #E >E -E; [2,4: @(bitvector_3_elim_prop … vl)]
1375  normalize in ⊢ (???% → ?);]
1376 #H >H * #H1 try (whd in ⊢ (% → ?); * #H2)
1377 try (whd in ⊢ (% → ?); * #H3) whd in ⊢ (% → ?); #H4
1378 [ whd in match fetch; normalize nodelta <H1 ] cases daemon
1379(*
1380 whd in ⊢ (let ? ≝ ??% in ?); <H1 whd in ⊢ (let fetched ≝ % in ?)
1381 [17,18,19,20,21,22,23,24,25,26,31,34,35,36,37,38: <H3]
1382 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
1383  30,31,32,33,34,35,36,37,38,39,40,43,45,48,49,52,53,54,55,56,57,60,61,62,65,66,
1384  69,70,73,74,78,80,81,84,85,95,98,101,102,103,104,105,106,107,108,109,110: <H2]
1385 whd >eq_instruction_refl >H4 @eq_bv_refl
1386*) (* XXX: not working! *)
1387qed.
1388
1389let rec fetch_many
1390  (code_memory: BitVectorTrie Byte 16) (final_pc: Word) (pc: Word)
1391    (expected: list instruction)
1392      on expected: Prop ≝
1393  match expected with
1394  [ nil ⇒ eq_bv … pc final_pc = true
1395  | cons i tl ⇒
1396    let fetched ≝ fetch code_memory pc in
1397    let 〈instr_pc, ticks〉 ≝ fetched in
1398    let 〈instr,pc'〉 ≝ instr_pc in
1399      eq_instruction instr i = true ∧
1400        ticks = (ticks_of_instruction i) ∧
1401        fetch_many code_memory final_pc pc' tl
1402  ].
1403
1404lemma option_destruct_Some:
1405  ∀A: Type[0].
1406  ∀a, b: A.
1407    Some A a = Some A b → a = b.
1408  #A #a #b #EQ
1409  destruct %
1410qed.
1411
1412axiom eq_instruction_to_eq:
1413  ∀i1, i2: instruction.
1414    eq_instruction i1 i2 = true → i1 ≃ i2.
1415
1416lemma fetch_assembly_pseudo':
1417  ∀lookup_labels.
1418  ∀sigma: Word → Word × bool.
1419  ∀ppc.
1420  ∀lookup_datalabels.
1421  ∀pi.
1422  ∀code_memory.
1423  ∀len.
1424  ∀assembled.
1425  ∀instructions.
1426    let 〈pc, force_long_jump〉 ≝ sigma ppc in
1427      instructions = expand_pseudo_instruction lookup_labels sigma ppc lookup_datalabels pi →
1428        〈len,assembled〉 = assembly_1_pseudoinstruction lookup_labels sigma ppc lookup_datalabels pi →
1429          let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1430            encoding_check code_memory pc pc_plus_len assembled →
1431              fetch_many code_memory pc_plus_len pc instructions.
1432  #lookup_labels #sigma #ppc #lookup_datalabels #pi #code_memory #len #assembled #instructions
1433  generalize in match (refl … (sigma ppc));
1434  cases (sigma ?) in ⊢ (??%? → %); #pc #force_long_jump #sigma_refl normalize nodelta
1435  #instructions_refl whd in ⊢ (???% → ?); <instructions_refl whd in ⊢ (???% → ?); #assembled_refl
1436  cases (pair_destruct ?????? assembled_refl) -assembled_refl #len_refl #assembled_refl
1437  >len_refl >assembled_refl -len_refl
1438  generalize in match (add 16 pc
1439    (bitvector_of_nat 16
1440     (|flatten (Vector bool 8)
1441       (map instruction (list (Vector bool 8)) assembly1 instructions)|)));
1442  #final_pc
1443  generalize in match pc; elim instructions
1444  [1:
1445    #pc whd in ⊢ (% → %); #H >H @eq_bv_refl
1446  |2:
1447    #i #tl #IH #pc #H whd
1448    cases (encoding_check_append ????? H) -H #H1 #H2
1449    @pair_elim #instr_pc #ticks #fetch_refl normalize nodelta
1450    @pair_elim #instr #pc' #instr_pc_refl normalize nodelta
1451    lapply (fetch_assembly pc i code_memory (assembly1 i) (refl …)) whd in ⊢ (% → ?);
1452    #H3 lapply (H3 H1) -H3 >fetch_refl >instr_pc_refl normalize nodelta
1453    #H3 lapply (conjunction_true ?? H3) * #H4 #H5 %
1454    [1:
1455      lapply (conjunction_true … H4) * #B1 #B2
1456      % try assumption @eqb_true_to_eq
1457      <(eq_instruction_to_eq … B1) assumption
1458    |2:
1459      >(eq_bv_eq … H5) @IH @H2
1460    ]
1461  ]
1462qed.
1463
1464lemma fetch_assembly_pseudo:
1465  ∀program: pseudo_assembly_program.
1466  ∀sigma: Word → Word × bool.
1467  let lookup_labels ≝ λx:Identifier.\fst (sigma (address_of_word_labels_code_mem (\snd  program) x)) in
1468  ∀ppc.∀code_memory.
1469  let lookup_datalabels ≝ λx:Identifier.lookup_def … (construct_datalabels (\fst  program)) x (zero 16) in
1470  let pi ≝  \fst  (fetch_pseudo_instruction (\snd program) ppc) in
1471  let pc ≝ \fst (sigma ppc) in
1472  let instructions ≝ expand_pseudo_instruction lookup_labels sigma ppc lookup_datalabels pi in
1473  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma ppc lookup_datalabels pi in
1474  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1475    encoding_check code_memory pc pc_plus_len assembled →
1476      fetch_many code_memory pc_plus_len pc instructions.
1477 #program #sigma letin lookup_labels ≝ (λx.?) #ppc #code_memory
1478 letin lookup_datalabels ≝ (λx.?)
1479 letin pi ≝ (fst ???)
1480 letin pc ≝ (fst ???)
1481 letin instructions ≝ (expand_pseudo_instruction ?????)
1482 @pair_elim #len #assembled #assembled_refl normalize nodelta
1483 #H
1484 generalize in match
1485  (fetch_assembly_pseudo' lookup_labels sigma ppc lookup_datalabels pi code_memory len assembled instructions) in ⊢ ?;
1486 #X destruct
1487 cases (sigma ppc) in H X; #pc #force_long_jump normalize nodelta
1488 #H #X @X try % <assembled_refl try % assumption
1489qed.
1490
1491(* This is a trivial consequence of fetch_assembly_pseudo + the proof that the
1492   function that load the code in memory is correct. The latter is based
1493   on missing properties from the standard library on the BitVectorTrie
1494   data structrure.
1495
1496   Wrong at the moment, requires Jaap's precondition to ensure that the program
1497   does not overflow when put into code memory (i.e. shorter than 2^16 bytes).
1498*)
1499axiom assembly_ok:
1500 ∀program,sigma,assembled,costs'.
1501  let 〈labels, costs〉 ≝ create_label_cost_map (\snd program) in
1502  〈assembled,costs'〉 = assembly program sigma →
1503  costs = costs' ∧
1504  let code_memory ≝ load_code_memory assembled in
1505  let datalabels ≝ construct_datalabels (\fst program) in
1506  let lookup_labels ≝ λx.\fst (sigma (address_of_word_labels_code_mem (\snd program) x)) in
1507  let lookup_datalabels ≝ λx. lookup_def ?? datalabels x (zero ?) in
1508  ∀ppc.
1509  let 〈pi, newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1510  let 〈len,assembled〉 ≝ assembly_1_pseudoinstruction lookup_labels sigma ppc lookup_datalabels pi in
1511  let pc ≝ \fst (sigma ppc) in
1512  let pc_plus_len ≝ add … pc (bitvector_of_nat … len) in
1513   encoding_check code_memory pc pc_plus_len assembled ∧
1514       \fst (sigma newppc) = add … pc (bitvector_of_nat … len).
1515
1516(* XXX: should we add that costs = costs'? *)
1517lemma fetch_assembly_pseudo2:
1518 ∀program,sigma,ppc.
1519  let 〈labels, costs〉 ≝ create_label_cost_map (\snd program) in
1520  let 〈assembled, costs'〉 ≝ assembly program sigma in
1521  let code_memory ≝ load_code_memory assembled in
1522  let data_labels ≝ construct_datalabels (\fst program) in
1523  let lookup_labels ≝ λx.\fst (sigma (address_of_word_labels_code_mem (\snd program) x)) in
1524  let lookup_datalabels ≝ λx. lookup_def ? ? data_labels x (zero ?) in
1525  let 〈pi,newppc〉 ≝ fetch_pseudo_instruction (\snd program) ppc in
1526  let instructions ≝ expand_pseudo_instruction lookup_labels sigma ppc lookup_datalabels pi in
1527    fetch_many code_memory (\fst (sigma newppc)) (\fst (sigma ppc)) instructions.
1528  * #preamble #instr_list #sigma #ppc
1529  @pair_elim #labels #costs #create_label_map_refl
1530  @pair_elim #assembled #costs' #assembled_refl
1531  letin code_memory ≝ (load_code_memory ?)
1532  letin data_labels ≝ (construct_datalabels ?)
1533  letin lookup_labels ≝ (λx. ?)
1534  letin lookup_datalabels ≝ (λx. ?)
1535  @pair_elim #pi #newppc #fetch_pseudo_refl
1536  lapply (assembly_ok 〈preamble, instr_list〉 sigma assembled costs')
1537  @pair_elim #labels' #costs' #create_label_map_refl' #H
1538  cases (H (sym_eq … assembled_refl))
1539  #_
1540  lapply (refl … (assembly_1_pseudoinstruction lookup_labels sigma ppc lookup_datalabels pi))
1541  cases (assembly_1_pseudoinstruction ?????) in ⊢ (???% → ?);
1542  #len #assembledi #EQ4 #H
1543  lapply (H ppc) >fetch_pseudo_refl #H
1544  lapply (fetch_assembly_pseudo 〈preamble,instr_list〉 sigma ppc (load_code_memory assembled))
1545  >EQ4 #H1 cases H #H2 #H3 >H3 normalize nodelta in H1; normalize nodelta
1546  >fetch_pseudo_refl in H1; #assm @assm assumption
1547qed.
1548
1549(* OLD?
1550definition assembly_specification:
1551  ∀assembly_program: pseudo_assembly_program.
1552  ∀code_mem: BitVectorTrie Byte 16. Prop ≝
1553  λpseudo_assembly_program.
1554  λcode_mem.
1555    ∀pc: Word.
1556      let 〈preamble, instr_list〉 ≝ pseudo_assembly_program in
1557      let 〈pre_instr, pre_new_pc〉 ≝ fetch_pseudo_instruction instr_list pc in
1558      let labels ≝ λx. sigma' pseudo_assembly_program (address_of_word_labels_code_mem instr_list x) in
1559      let datalabels ≝ λx. sigma' pseudo_assembly_program (lookup ? ? x (construct_datalabels preamble) (zero ?)) in
1560      let pre_assembled ≝ assembly_1_pseudoinstruction pseudo_assembly_program
1561       (sigma' pseudo_assembly_program pc) labels datalabels pre_instr in
1562      match pre_assembled with
1563       [ None ⇒ True
1564       | Some pc_code ⇒
1565          let 〈new_pc,code〉 ≝ pc_code in
1566           encoding_check code_mem pc (sigma' pseudo_assembly_program pre_new_pc) code ].
1567
1568axiom assembly_meets_specification:
1569  ∀pseudo_assembly_program.
1570    match assembly pseudo_assembly_program with
1571    [ None ⇒ True
1572    | Some code_mem_cost ⇒
1573      let 〈code_mem, cost〉 ≝ code_mem_cost in
1574        assembly_specification pseudo_assembly_program (load_code_memory code_mem)
1575    ].
1576(*
1577  # PROGRAM
1578  [ cases PROGRAM
1579    # PREAMBLE
1580    # INSTR_LIST
1581    elim INSTR_LIST
1582    [ whd
1583      whd in ⊢ (∀_. %)
1584      # PC
1585      whd
1586    | # INSTR
1587      # INSTR_LIST_TL
1588      # H
1589      whd
1590      whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ?])
1591    ]
1592  | cases not_implemented
1593  ] *)
1594*)
1595
1596definition internal_pseudo_address_map ≝ list (BitVector 8).
1597
1598axiom low_internal_ram_of_pseudo_low_internal_ram:
1599 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1600
1601axiom high_internal_ram_of_pseudo_high_internal_ram:
1602 ∀M:internal_pseudo_address_map.∀ram:BitVectorTrie Byte 7.BitVectorTrie Byte 7.
1603
1604axiom low_internal_ram_of_pseudo_internal_ram_hit:
1605 ∀M:internal_pseudo_address_map.∀cm.∀s:PseudoStatus cm.∀sigma:Word → Word × bool.∀addr:BitVector 7.
1606  member ? (eq_bv 8) (false:::addr) M = true →
1607   let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1608   let pbl ≝ lookup ? 7 addr (low_internal_ram … s) (zero 8) in
1609   let pbu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) (low_internal_ram … s) (zero 8) in
1610   let bl ≝ lookup ? 7 addr ram (zero 8) in
1611   let bu ≝ lookup ? 7 (add ? addr (bitvector_of_nat 7 1)) ram (zero 8) in
1612    bu@@bl = \fst (sigma (pbu@@pbl)).
1613
1614(* changed from add to sub *)
1615axiom low_internal_ram_of_pseudo_internal_ram_miss:
1617  let ram ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s) in
1618  let 〈Saddr,flags〉 ≝ sub_7_with_carry addr (bitvector_of_nat 7 1) false in
1619  let carr ≝ get_index_v ? ? flags 1 ? in
1620  carr = false →
1621  member ? (eq_bv 8) (false:::Saddr) M = false →
1622   member ? (eq_bv 8) (false:::addr) M = false →
1623    lookup ? 7 addr ram (zero ?) = lookup ? 7 addr (low_internal_ram … s) (zero ?).
1624  //
1625qed.
1626
1628 λT.λM:internal_pseudo_address_map.λcm.λs:PreStatus T cm.
1630   match addr with
1631    [ DIRECT d ⇒
1632       ¬(member ? (eq_bv 8) d M) ∧
1633       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1634    | INDIRECT i ⇒
1635       let d ≝ get_register … s [[false;false;i]] in
1636       ¬(member ? (eq_bv 8) d M) ∧
1637       ¬(member ? (eq_bv 8) (\fst (sub_8_with_carry d (bitvector_of_nat 8 1) false)) M)
1638    | EXT_INDIRECT _ ⇒ true
1639    | REGISTER _ ⇒ true
1640    | ACC_A ⇒ true
1641    | ACC_B ⇒ true
1642    | DPTR ⇒ true
1643    | DATA _ ⇒ true
1644    | DATA16 _ ⇒ true
1645    | ACC_DPTR ⇒ true
1646    | ACC_PC ⇒ true
1647    | EXT_INDIRECT_DPTR ⇒ true
1648    | INDIRECT_DPTR ⇒ true
1649    | CARRY ⇒ true
1650    | BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1651    | N_BIT_ADDR _ ⇒ ¬true (* TO BE COMPLETED *)
1652    | RELATIVE _ ⇒ true
1653    | ADDR11 _ ⇒ true
1654    | ADDR16 _ ⇒ true ].
1655
1657  λT.
1658  λfetched.
1660  λcm:T.
1661  λs: PreStatus T cm.
1662   match fetched with
1663    [ Comment _ ⇒ Some ? M
1664    | Cost _ ⇒ Some … M
1665    | Jmp _ ⇒ Some … M
1666    | Call _ ⇒
1667       Some … (add ? (get_8051_sfr … s SFR_SP) (bitvector_of_nat 8 1)::M)
1668    | Mov _ _ ⇒ Some … M
1669    | Instruction instr ⇒
1670       match instr with
1672           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1673            Some ? M
1674           else
1675            None ?
1677           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1678            Some ? M
1679           else
1680            None ?
1682           if addressing_mode_ok T M … s addr1 ∧ addressing_mode_ok T M … s addr2 then
1683            Some ? M
1684           else
1685            None ?
1686        | _ ⇒ (* TO BE COMPLETED *) Some ? M ]].
1687
1688
1691 λcm.
1692  λs:PseudoStatus cm.
1694     (\fst (fetch_pseudo_instruction (\snd cm) (program_counter … s))) M cm s.
1695
1696definition code_memory_of_pseudo_assembly_program:
1697 ∀pap:pseudo_assembly_program. (Word → Word × bool) → BitVectorTrie Byte 16
1698≝ λpap,sigma.
1699   let p ≝ assembly pap sigma in
1700    load_code_memory (\fst p).
1701
1702definition status_of_pseudo_status:
1703 internal_pseudo_address_map → ∀pap.∀ps:PseudoStatus pap. ∀sigma: Word → Word × bool.
1704  Status (code_memory_of_pseudo_assembly_program pap sigma) ≝
1705 λM,pap,ps,sigma.
1706  let cm ≝ code_memory_of_pseudo_assembly_program … sigma in
1707  let pc ≝ \fst (sigma (program_counter … ps)) in
1708  let lir ≝ low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … ps) in
1709  let hir ≝ high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … ps) in
1710     mk_PreStatus (BitVectorTrie Byte 16)
1711      cm
1712      lir
1713      hir
1714      (external_ram … ps)
1715      pc
1716      (special_function_registers_8051 … ps)
1717      (special_function_registers_8052 … ps)
1718      (p1_latch … ps)
1719      (p3_latch … ps)
1720      (clock … ps).
1721
1722(*
1723definition write_at_stack_pointer':
1724 ∀M. ∀ps: PreStatus M. Byte → Σps':PreStatus M.(code_memory … ps = code_memory … ps') ≝
1725  λM: Type[0].
1726  λs: PreStatus M.
1727  λv: Byte.
1728    let 〈 nu, nl 〉 ≝ split … 4 4 (get_8051_sfr ? s SFR_SP) in
1729    let bit_zero ≝ get_index_v… nu O ? in
1730    let bit_1 ≝ get_index_v… nu 1 ? in
1731    let bit_2 ≝ get_index_v… nu 2 ? in
1732    let bit_3 ≝ get_index_v… nu 3 ? in
1733      if bit_zero then
1734        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1735                              v (low_internal_ram ? s) in
1736          set_low_internal_ram ? s memory
1737      else
1738        let memory ≝ insert … ([[ bit_1 ; bit_2 ; bit_3 ]] @@ nl)
1739                              v (high_internal_ram ? s) in
1740          set_high_internal_ram ? s memory.
1741  [ cases l0 %
1742  |2,3,4,5: normalize repeat (@ le_S_S) @ le_O_n ]
1743qed.
1744
1745definition execute_1_pseudo_instruction': (Word → nat) → ∀ps:PseudoStatus.
1746 Σps':PseudoStatus.(code_memory … ps = code_memory … ps')
1747
1748  λticks_of.
1749  λs.
1750  let 〈instr, pc〉 ≝ fetch_pseudo_instruction (\snd (code_memory ? s)) (program_counter ? s) in
1751  let ticks ≝ ticks_of (program_counter ? s) in
1752  let s ≝ set_clock ? s (clock ? s + ticks) in
1753  let s ≝ set_program_counter ? s pc in
1754    match instr with
1755    [ Instruction instr ⇒
1756       execute_1_preinstruction … (λx, y. address_of_word_labels y x) instr s
1757    | Comment cmt ⇒ s
1758    | Cost cst ⇒ s
1759    | Jmp jmp ⇒ set_program_counter ? s (address_of_word_labels s jmp)
1760    | Call call ⇒
1761      let a ≝ address_of_word_labels s call in
1762      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1763      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1764      let 〈pc_bu, pc_bl〉 ≝ split ? 8 8 (program_counter ? s) in
1765      let s ≝ write_at_stack_pointer' ? s pc_bl in
1766      let 〈carry, new_sp〉 ≝ half_add ? (get_8051_sfr ? s SFR_SP) (bitvector_of_nat 8 1) in
1767      let s ≝ set_8051_sfr ? s SFR_SP new_sp in
1768      let s ≝ write_at_stack_pointer' ? s pc_bu in
1769        set_program_counter ? s a
1770    | Mov dptr ident ⇒
1771       set_arg_16 ? s (get_arg_16 ? s (DATA16 (address_of_word_labels s ident))) dptr
1772    ].
1773 [
1774 |2,3,4: %
1775 | <(sig2 … l7) whd in ⊢ (??? (??%)) <(sig2 … l5) %
1776 |
1777 | %
1778 ]
1779 cases not_implemented
1780qed.
1781*)
1782
1783(*
1784lemma execute_code_memory_unchanged:
1785 ∀ticks_of,ps. code_memory ? ps = code_memory ? (execute_1_pseudo_instruction ticks_of ps).
1786 #ticks #ps whd in ⊢ (??? (??%))
1787 cases (fetch_pseudo_instruction (\snd (code_memory pseudo_assembly_program ps))
1788  (program_counter pseudo_assembly_program ps)) #instr #pc
1789 whd in ⊢ (??? (??%)) cases instr
1790  [ #pre cases pre
1791     [ #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1792       cases (split ????) #z1 #z2 %
1793     | #a1 #a2 whd in ⊢ (??? (??%)) cases (add_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1794       cases (split ????) #z1 #z2 %
1795     | #a1 #a2 whd in ⊢ (??? (??%)) cases (sub_8_with_carry ???) #y1 #y2 whd in ⊢ (??? (??%))
1796       cases (split ????) #z1 #z2 %
1797     | #a1 whd in ⊢ (??? (??%)) cases a1 #x #H whd in ⊢ (??? (??%)) cases x
1798       [ #x1 whd in ⊢ (??? (??%))
1799     | *: cases not_implemented
1800     ]
1801  | #comment %
1802  | #cost %
1803  | #label %
1804  | #label whd in ⊢ (??? (??%)) cases (half_add ???) #x1 #x2 whd in ⊢ (??? (??%))
1805    cases (split ????) #y1 #y2 whd in ⊢ (??? (??%)) cases (half_add ???) #z1 #z2
1806    whd in ⊢ (??? (??%)) whd in ⊢ (??? (??%)) cases (split ????) #w1 #w2
1807    whd in ⊢ (??? (??%)) cases (get_index_v bool ????) whd in ⊢ (??? (??%))
1808    (* CSC: ??? *)
1809  | #dptr #label (* CSC: ??? *)
1810  ]
1811  cases not_implemented
1812qed.
1813*)
1814
1816lemma status_of_pseudo_status_failure_depends_only_on_code_memory:
1818 ∀ps,ps': PseudoStatus.
1819 ∀pol.
1820  ∀prf:code_memory … ps = code_memory … ps'.
1821   let pol' ≝ ? in
1822   match status_of_pseudo_status M ps pol with
1823    [ None ⇒ status_of_pseudo_status M ps' pol' = None …
1824    | Some _ ⇒ ∃w. status_of_pseudo_status M ps' pol' = Some … w
1825    ].
1826 [2: <prf @pol]
1827 #M #ps #ps' #pol #H normalize nodelta; whd in ⊢ (match % with [ _ ⇒ ? | _ ⇒ ? ])
1828 generalize in match (refl … (assembly (code_memory … ps) pol))
1829 cases (assembly ??) in ⊢ (???% → %)
1830  [ #K whd whd in ⊢ (??%?) <H >K %
1831  | #x #K whd whd in ⊢ (?? (λ_.??%?)) <H >K % [2: % ] ]
1832qed.
1833*)
1834
1835definition ticks_of0: ∀p:pseudo_assembly_program. (Word → Word × bool) → Word → pseudo_instruction → nat × nat ≝
1836  λprogram: pseudo_assembly_program.λsigma.
1837  λppc: Word.
1838  λfetched. ?.
1839cases daemon(*
1840    match fetched with
1841    [ Instruction instr ⇒
1842      match instr with
1843      [ JC lbl ⇒
1844        match pol lookup_labels ppc with
1845        [ short_jump ⇒ 〈2, 2〉
1846        | medium_jump ⇒ ?
1847        | long_jump ⇒ 〈4, 4〉
1848        ]
1849      | JNC lbl ⇒
1850        match pol lookup_labels ppc with
1851        [ short_jump ⇒ 〈2, 2〉
1852        | medium_jump ⇒ ?
1853        | long_jump ⇒ 〈4, 4〉
1854        ]
1855      | JB bit lbl ⇒
1856        match pol lookup_labels ppc with
1857        [ short_jump ⇒ 〈2, 2〉
1858        | medium_jump ⇒ ?
1859        | long_jump ⇒ 〈4, 4〉
1860        ]
1861      | JNB bit lbl ⇒
1862        match pol lookup_labels ppc with
1863        [ short_jump ⇒ 〈2, 2〉
1864        | medium_jump ⇒ ?
1865        | long_jump ⇒ 〈4, 4〉
1866        ]
1867      | JBC bit lbl ⇒
1868        match pol lookup_labels ppc with
1869        [ short_jump ⇒ 〈2, 2〉
1870        | medium_jump ⇒ ?
1871        | long_jump ⇒ 〈4, 4〉
1872        ]
1873      | JZ lbl ⇒
1874        match pol lookup_labels ppc with
1875        [ short_jump ⇒ 〈2, 2〉
1876        | medium_jump ⇒ ?
1877        | long_jump ⇒ 〈4, 4〉
1878        ]
1879      | JNZ lbl ⇒
1880        match pol lookup_labels  ppc with
1881        [ short_jump ⇒ 〈2, 2〉
1882        | medium_jump ⇒ ?
1883        | long_jump ⇒ 〈4, 4〉
1884        ]
1885      | CJNE arg lbl ⇒
1886        match pol lookup_labels ppc with
1887        [ short_jump ⇒ 〈2, 2〉
1888        | medium_jump ⇒ ?
1889        | long_jump ⇒ 〈4, 4〉
1890        ]
1891      | DJNZ arg lbl ⇒
1892        match pol lookup_labels ppc with
1893        [ short_jump ⇒ 〈2, 2〉
1894        | medium_jump ⇒ ?
1895        | long_jump ⇒ 〈4, 4〉
1896        ]
1897      | ADD arg1 arg2 ⇒
1898        let ticks ≝ ticks_of_instruction (ADD ? arg1 arg2) in
1899         〈ticks, ticks〉
1900      | ADDC arg1 arg2 ⇒
1901        let ticks ≝ ticks_of_instruction (ADDC ? arg1 arg2) in
1902         〈ticks, ticks〉
1903      | SUBB arg1 arg2 ⇒
1904        let ticks ≝ ticks_of_instruction (SUBB ? arg1 arg2) in
1905         〈ticks, ticks〉
1906      | INC arg ⇒
1907        let ticks ≝ ticks_of_instruction (INC ? arg) in
1908         〈ticks, ticks〉
1909      | DEC arg ⇒
1910        let ticks ≝ ticks_of_instruction (DEC ? arg) in
1911         〈ticks, ticks〉
1912      | MUL arg1 arg2 ⇒
1913        let ticks ≝ ticks_of_instruction (MUL ? arg1 arg2) in
1914         〈ticks, ticks〉
1915      | DIV arg1 arg2 ⇒
1916        let ticks ≝ ticks_of_instruction (DIV ? arg1 arg2) in
1917         〈ticks, ticks〉
1918      | DA arg ⇒
1919        let ticks ≝ ticks_of_instruction (DA ? arg) in
1920         〈ticks, ticks〉
1921      | ANL arg ⇒
1922        let ticks ≝ ticks_of_instruction (ANL ? arg) in
1923         〈ticks, ticks〉
1924      | ORL arg ⇒
1925        let ticks ≝ ticks_of_instruction (ORL ? arg) in
1926         〈ticks, ticks〉
1927      | XRL arg ⇒
1928        let ticks ≝ ticks_of_instruction (XRL ? arg) in
1929         〈ticks, ticks〉
1930      | CLR arg ⇒
1931        let ticks ≝ ticks_of_instruction (CLR ? arg) in
1932         〈ticks, ticks〉
1933      | CPL arg ⇒
1934        let ticks ≝ ticks_of_instruction (CPL ? arg) in
1935         〈ticks, ticks〉
1936      | RL arg ⇒
1937        let ticks ≝ ticks_of_instruction (RL ? arg) in
1938         〈ticks, ticks〉
1939      | RLC arg ⇒
1940        let ticks ≝ ticks_of_instruction (RLC ? arg) in
1941         〈ticks, ticks〉
1942      | RR arg ⇒
1943        let ticks ≝ ticks_of_instruction (RR ? arg) in
1944         〈ticks, ticks〉
1945      | RRC arg ⇒
1946        let ticks ≝ ticks_of_instruction (RRC ? arg) in
1947         〈ticks, ticks〉
1948      | SWAP arg ⇒
1949        let ticks ≝ ticks_of_instruction (SWAP ? arg) in
1950         〈ticks, ticks〉
1951      | MOV arg ⇒
1952        let ticks ≝ ticks_of_instruction (MOV ? arg) in
1953         〈ticks, ticks〉
1954      | MOVX arg ⇒
1955        let ticks ≝ ticks_of_instruction (MOVX ? arg) in
1956         〈ticks, ticks〉
1957      | SETB arg ⇒
1958        let ticks ≝ ticks_of_instruction (SETB ? arg) in
1959         〈ticks, ticks〉
1960      | PUSH arg ⇒
1961        let ticks ≝ ticks_of_instruction (PUSH ? arg) in
1962         〈ticks, ticks〉
1963      | POP arg ⇒
1964        let ticks ≝ ticks_of_instruction (POP ? arg) in
1965         〈ticks, ticks〉
1966      | XCH arg1 arg2 ⇒
1967        let ticks ≝ ticks_of_instruction (XCH ? arg1 arg2) in
1968         〈ticks, ticks〉
1969      | XCHD arg1 arg2 ⇒
1970        let ticks ≝ ticks_of_instruction (XCHD ? arg1 arg2) in
1971         〈ticks, ticks〉
1972      | RET ⇒
1973        let ticks ≝ ticks_of_instruction (RET ?) in
1974         〈ticks, ticks〉
1975      | RETI ⇒
1976        let ticks ≝ ticks_of_instruction (RETI ?) in
1977         〈ticks, ticks〉
1978      | NOP ⇒
1979        let ticks ≝ ticks_of_instruction (NOP ?) in
1980         〈ticks, ticks〉
1981      ]
1982    | Comment comment ⇒ 〈0, 0〉
1983    | Cost cost ⇒ 〈0, 0〉
1984    | Jmp jmp ⇒ 〈2, 2〉
1985    | Call call ⇒ 〈2, 2〉
1986    | Mov dptr tgt ⇒ 〈2, 2〉
1987    ].
1988  cases not_implemented (* policy returned medium_jump for conditional jumping = impossible *)
1989*)qed.
1990
1991definition ticks_of: ∀p:pseudo_assembly_program. (Word → Word × bool) → Word → nat × nat ≝
1992  λprogram: pseudo_assembly_program.λsigma.
1993  λppc: Word.
1994    let 〈preamble, pseudo〉 ≝ program in
1995    let 〈fetched, new_ppc〉 ≝ fetch_pseudo_instruction pseudo ppc in
1996     ticks_of0 program sigma ppc fetched.
1997
1998lemma eq_rect_Type1_r:
1999  ∀A: Type[1].
2000  ∀a:A.
2001  ∀P: ∀x:A. eq ? x a → Type[1]. P a (refl A a) → ∀x: A.∀p:eq ? x a. P x p.
2002  #A #a #P #H #x #p
2003  generalize in match H;
2004  generalize in match P;
2005  cases p
2006  //
2007qed.
2008
2009axiom split_append:
2010  ∀A: Type[0].
2011  ∀m, n: nat.
2012  ∀v, v': Vector A m.
2013  ∀q, q': Vector A n.
2014    let 〈v', q'〉 ≝ split A m n (v@@q) in
2015      v = v' ∧ q = q'.
2016
2017axiom split_vector_singleton:
2018  ∀A: Type[0].
2019  ∀n: nat.
2020  ∀v: Vector A (S n).
2021  ∀rest: Vector A n.
2022  ∀s: Vector A 1.
2023  ∀prf.
2024    v = s @@ rest →
2025    ((get_index_v A ? v 0 prf) ::: rest) = v.
2026
2027example sub_minus_one_seven_eight:
2028  ∀v: BitVector 7.
2029  false ::: (\fst (sub_7_with_carry v (bitvector_of_nat ? 1) false)) =
2030  \fst (sub_8_with_carry (false ::: v) (bitvector_of_nat ? 1) false).
2031 cases daemon.
2032qed.
2033
2034(*
2035lemma blah:
2037  ∀s: PseudoStatus.
2038  ∀arg: Byte.
2039  ∀b: bool.
2040    addressing_mode_ok m s (DIRECT arg) = true →
2041      get_arg_8 ? (set_low_internal_ram ? s (low_internal_ram_of_pseudo_low_internal_ram m (low_internal_ram ? s))) b (DIRECT arg) =
2042      get_arg_8 ? s b (DIRECT arg).
2043  [2, 3: normalize % ]
2044  #m #s #arg #b #hyp
2045  whd in ⊢ (??%%)
2046  @split_elim''
2047  #nu' #nl' #arg_nu_nl_eq
2048  normalize nodelta
2049  generalize in match (refl ? (get_index_v bool 4 nu' ? ?))
2050  cases (get_index_v bool 4 nu' ? ?) in ⊢ (??%? → %)
2051  #get_index_v_eq
2052  normalize nodelta
2053  [2:
2054    normalize nodelta
2055    @split_elim''
2056    #bit_one' #three_bits' #bit_one_three_bit_eq
2057    generalize in match (low_internal_ram_of_pseudo_internal_ram_miss m s (three_bits'@@nl'))
2058    normalize nodelta
2059    generalize in match (refl ? (sub_7_with_carry ? ? ?))
2060    cases (sub_7_with_carry ? ? ?) in ⊢ (??%? → %)
2062    normalize nodelta
2063    #carr_hyp'
2064    @carr_hyp'
2065    [1:
2066    |2: whd in hyp:(??%?); generalize in match hyp; -hyp;
2067        generalize in match (refl ? (¬(member (BitVector 8) ? arg m)))
2068        cases (¬(member (BitVector 8) ? arg m)) in ⊢ (??%? → %)
2069        #member_eq
2070        normalize nodelta
2071        [2: #destr destruct(destr)
2072        |1: -carr_hyp';
2073            >arg_nu_nl_eq
2074            <(split_vector_singleton ? ? nu' ? ? ? bit_one_three_bit_eq)
2075            [1: >get_index_v_eq in ⊢ (??%? → ?)
2076            |2: @le_S @le_S @le_S @le_n
2077            ]
2078            cases (member (BitVector 8) ? (\fst ?) ?)
2079            [1: #destr normalize in destr; destruct(destr)
2080            |2:
2081            ]
2082        ]
2083    |3: >get_index_v_eq in ⊢ (??%?)
2084        change in ⊢ (??(???%?)?) with ((? ::: three_bits') @@ nl')
2085        >(split_vector_singleton … bit_one_three_bit_eq)
2086        <arg_nu_nl_eq
2087        whd in hyp:(??%?)
2088        cases (member (BitVector 8) (eq_bv 8) arg m) in hyp
2089        normalize nodelta [*: #ignore @sym_eq ]
2090    ]
2091  |
2092  ].
2093*)
2094(*
2095map_address0 ... (DIRECT arg) = Some .. →
2096  get_arg_8 (map_address0 ... (internal_ram ...) (DIRECT arg) =
2097  get_arg_8 (internal_ram ...) (DIRECT arg)
2098
2099((if addressing_mode_ok M ps ACC_A∧addressing_mode_ok M ps (DIRECT ARG2)
2100                     then Some internal_pseudo_address_map M
2101                     else None internal_pseudo_address_map )
2102                    =Some internal_pseudo_address_map M')
2103*)
2104
2105axiom low_internal_ram_write_at_stack_pointer:
2106 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma: Word → Word × bool.∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2107  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2108  low_internal_ram ? cm2 s2 = low_internal_ram T2 cm3 s3 →
2109  sp1 = add ? (get_8051_sfr … cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2110  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2111  bu@@bl = \fst (sigma (pbu@@pbl)) →
2112   low_internal_ram T1 cm1
2113     (write_at_stack_pointer …
2114       (set_8051_sfr …
2115         (write_at_stack_pointer …
2116           (set_8051_sfr …
2117             (set_low_internal_ram … s1
2118               (low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … s2)))
2119             SFR_SP sp1)
2120          bl)
2121        SFR_SP sp2)
2122      bu)
2123   = low_internal_ram_of_pseudo_low_internal_ram (sp1::M)
2124      (low_internal_ram …
2125       (write_at_stack_pointer …
2126         (set_8051_sfr …
2127           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2128          SFR_SP sp2)
2129        pbu)).
2130
2131axiom high_internal_ram_write_at_stack_pointer:
2132 ∀T1,T2,M,cm1,s1,cm2,s2,cm3,s3.∀sigma:Word → Word × bool.∀pbu,pbl,bu,bl,sp1,sp2:BitVector 8.
2133  get_8051_sfr T2 cm2 s2 SFR_SP = get_8051_sfr ? cm3 s3 SFR_SP →
2134  high_internal_ram ?? s2 = high_internal_ram T2 cm3 s3 →
2135  sp1 = add ? (get_8051_sfr ? cm1 s1 SFR_SP) (bitvector_of_nat 8 1) →
2136  sp2 = add ? sp1 (bitvector_of_nat 8 1) →
2137  bu@@bl = \fst (sigma (pbu@@pbl)) →
2138   high_internal_ram T1 cm1
2139     (write_at_stack_pointer …
2140       (set_8051_sfr …
2141         (write_at_stack_pointer …
2142           (set_8051_sfr …
2143             (set_high_internal_ram … s1
2144               (high_internal_ram_of_pseudo_high_internal_ram M (high_internal_ram … s2)))
2145             SFR_SP sp1)
2146          bl)
2147        SFR_SP sp2)
2148      bu)
2149   = high_internal_ram_of_pseudo_high_internal_ram (sp1::M)
2150      (high_internal_ram …
2151       (write_at_stack_pointer …
2152         (set_8051_sfr …
2153           (write_at_stack_pointer … (set_8051_sfr … s3 SFR_SP sp1) pbl)
2154          SFR_SP sp2)
2155        pbu)).
2156
2157lemma Some_Some_elim:
2158 ∀T:Type[0].∀x,y:T.∀P:Type[2]. (x=y → P) → Some T x = Some T y → P.
2159 #T #x #y #P #H #K @H @option_destruct_Some //
2160qed.
2161
2162(*CSC: ???*)
2163axiom snd_assembly_1_pseudoinstruction_ok:
2164 ∀program:pseudo_assembly_program.∀sigma.
2165 ∀ppc:Word.∀pi,lookup_labels,lookup_datalabels.
2166  lookup_labels = (λx. \fst (sigma (address_of_word_labels_code_mem (\snd program) x))) →
2167  lookup_datalabels = (λx. lookup_def … (construct_datalabels (\fst program)) x (zero ?)) →
2168  \fst (fetch_pseudo_instruction (\snd program) ppc) = pi →
2169   let len ≝ \fst (assembly_1_pseudoinstruction lookup_labels sigma (\fst (sigma ppc)) lookup_datalabels  pi) in
2170    \fst (sigma (add … ppc (bitvector_of_nat ? 1))) =
2171     add … (\fst (sigma ppc)) (bitvector_of_nat ? len).
2172
2173lemma pose: ∀A:Type[0].∀B:A → Type[0].∀a:A. (∀a':A. a'=a → B a') → B a.
2174 /2/
2175qed.
2176
2177(* To be moved in ProofStatus *)
2178lemma program_counter_set_program_counter:
2179 ∀T,cm,s,x. program_counter T cm (set_program_counter T cm s x) = x.
2180 //
2181qed.
2182
2183theorem main_thm:
2184 ∀M,M',cm,ps,sigma.
2185  next_internal_pseudo_address_map M cm ps = Some … M' →
2186   ∃n.
2187      execute n … (status_of_pseudo_status M … ps sigma)
2188    = status_of_pseudo_status M' … (execute_1_pseudo_instruction (ticks_of cm sigma) cm ps) sigma.
2189 #M #M' * #preamble #instr_list #ps #sigma
2190 change with (next_internal_pseudo_address_map0 ????? = ? → ?)
2191 @(pose … (program_counter ?? ps)) #ppc #EQppc
2192 generalize in match (fetch_assembly_pseudo2 〈preamble,instr_list〉 sigma ppc) in ⊢ ?;
2193 @pair_elim #labels #costs #H0 normalize nodelta
2194 @pair_elim #assembled #costs' #EQ1 normalize nodelta
2195 @pair_elim #pi #newppc #EQ2 normalize nodelta
2196 @(pose … (λx. \fst (sigma (address_of_word_labels_code_mem instr_list x)))) #lookup_labels #EQlookup_labels
2197 @(pose … (λx. lookup_def … (construct_datalabels preamble) x (zero 16))) #lookup_datalabels #EQlookup_datalabels
2198 whd in match execute_1_pseudo_instruction; normalize nodelta
2199 whd in match ticks_of; normalize nodelta <EQppc #H2 >EQ2 normalize nodelta
2200 lapply (snd_fetch_pseudo_instruction instr_list ppc) >EQ2 #EQnewppc >EQnewppc
2201 lapply (snd_assembly_1_pseudoinstruction_ok 〈preamble,instr_list〉 … ppc pi … EQlookup_labels EQlookup_datalabels ?)
2202 [>EQ2 %]
2203 inversion pi
2204  [2,3: (* Comment, Cost *) #ARG #EQ
2205   #H3 normalize nodelta in H3; normalize in match (assembly_1_pseudoinstruction ?????) in H3;
2206   whd in ⊢ (??%? → ?); @Some_Some_elim #MAP <MAP
2207   whd in match (execute_1_pseudo_instruction0 ?????);
2208   %{0} @split_eq_status CSC:STOP HERE //
2209  |4: (* Jmp *) #label whd in ⊢ (??%? → ???% → ?)
2210   @Some_Some_elim #MAP cases (pol ?) normalize nodelta
2211       [3: (* long *) #EQ3 @(Some_Some_elim ????? EQ3) #EQ3'
2212         whd in match eject normalize nodelta >EQ3' in ⊢ (% → ?) whd in ⊢ (% → ?)
2213         @pair_elim' * #instr #newppc' #ticks #EQ4
2214         * * #H2a #H2b whd in ⊢ (% → ?) #H2
2215         >H2b >(eq_instruction_to_eq … H2a)
2216         #EQ %[@1]
2217         <MAP >(eq_bv_eq … H2) >EQ
2218         whd in ⊢ (??%?) >EQ4 whd in ⊢ (??%?)
2219         cases ps in EQ4; #A1 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A9 #A10 #XXX >XXX %
2220         whd in ⊢ (??%?)
2221         whd in ⊢ (??(match ?%? with [_ ⇒ ?])?)
2222         cases ps in EQ0 ⊢ %; #A1 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A9 #A10 #XXXX >XXXX %
2223  |6: (* Mov *) #arg1 #arg2
2224       #H1 #H2 #EQ %[@1]
2225       normalize in H1; generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2226       change in ⊢ (? → ??%?) with (execute_1_0 ??)
2227       cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2228       * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2229       >H2b >(eq_instruction_to_eq … H2a)
2230       generalize in match EQ; -EQ; whd in ⊢ (???% → ??%?);
2231       @(list_addressing_mode_tags_elim_prop … arg1) whd try % -arg1; whd in ⊢ (???% → ??%?)
2232       @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2; #ARG2
2233       normalize nodelta;
2234       [1,2,3,4,5,6,7,8: cases (add_8_with_carry ???) |*: cases (sub_8_with_carry ???)]
2235       #result #flags
2236       #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c) %
2237  |5: (* Call *) #label #MAP
2238      generalize in match (option_destruct_Some ??? MAP) -MAP; #MAP <MAP -MAP;
2239      whd in ⊢ (???% → ?) cases (pol ?) normalize nodelta;
2240       [ (* short *) #abs @⊥ destruct (abs)
2241       |3: (* long *) #H1 #H2 #EQ %[@1]
2242           (* normalize in H1; !!!*) generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2243           change in ⊢ (? → ??%?) with (execute_1_0 ??)
2244           cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 pol (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2245           * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2246           >H2b >(eq_instruction_to_eq … H2a)
2247           generalize in match EQ; -EQ;
2248           whd in ⊢ (???% → ??%?);
2249           generalize in match (refl … (half_add 8 (get_8051_sfr ? ps SFR_SP) (bitvector_of_nat ? 1))) cases (half_add ???) in ⊢ (??%? → %) #carry #new_sp #EQ1 normalize nodelta;
2250           >(eq_bv_eq … H2c)
2251           change with
2252            ((?=let 〈ppc_bu,ppc_bl〉 ≝ split bool 8 8 newppc in ?) →
2253                (let 〈pc_bu,pc_bl〉 ≝ split bool 8 8 (sigma 〈preamble,instr_list〉 pol newppc) in ?)=?)
2254           generalize in match (refl … (split … 8 8 newppc)) cases (split bool 8 8 newppc) in ⊢ (??%? → %) #ppc_bu #ppc_bl #EQppc
2255           generalize in match (refl … (split … 8 8 (sigma 〈preamble,instr_list〉 pol newppc))) cases (split bool 8 8 (sigma 〈preamble,instr_list〉 pol newppc)) in ⊢ (??%? → %) #pc_bu #pc_bl #EQpc normalize nodelta;
2256           >get_8051_sfr_write_at_stack_pointer >get_8051_sfr_write_at_stack_pointer
2257           >get_8051_sfr_set_8051_sfr >get_8051_sfr_set_8051_sfr
2258           generalize in match (refl … (half_add ? new_sp (bitvector_of_nat ? 1))) cases (half_add ???) in ⊢ (??%? → %) #carry' #new_sp' #EQ2 normalize nodelta;
2259           #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c)
2260           @split_eq_status;
2261            [ >code_memory_write_at_stack_pointer whd in ⊢ (??%?)
2262              >code_memory_write_at_stack_pointer %
2263            | >set_program_counter_set_low_internal_ram
2264              >set_clock_set_low_internal_ram
2265              @low_internal_ram_write_at_stack_pointer
2266               [ >EQ0 @pol | % | %
2267               | @(pair_destruct_2 … EQ1)
2268               | @(pair_destruct_2 … EQ2)
2269               | >(pair_destruct_1 ????? EQpc)
2270                 >(pair_destruct_2 ????? EQpc)
2271                 @split_elim #x #y #H <H -x y H;
2272                 >(pair_destruct_1 ????? EQppc)
2273                 >(pair_destruct_2 ????? EQppc)
2274                 @split_elim #x #y #H <H -x y H;
2275                 >EQ0 % ]
2276            | >set_low_internal_ram_set_high_internal_ram
2277              >set_program_counter_set_high_internal_ram
2278              >set_clock_set_high_internal_ram
2279              @high_internal_ram_write_at_stack_pointer
2280               [ >EQ0 @pol | % | %
2281               | @(pair_destruct_2 … EQ1)
2282               | @(pair_destruct_2 … EQ2)
2283               | >(pair_destruct_1 ????? EQpc)
2284                 >(pair_destruct_2 ????? EQpc)
2285                 @split_elim #x #y #H <H -x y H;
2286                 >(pair_destruct_1 ????? EQppc)
2287                 >(pair_destruct_2 ????? EQppc)
2288                 @split_elim #x #y #H <H -x y H;
2289                 >EQ0 % ]
2290            | >external_ram_write_at_stack_pointer whd in ⊢ (??%?)
2291              >external_ram_write_at_stack_pointer whd in ⊢ (???%)
2292              >external_ram_write_at_stack_pointer whd in ⊢ (???%)
2293              >external_ram_write_at_stack_pointer %
2294            | change with (? = sigma ?? (address_of_word_labels_code_mem (\snd (code_memory ? ps)) ?))
2295              >EQ0 %
2296            | >special_function_registers_8051_write_at_stack_pointer whd in ⊢ (??%?)
2297              >special_function_registers_8051_write_at_stack_pointer whd in ⊢ (???%)
2298              >special_function_registers_8051_write_at_stack_pointer whd in ⊢ (???%)
2299              >special_function_registers_8051_write_at_stack_pointer %
2300            | >special_function_registers_8052_write_at_stack_pointer whd in ⊢ (??%?)
2301              >special_function_registers_8052_write_at_stack_pointer whd in ⊢ (???%)
2302              >special_function_registers_8052_write_at_stack_pointer whd in ⊢ (???%)
2303              >special_function_registers_8052_write_at_stack_pointer %
2304            | >p1_latch_write_at_stack_pointer whd in ⊢ (??%?)
2305              >p1_latch_write_at_stack_pointer whd in ⊢ (???%)
2306              >p1_latch_write_at_stack_pointer whd in ⊢ (???%)
2307              >p1_latch_write_at_stack_pointer %
2308            | >p3_latch_write_at_stack_pointer whd in ⊢ (??%?)
2309              >p3_latch_write_at_stack_pointer whd in ⊢ (???%)
2310              >p3_latch_write_at_stack_pointer whd in ⊢ (???%)
2311              >p3_latch_write_at_stack_pointer %
2312            | >clock_write_at_stack_pointer whd in ⊢ (??%?)
2313              >clock_write_at_stack_pointer whd in ⊢ (???%)
2314              >clock_write_at_stack_pointer whd in ⊢ (???%)
2315              >clock_write_at_stack_pointer %]
2316       (*| (* medium *)  #H1 #H2 #EQ %[@1] generalize in match H1; -H1;
2318         @pair_elim' #fst_5_pc #rest_pc #EQ2
2319         generalize in match (refl … (eq_bv … fst_5_addr fst_5_pc))
2320         cases (eq_bv ???) in ⊢ (??%? → %) normalize nodelta; #EQ3 #TEQ [2: destruct (TEQ)]
2321         generalize in match (option_destruct_Some ??? TEQ) -TEQ; #K1 >K1 in H2; whd in ⊢ (% → ?)
2322         change in ⊢ (? →??%?) with (execute_1_0 ??)
2323         @pair_elim' * #instr #newppc' #ticks #EQn
2324          * * #H2a #H2b whd in ⊢ (% → ?) #H2c >H2b >(eq_instruction_to_eq … H2a) whd in ⊢ (??%?)
2325          generalize in match EQ; -EQ; normalize nodelta; >(eq_bv_eq … H2c)
2326          @pair_elim' #carry #new_sp change with (half_add ? (get_8051_sfr ? ps ?) ? = ? → ?) #EQ4
2327          @split_elim' #pc_bu #pc_bl >program_counter_set_8051_sfr XXX change with (newppc = ?) #EQ5
2328          @pair_elim' #carry' #new_sp' #EQ6 normalize nodelta; #EQx >EQx -EQx;
2329          change in ⊢ (??(match ????% with [_ ⇒ ?])?) with (sigma … newppc)
2330          @split_elim' #pc_bu' #pc_bl' #EQ7 change with (newppc' = ? → ?)
2331          >get_8051_sfr_set_8051_sfr
2332
2333          whd in EQ:(???%) ⊢ ? >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c) whd in ⊢ (??%?)
2334           change with ((let 〈pc_bu,pc_bl〉 ≝ split bool 8 8 (sigma 〈preamble,instr_list〉 newppc) in ?)=?)
2335           generalize in match (refl … (split bool 8 8 (sigma 〈preamble,instr_list〉 newppc)))
2336           cases (split ????) in ⊢ (??%? → %) #pc_bu #pc_bl normalize nodelta; #EQ4
2337           generalize in match (refl … (split bool 4 4 pc_bu))
2338           cases (split ????) in ⊢ (??%? → %) #nu #nl normalize nodelta; #EQ5
2339           generalize in match (refl … (split bool 3 8 rest_addr))
2340           cases (split ????) in ⊢ (??%? → %) #relevant1 #relevant2 normalize nodelta; #EQ6
2341           change with ((let 〈carry,new_pc〉 ≝ half_add ? (sigma … newppc) ? in ?) = ?)
2342           generalize in match
2343            (refl …
2344             (half_add 16 (sigma 〈preamble,instr_list〉 newppc)
2345             ((nu@@get_index' bool 0 3 nl:::relevant1)@@relevant2)))
2346           cases (half_add ???) in ⊢ (??%? → %) #carry #new_pc normalize nodelta; #EQ7
2347           @split_eq_status try %
2348            [ change with (? = sigma ? (address_of_word_labels ps label))
2349              (* ARITHMETICS, BUT THE GOAL SEEMS FALSE *)
2350            | whd in ⊢ (??%%) whd in ⊢ (??(?%?)?) whd in ⊢ (??(?(match ?(?%)? with [_ ⇒ ?])?)?)
2351              @(bitvector_3_elim_prop … (\fst (split bool 3 8 rest_addr))) %]] *)]
2352  |4: (* Jmp *) #label #MAP
2353      generalize in match (option_destruct_Some ??? MAP) -MAP; #MAP >MAP -MAP;
2354      whd in ⊢ (???% → ?) cases (pol ?) normalize nodelta;
2355       [3: (* long *) #H1 #H2 #EQ %[@1]
2356           (* normalize in H1; !!!*) generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2357           change in ⊢ (? → ??%?) with (execute_1_0 ??)
2358           cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 pol (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2359           * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2360           >H2b >(eq_instruction_to_eq … H2a)
2361           generalize in match EQ; -EQ;
2362           #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c)
2363           cases ps in EQ0 ⊢ %; #A1 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A9 #A10 #XXXX >XXXX %
2364       |1: (* short *) #H1 #H2 #EQ %[@1] generalize in match H1; -H1;
2365           generalize in match
2366            (refl ?
2367             (sub_16_with_carry
2368              (sigma 〈preamble,instr_list〉 pol (program_counter … ps))
2369              (sigma 〈preamble,instr_list〉 pol (address_of_word_labels_code_mem instr_list label))
2370              false))
2371           cases (sub_16_with_carry ???) in ⊢ (??%? → %); #results #flags normalize nodelta;
2372           generalize in match (refl … (split … 8 8 results)) cases (split ????) in ⊢ (??%? → %) #upper #lower normalize nodelta;
2373           generalize in match (refl … (eq_bv … upper (zero 8))) cases (eq_bv ???) in ⊢ (??%? → %) normalize nodelta;
2374           #EQ1 #EQ2 #EQ3 #H1 [2: @⊥ destruct (H1)]
2375           generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2376           change in ⊢ (? → ??%?) with (execute_1_0 ??)
2377           cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 pol (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2378           * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2379           >H2b >(eq_instruction_to_eq … H2a)
2380           generalize in match EQ; -EQ;
2381           whd in ⊢ (???% → ?);
2382           #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c)
2383           change with ((let 〈carry,new_pc〉 ≝ half_add ? (sigma ???) ? in ?) = ?)
2384           generalize in match (refl … (half_add 16 (sigma 〈preamble,instr_list〉 pol newppc) (sign_extension lower)))
2385           cases (half_add ???) in ⊢ (??%? → %) #carry #newpc normalize nodelta #EQ4
2386           @split_eq_status try % change with (newpc = sigma ?? (address_of_word_labels ps label))
2387           (* ARITHMETICS, BUT THE GOAL SEEMS FALSE *)
2388       | (* medium *)  #H1 #H2 #EQ %[@1] generalize in match H1; -H1;
2389         generalize in match
2390          (refl …
2391            (split … 5 11 (sigma 〈preamble,instr_list〉 pol (address_of_word_labels_code_mem instr_list label))))
2392         cases (split ????) in ⊢ (??%? → %) #fst_5_addr #rest_addr normalize nodelta; #EQ1
2393         generalize in match
2394          (refl …
2395            (split … 5 11 (sigma 〈preamble,instr_list〉 pol (program_counter … ps))))
2396         cases (split ????) in ⊢ (??%? → %) #fst_5_pc #rest_pc normalize nodelta; #EQ2
2397         generalize in match (refl … (eq_bv … fst_5_addr fst_5_pc))
2398         cases (eq_bv ???) in ⊢ (??%? → %) normalize nodelta; #EQ3 #TEQ [2: destruct (TEQ)]
2399         generalize in match (option_destruct_Some ??? TEQ) -TEQ; #K1 >K1 in H2; whd in ⊢ (% → ?)
2400         change in ⊢ (? →??%?) with (execute_1_0 ??)
2401           cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 pol (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2402           * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2403           >H2b >(eq_instruction_to_eq … H2a)
2404           generalize in match EQ; -EQ;
2405           whd in ⊢ (???% → ?);
2406           #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c) whd in ⊢ (??%?)
2407           change with ((let 〈pc_bu,pc_bl〉 ≝ split bool 8 8 (sigma 〈preamble,instr_list〉 pol newppc) in ?)=?)
2408           generalize in match (refl … (split bool 8 8 (sigma 〈preamble,instr_list〉 pol newppc)))
2409           cases (split ????) in ⊢ (??%? → %) #pc_bu #pc_bl normalize nodelta; #EQ4
2410           generalize in match (refl … (split bool 4 4 pc_bu))
2411           cases (split ????) in ⊢ (??%? → %) #nu #nl normalize nodelta; #EQ5
2412           generalize in match (refl … (split bool 3 8 rest_addr))
2413           cases (split ????) in ⊢ (??%? → %) #relevant1 #relevant2 normalize nodelta; #EQ6
2414           change with ((let 〈carry,new_pc〉 ≝ half_add ? (sigma … newppc) ? in ?) = ?)
2415           generalize in match
2416            (refl …
2417             (half_add 16 (sigma 〈preamble,instr_list〉 pol newppc)
2418             ((nu@@get_index' bool 0 3 nl:::relevant1)@@relevant2)))
2419           cases (half_add ???) in ⊢ (??%? → %) #carry #new_pc normalize nodelta; #EQ7
2420           @split_eq_status try %
2421            [ change with (? = sigma ?? (address_of_word_labels ps label))
2422              (* ARITHMETICS, BUT THE GOAL SEEMS FALSE *)
2423            | whd in ⊢ (??%%) whd in ⊢ (??(?%?)?) whd in ⊢ (??(?(match ?(?%)? with [_ ⇒ ?])?)?)
2424              @(bitvector_3_elim_prop … (\fst (split bool 3 8 rest_addr))) %]]
2425  | (* Instruction *) -pi;  whd in ⊢ (? → ??%? → ?) *; normalize nodelta;
2426    [1,2,3: (* ADD, ADDC, SUBB *) #arg1 #arg2 #MAP #H1 #H2 #EQ %[1,3,5:@1]
2427       normalize in H1; generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2428       change in ⊢ (? → ??%?) with (execute_1_0 ??)
2429       cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 pol (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2430       * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2431       >H2b >(eq_instruction_to_eq … H2a)
2432       generalize in match EQ; -EQ; whd in ⊢ (???% → ??%?); generalize in match MAP; -MAP;
2433       @(list_addressing_mode_tags_elim_prop … arg1) whd try % -arg1;
2434       @(list_addressing_mode_tags_elim_prop … arg2) whd try % -arg2; #ARG2
2435       normalize nodelta; #MAP;
2436       [1: change in ⊢ (? → %) with
2437        ((let 〈result,flags〉 ≝
2439           (get_arg_8 ? ps false ACC_A)
2440           (get_arg_8 ?
2441             (set_low_internal_ram ? ps (low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … ps)))
2442             false (DIRECT ARG2))
2443           ? in ?) = ?)
2444        [2,3: %]
2445        change in ⊢ (???% → ?) with
2446         (let 〈result,flags〉 ≝ add_8_with_carry ?(*(get_arg_8 ? ps false ACC_A)*) ?? in ?)
2447        >get_arg_8_set_clock
2448       [1,2: cases (addressing_mode_ok ???? ∧ addressing_mode_ok ????) in MAP ⊢ ?
2449         [2,4: #abs @⊥ normalize in abs; destruct (abs)
2450         |*:whd in ⊢ (??%? → ?) #H <(option_destruct_Some ??? H)]
2451       [ change in ⊢ (? → %) with
2452        ((let 〈result,flags〉 ≝
2454           (get_arg_8 ? ps false ACC_A)
2455           (get_arg_8 ?
2456             (set_low_internal_ram ? ps (low_internal_ram_of_pseudo_low_internal_ram M (low_internal_ram … ps)))
2457             false (DIRECT ARG2))
2458           ? in ?) = ?)
2459          >get_arg_8_set_low_internal_ram
2460
2461        cases (add_8_with_carry ???)
2462
2463        [1,2,3,4,5,6,7,8: cases (add_8_with_carry ???) |*: cases (sub_8_with_carry ???)]
2464       #result #flags
2465       #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c) %
2466    | (* INC *) #arg1 #H1 #H2 #EQ %[@1]
2467       normalize in H1; generalize in match (option_destruct_Some ??? H1) #K1 >K1 in H2; whd in ⊢ (% → ?)
2468       change in ⊢ (? → ??%?) with (execute_1_0 ??)
2469       cases (fetch (load_code_memory assembled) (sigma 〈preamble,instr_list〉 (program_counter … ps))) * #instr #newppc' #ticks normalize nodelta;
2470       * * #H2a #H2b whd in ⊢ (% → ?) #H2c
2471       >H2b >(eq_instruction_to_eq … H2a)
2472       generalize in match EQ; -EQ; whd in ⊢ (???% → ??%?);
2473       @(list_addressing_mode_tags_elim_prop … arg1) whd try % -arg1; normalize nodelta; [1,2,3: #ARG]
2474       [1,2,3,4: cases (half_add ???) #carry #result
2475       | cases (half_add ???) #carry #bl normalize nodelta;
2476         cases (full_add ????) #carry' #bu normalize nodelta ]
2477        #EQ >EQ -EQ; normalize nodelta; >(eq_bv_eq … H2c) -newppc';
2478        [5: %
2479        |1: <(set_arg_8_set_code_memory 0 [[direct]] ? ? ? (set_clock pseudo_assembly_program
2480      (set_program_counter pseudo_assembly_program ps newppc)
2481      (\fst  (ticks_of0 〈preamble,instr_list〉
2482                   (program_counter pseudo_assembly_program ps)
2483                   (Instruction (INC Identifier (DIRECT ARG))))
2484       +clock pseudo_assembly_program
2485        (set_program_counter pseudo_assembly_program ps newppc))) (load_code_memory assembled) result (DIRECT ARG))
2486        [2,3: // ]
2487            <(set_arg_8_set_program_counter 0 [[direct]] ? ? ? ? ?) [2://]
2488            whd in ⊢ (??%%)
2489            cases (split bool 4 4 ARG)
2490            #nu' #nl'
2491            normalize nodelta
2492            cases (split bool 1 3 nu')
2493            #bit_1' #ignore'
2494            normalize nodelta
2495            cases (get_index_v bool 4 nu' ? ?)
2496            [ normalize nodelta (* HERE *) whd in ⊢ (??%%) %
2497            |
2498            ]
2499cases daemon (* EASY CASES TO BE COMPLETED *)
2500qed.
Note: See TracBrowser for help on using the repository browser.