1 | include "ASM/BitVector.ma". |
---|
2 | include "ASM/Util.ma". |
---|
3 | include "arithmetics/exp.ma". |
---|
4 | |
---|
5 | definition addr16_of_addr11: Word → Word11 → Word ≝ |
---|
6 | λpc: Word. |
---|
7 | λa: Word11. |
---|
8 | let 〈pc_upper, ignore〉 ≝ vsplit … 8 8 pc in |
---|
9 | let 〈n1, n2〉 ≝ vsplit … 4 4 pc_upper in |
---|
10 | let 〈b123, b〉 ≝ vsplit … 3 8 a in |
---|
11 | let b1 ≝ get_index_v … b123 0 ? in |
---|
12 | let b2 ≝ get_index_v … b123 1 ? in |
---|
13 | let b3 ≝ get_index_v … b123 2 ? in |
---|
14 | let p5 ≝ get_index_v … n2 0 ? in |
---|
15 | (n1 @@ [[ p5; b1; b2; b3 ]]) @@ b. |
---|
16 | // |
---|
17 | qed. |
---|
18 | |
---|
19 | definition nat_of_bool ≝ |
---|
20 | λb: bool. |
---|
21 | match b with |
---|
22 | [ false ⇒ O |
---|
23 | | true ⇒ S O |
---|
24 | ]. |
---|
25 | |
---|
26 | definition carry_of : bool → bool → bool → bool ≝ |
---|
27 | λa,b,c. match a with [ false ⇒ b ∧ c | true ⇒ b ∨ c ]. |
---|
28 | |
---|
29 | definition add_with_carries : ∀n:nat. BitVector n → BitVector n → bool → |
---|
30 | BitVector n × (BitVector n) ≝ |
---|
31 | λn,x,y,init_carry. |
---|
32 | fold_right2_i ??? |
---|
33 | (λn,b,c,r. |
---|
34 | let 〈lower_bits, carries〉 ≝ r in |
---|
35 | let last_carry ≝ match carries with [ VEmpty ⇒ init_carry | VCons _ cy _ ⇒ cy ] in |
---|
36 | (* Next if-then-else just to avoid a quadratic blow-up of the whd of an application |
---|
37 | of add_with_carries *) |
---|
38 | if last_carry then |
---|
39 | let bit ≝ xorb (xorb b c) true in |
---|
40 | let carry ≝ carry_of b c true in |
---|
41 | 〈bit:::lower_bits, carry:::carries〉 |
---|
42 | else |
---|
43 | let bit ≝ xorb (xorb b c) false in |
---|
44 | let carry ≝ carry_of b c false in |
---|
45 | 〈bit:::lower_bits, carry:::carries〉 |
---|
46 | ) |
---|
47 | 〈[[ ]], [[ ]]〉 n x y. |
---|
48 | |
---|
49 | (* Essentially the only difference for subtraction. *) |
---|
50 | definition borrow_of : bool → bool → bool → bool ≝ |
---|
51 | λa,b,c. match a with [ false ⇒ b ∨ c | true ⇒ b ∧ c ]. |
---|
52 | |
---|
53 | definition sub_with_borrows : ∀n:nat. BitVector n → BitVector n → bool → |
---|
54 | BitVector n × (BitVector n) ≝ |
---|
55 | λn,x,y,init_borrow. |
---|
56 | fold_right2_i ??? |
---|
57 | (λn,b,c,r. |
---|
58 | let 〈lower_bits, borrows〉 ≝ r in |
---|
59 | let last_borrow ≝ match borrows with [ VEmpty ⇒ init_borrow | VCons _ bw _ ⇒ bw ] in |
---|
60 | let bit ≝ xorb (xorb b c) last_borrow in |
---|
61 | let borrow ≝ borrow_of b c last_borrow in |
---|
62 | 〈bit:::lower_bits, borrow:::borrows〉 |
---|
63 | ) |
---|
64 | 〈[[ ]], [[ ]]〉 n x y. |
---|
65 | |
---|
66 | definition add_n_with_carry: |
---|
67 | ∀n: nat. ∀b, c: BitVector n. ∀carry: bool. n ≥ 5 → |
---|
68 | (BitVector n) × (BitVector 3) ≝ |
---|
69 | λn: nat. |
---|
70 | λb: BitVector n. |
---|
71 | λc: BitVector n. |
---|
72 | λcarry: bool. |
---|
73 | λpf:n ≥ 5. |
---|
74 | |
---|
75 | let 〈result, carries〉 ≝ add_with_carries n b c carry in |
---|
76 | let cy_flag ≝ get_index_v ?? carries 0 ? in |
---|
77 | let ov_flag ≝ xorb cy_flag (get_index_v ?? carries 1 ?) in |
---|
78 | let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) |
---|
79 | 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. |
---|
80 | // @(transitive_le … pf) /2/ |
---|
81 | qed. |
---|
82 | |
---|
83 | definition sub_n_with_carry: ∀n: nat. ∀b,c: BitVector n. ∀carry: bool. n ≥ 5 → |
---|
84 | (BitVector n) × (BitVector 3) ≝ |
---|
85 | λn: nat. |
---|
86 | λb: BitVector n. |
---|
87 | λc: BitVector n. |
---|
88 | λcarry: bool. |
---|
89 | λpf:n ≥ 5. |
---|
90 | |
---|
91 | let 〈result, carries〉 ≝ sub_with_borrows n b c carry in |
---|
92 | let cy_flag ≝ get_index_v ?? carries 0 ? in |
---|
93 | let ov_flag ≝ xorb cy_flag (get_index_v ?? carries 1 ?) in |
---|
94 | let ac_flag ≝ get_index_v ?? carries 4 ? in (* I'd prefer n/2, but this is easier *) |
---|
95 | 〈result, [[ cy_flag; ac_flag; ov_flag ]]〉. |
---|
96 | // @(transitive_le … pf) /2/ |
---|
97 | qed. |
---|
98 | |
---|
99 | definition add_8_with_carry ≝ |
---|
100 | λb, c: BitVector 8. |
---|
101 | λcarry: bool. |
---|
102 | add_n_with_carry 8 b c carry ?. |
---|
103 | @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
104 | qed. |
---|
105 | |
---|
106 | definition add_16_with_carry ≝ |
---|
107 | λb, c: BitVector 16. |
---|
108 | λcarry: bool. |
---|
109 | add_n_with_carry 16 b c carry ?. |
---|
110 | @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S |
---|
111 | @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
112 | qed. |
---|
113 | |
---|
114 | (* dpm: needed for assembly proof *) |
---|
115 | definition sub_7_with_carry ≝ |
---|
116 | λb, c: BitVector 7. |
---|
117 | λcarry: bool. |
---|
118 | sub_n_with_carry 7 b c carry ?. |
---|
119 | @le_S @le_S @le_n |
---|
120 | qed. |
---|
121 | |
---|
122 | definition sub_8_with_carry ≝ |
---|
123 | λb, c: BitVector 8. |
---|
124 | λcarry: bool. |
---|
125 | sub_n_with_carry 8 b c carry ?. |
---|
126 | @le_S @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
127 | qed. |
---|
128 | |
---|
129 | definition sub_16_with_carry ≝ |
---|
130 | λb, c: BitVector 16. |
---|
131 | λcarry: bool. |
---|
132 | sub_n_with_carry 16 b c carry ?. |
---|
133 | @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S @le_S |
---|
134 | @le_S @le_S @le_n (* ugly: fix using tacticals *) |
---|
135 | qed. |
---|
136 | |
---|
137 | definition increment ≝ |
---|
138 | λn: nat. |
---|
139 | λb: BitVector n. |
---|
140 | \fst (add_with_carries n b (zero n) true). |
---|
141 | |
---|
142 | definition decrement ≝ |
---|
143 | λn: nat. |
---|
144 | λb: BitVector n. |
---|
145 | \fst (sub_with_borrows n b (zero n) true). |
---|
146 | |
---|
147 | (* The following implementation is extremely inefficient*) |
---|
148 | let rec bitvector_of_nat_aux (n,m:nat) (v:BitVector n) on m : BitVector n ≝ |
---|
149 | match m with |
---|
150 | [ O ⇒ v |
---|
151 | | S m' ⇒ bitvector_of_nat_aux n m' (increment n v) |
---|
152 | ]. |
---|
153 | |
---|
154 | definition bitvector_of_nat : ∀n:nat. nat → BitVector n ≝ |
---|
155 | λn,m. bitvector_of_nat_aux n m (zero n). |
---|
156 | |
---|
157 | (* This one by Paolo is efficient, but it is for the opposite indianess. |
---|
158 | -(* jpb: we already have bitvector_of_nat and friends in the library, maybe |
---|
159 | - * we should unify this in some way *) |
---|
160 | (* Paolo: converted to good endianness *) |
---|
161 | let rec bitvector_of_nat_aux (n_acc : nat) (acc :BitVector n_acc) n (k : nat) on n : BitVector (plus n_acc n) ≝ |
---|
162 | match n return λn.BitVector (plus n_acc n) with |
---|
163 | [ O ⇒ acc⌈BitVector n_acc ↦ ?⌉ |
---|
164 | | S n' ⇒ |
---|
165 | bitvector_of_nat_aux (S n_acc) (eqb (k mod 2) 1 ::: acc) n' (k ÷ 2) |
---|
166 | ⌈BitVector (S n_acc + n') ↦ ?⌉ |
---|
167 | ]. |
---|
168 | [ cases (plus_n_O ?) | cases (plus_n_Sm ??) ] % qed. |
---|
169 | |
---|
170 | definition bitvector_of_nat : ∀n.ℕ → BitVector n ≝ bitvector_of_nat_aux' ? [[ ]]. |
---|
171 | |
---|
172 | -let rec bv_to_nat (n : nat) (b : BitVector n) on b : nat ≝ |
---|
173 | - match b with |
---|
174 | - [ VEmpty ⇒ 0 |
---|
175 | - | VCons n' x b' ⇒ (if x then 1 else 0) + bv_to_nat n' b' * 2]. |
---|
176 | - |
---|
177 | *) |
---|
178 | |
---|
179 | let rec nat_of_bitvector_aux (n,m:nat) (v:BitVector n) on v : nat ≝ |
---|
180 | match v with |
---|
181 | [ VEmpty ⇒ m |
---|
182 | | VCons n' hd tl ⇒ nat_of_bitvector_aux n' (if hd then 2*m +1 else 2*m) tl |
---|
183 | ]. |
---|
184 | |
---|
185 | definition nat_of_bitvector : ∀n:nat. BitVector n → nat ≝ |
---|
186 | λn,v. nat_of_bitvector_aux n O v. |
---|
187 | |
---|
188 | (* TODO: remove when standard library arithmetics/exp.ma is used in place |
---|
189 | of definition in ASM/Util.ma *) |
---|
190 | theorem lt_O_exp: ∀n,m:nat. O < n → O < n^m. |
---|
191 | #n #m (elim m) normalize // #a #Hind #posn |
---|
192 | @(le_times 1 ? 1) /2 by / qed. |
---|
193 | theorem le_exp: ∀n,m,p:nat. O < p → |
---|
194 | n ≤m → p^n ≤ p^m. |
---|
195 | @nat_elim2 #n #m |
---|
196 | [#ltm #len @lt_O_exp // |
---|
197 | |#_ #len @False_ind /2 by absurd/ |
---|
198 | |#Hind #p #posp #lenm normalize @le_times // @Hind /2 by monotonic_pred/ |
---|
199 | ] |
---|
200 | qed. |
---|
201 | |
---|
202 | lemma nat_of_bitvector_aux_lt_bound: |
---|
203 | ∀n.∀v:BitVector n. ∀m,l:nat. |
---|
204 | m < 2^l → nat_of_bitvector_aux n m v < 2^(n+l). |
---|
205 | #n #v elim v normalize // -n |
---|
206 | #n #hd #tl #IH #m #l #B cases hd normalize nodelta |
---|
207 | @(transitive_le … (IH ? (S l) …)) |
---|
208 | [2,4: change with (?≤2^(S (n+l))) @le_exp /2 by le_n/ |
---|
209 | |1,3: @(transitive_le … (2 * (S m))) |
---|
210 | [2,4: whd in ⊢ (??%); /2 by le_plus/ |
---|
211 | |3: // | 1: normalize <plus_n_O <plus_n_Sm // ]] |
---|
212 | qed. |
---|
213 | |
---|
214 | lemma nat_of_bitvector_lt_bound: |
---|
215 | ∀n: nat. ∀b: BitVector n. nat_of_bitvector n b < 2^n. |
---|
216 | #n #b lapply (nat_of_bitvector_aux_lt_bound n b 0 0 ?) // <plus_n_O // |
---|
217 | qed. |
---|
218 | |
---|
219 | lemma bitvector_of_nat_ok: |
---|
220 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y) → x = y. |
---|
221 | #n elim n -n |
---|
222 | [ #x #y #Hx #Hy #Heq <(le_n_O_to_eq ? (le_S_S_to_le ?? Hx)) <(le_n_O_to_eq ? (le_S_S_to_le ?? Hy)) @refl |
---|
223 | | #n #Hind #x #y #Hx #Hy #Heq cases daemon (* XXX *) |
---|
224 | ] |
---|
225 | qed. |
---|
226 | |
---|
227 | lemma bitvector_of_nat_abs: |
---|
228 | ∀n,x,y:ℕ.x < 2^n → y < 2^n → x ≠ y → ¬eq_bv n (bitvector_of_nat n x) (bitvector_of_nat n y). |
---|
229 | #n #x #y #Hx #Hy #Heq @notb_elim |
---|
230 | lapply (refl ? (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y))) |
---|
231 | cases (eq_bv ? (bitvector_of_nat n x) (bitvector_of_nat n y)) in ⊢ (???% → %); |
---|
232 | [ #H @⊥ @(absurd ?? Heq) @(bitvector_of_nat_ok n x y Hx Hy) >H / by I/ |
---|
233 | | #H / by I/ |
---|
234 | ] |
---|
235 | qed. |
---|
236 | |
---|
237 | axiom bitvector_of_nat_exp_zero: ∀n.bitvector_of_nat n (2^n) = zero n. |
---|
238 | |
---|
239 | axiom nat_of_bitvector_bitvector_of_nat_inverse: |
---|
240 | ∀n: nat. |
---|
241 | ∀b: nat. |
---|
242 | b < 2^n → nat_of_bitvector n (bitvector_of_nat n b) = b. |
---|
243 | |
---|
244 | axiom bitvector_of_nat_inverse_nat_of_bitvector: |
---|
245 | ∀n: nat. |
---|
246 | ∀b: BitVector n. |
---|
247 | bitvector_of_nat n (nat_of_bitvector n b) = b. |
---|
248 | |
---|
249 | axiom lt_nat_of_bitvector: ∀n.∀w. nat_of_bitvector n w < 2^n. |
---|
250 | |
---|
251 | axiom eq_bitvector_of_nat_to_eq: |
---|
252 | ∀n,n1,n2. |
---|
253 | n1 < 2^n → n2 < 2^n → |
---|
254 | bitvector_of_nat n n1 = bitvector_of_nat n n2 → n1=n2. |
---|
255 | |
---|
256 | lemma nat_of_bitvector_aux_injective: |
---|
257 | ∀n: nat. |
---|
258 | ∀l, r: BitVector n. |
---|
259 | ∀acc_l, acc_r: nat. |
---|
260 | nat_of_bitvector_aux n acc_l l = nat_of_bitvector_aux n acc_r r → |
---|
261 | acc_l = acc_r ∧ l ≃ r. |
---|
262 | #n #l |
---|
263 | elim l #r |
---|
264 | [1: |
---|
265 | #acc_l #acc_r normalize |
---|
266 | >(BitVector_O r) normalize /2/ |
---|
267 | |2: |
---|
268 | #hd #tl #inductive_hypothesis #r #acc_l #acc_r |
---|
269 | normalize normalize in inductive_hypothesis; |
---|
270 | cases (BitVector_Sn … r) |
---|
271 | #r_hd * #r_tl #r_refl destruct normalize |
---|
272 | cases hd cases r_hd normalize |
---|
273 | [1: |
---|
274 | #relevant |
---|
275 | cases (inductive_hypothesis … relevant) |
---|
276 | #acc_assm #tl_assm destruct % // |
---|
277 | lapply (injective_plus_l ? ? ? acc_assm) |
---|
278 | -acc_assm #acc_assm |
---|
279 | change with (2 * acc_l = 2 * acc_r) in acc_assm; |
---|
280 | lapply (injective_times_r ? ? ? ? acc_assm) /2/ |
---|
281 | |4: |
---|
282 | #relevant |
---|
283 | cases (inductive_hypothesis … relevant) |
---|
284 | #acc_assm #tl_assm destruct % // |
---|
285 | change with (2 * acc_l = 2 * acc_r) in acc_assm; |
---|
286 | lapply(injective_times_r ? ? ? ? acc_assm) /2/ |
---|
287 | |2: |
---|
288 | #relevant |
---|
289 | change with ((nat_of_bitvector_aux r (2 * acc_l + 1) tl) = |
---|
290 | (nat_of_bitvector_aux r (2 * acc_r) r_tl)) in relevant; |
---|
291 | cases (eqb_decidable … (2 * acc_l + 1) (2 * acc_r)) |
---|
292 | [1: |
---|
293 | #eqb_true_assm |
---|
294 | lapply (eqb_true_to_refl … eqb_true_assm) |
---|
295 | #refl_assm |
---|
296 | cases (two_times_n_plus_one_refl_two_times_n_to_False … refl_assm) |
---|
297 | |2: |
---|
298 | #eqb_false_assm |
---|
299 | lapply (eqb_false_to_not_refl … eqb_false_assm) |
---|
300 | #not_refl_assm cases not_refl_assm #absurd_assm |
---|
301 | cases (inductive_hypothesis … relevant) #absurd |
---|
302 | cases (absurd_assm absurd) |
---|
303 | ] |
---|
304 | |3: |
---|
305 | #relevant |
---|
306 | change with ((nat_of_bitvector_aux r (2 * acc_l) tl) = |
---|
307 | (nat_of_bitvector_aux r (2 * acc_r + 1) r_tl)) in relevant; |
---|
308 | cases (eqb_decidable … (2 * acc_l) (2 * acc_r + 1)) |
---|
309 | [1: |
---|
310 | #eqb_true_assm |
---|
311 | lapply (eqb_true_to_refl … eqb_true_assm) |
---|
312 | #refl_assm |
---|
313 | lapply (sym_eq ? (2 * acc_l) (2 * acc_r + 1) refl_assm) |
---|
314 | -refl_assm #refl_assm |
---|
315 | cases (two_times_n_plus_one_refl_two_times_n_to_False … refl_assm) |
---|
316 | |2: |
---|
317 | #eqb_false_assm |
---|
318 | lapply (eqb_false_to_not_refl … eqb_false_assm) |
---|
319 | #not_refl_assm cases not_refl_assm #absurd_assm |
---|
320 | cases (inductive_hypothesis … relevant) #absurd |
---|
321 | cases (absurd_assm absurd) |
---|
322 | ] |
---|
323 | ] |
---|
324 | ] |
---|
325 | qed. |
---|
326 | |
---|
327 | lemma nat_of_bitvector_destruct: |
---|
328 | ∀n: nat. |
---|
329 | ∀l_hd, r_hd: bool. |
---|
330 | ∀l_tl, r_tl: BitVector n. |
---|
331 | nat_of_bitvector (S n) (l_hd:::l_tl) = nat_of_bitvector (S n) (r_hd:::r_tl) → |
---|
332 | l_hd = r_hd ∧ nat_of_bitvector n l_tl = nat_of_bitvector n r_tl. |
---|
333 | #n #l_hd #r_hd #l_tl #r_tl |
---|
334 | normalize |
---|
335 | cases l_hd cases r_hd |
---|
336 | normalize |
---|
337 | [4: |
---|
338 | /2/ |
---|
339 | |1: |
---|
340 | #relevant |
---|
341 | cases (nat_of_bitvector_aux_injective … relevant) |
---|
342 | #_ #l_r_tl_refl destruct /2/ |
---|
343 | |2,3: |
---|
344 | #relevant |
---|
345 | cases (nat_of_bitvector_aux_injective … relevant) |
---|
346 | #absurd destruct(absurd) |
---|
347 | ] |
---|
348 | qed. |
---|
349 | |
---|
350 | lemma BitVector_cons_injective: |
---|
351 | ∀n: nat. |
---|
352 | ∀l_hd, r_hd: bool. |
---|
353 | ∀l_tl, r_tl: BitVector n. |
---|
354 | l_hd = r_hd → l_tl = r_tl → l_hd:::l_tl = r_hd:::r_tl. |
---|
355 | #l #l_hd #r_hd #l_tl #r_tl |
---|
356 | #l_refl #r_refl destruct % |
---|
357 | qed. |
---|
358 | |
---|
359 | lemma refl_nat_of_bitvector_to_refl: |
---|
360 | ∀n: nat. |
---|
361 | ∀l, r: BitVector n. |
---|
362 | nat_of_bitvector n l = nat_of_bitvector n r → l = r. |
---|
363 | #n |
---|
364 | elim n |
---|
365 | [1: |
---|
366 | #l #r |
---|
367 | >(BitVector_O l) |
---|
368 | >(BitVector_O r) |
---|
369 | #_ % |
---|
370 | |2: |
---|
371 | #n' #inductive_hypothesis #l #r |
---|
372 | lapply (BitVector_Sn ? l) #l_hypothesis |
---|
373 | lapply (BitVector_Sn ? r) #r_hypothesis |
---|
374 | cases l_hypothesis #l_hd #l_tail_hypothesis |
---|
375 | cases r_hypothesis #r_hd #r_tail_hypothesis |
---|
376 | cases l_tail_hypothesis #l_tl #l_hd_tl_refl |
---|
377 | cases r_tail_hypothesis #r_tl #r_hd_tl_refl |
---|
378 | destruct #cons_refl |
---|
379 | cases (nat_of_bitvector_destruct n' l_hd r_hd l_tl r_tl cons_refl) |
---|
380 | #hd_refl #tl_refl |
---|
381 | @BitVector_cons_injective try assumption |
---|
382 | @inductive_hypothesis assumption |
---|
383 | ] |
---|
384 | qed. |
---|
385 | |
---|
386 | definition two_complement_negation ≝ |
---|
387 | λn: nat. |
---|
388 | λb: BitVector n. |
---|
389 | let new_b ≝ negation_bv n b in |
---|
390 | increment n new_b. |
---|
391 | |
---|
392 | definition addition_n ≝ |
---|
393 | λn: nat. |
---|
394 | λb, c: BitVector n. |
---|
395 | let 〈res,flags〉 ≝ add_with_carries n b c false in |
---|
396 | res. |
---|
397 | |
---|
398 | definition subtraction ≝ |
---|
399 | λn: nat. |
---|
400 | λb, c: BitVector n. |
---|
401 | addition_n n b (two_complement_negation n c). |
---|
402 | |
---|
403 | let rec mult_aux (m,n:nat) (b:BitVector m) (c:BitVector (S n)) (acc:BitVector (S n)) on b : BitVector (S n) ≝ |
---|
404 | match b with |
---|
405 | [ VEmpty ⇒ acc |
---|
406 | | VCons m' hd tl ⇒ |
---|
407 | let acc' ≝ if hd then addition_n ? c acc else acc in |
---|
408 | mult_aux m' n tl (shift_right_1 ?? c false) acc' |
---|
409 | ]. |
---|
410 | |
---|
411 | definition multiplication : ∀n:nat. BitVector n → BitVector n → BitVector (n + n) ≝ |
---|
412 | λn: nat. |
---|
413 | match n return λn.BitVector n → BitVector n → BitVector (n + n) with |
---|
414 | [ O ⇒ λ_.λ_.[[ ]] |
---|
415 | | S m ⇒ |
---|
416 | λb, c : BitVector (S m). |
---|
417 | let c' ≝ pad (S m) (S m) c in |
---|
418 | mult_aux ?? b (shift_left ?? m c' false) (zero ?) |
---|
419 | ]. |
---|
420 | |
---|
421 | definition short_multiplication : ∀n:nat. BitVector n → BitVector n → BitVector n ≝ |
---|
422 | λn,x,y. (\snd (vsplit ??? (multiplication ? x y))). |
---|
423 | |
---|
424 | (* Division: 001...000 divided by 000...010 |
---|
425 | Shift the divisor as far left as possible, |
---|
426 | 100...000 |
---|
427 | then try subtracting it at each |
---|
428 | bit position, shifting left as we go. |
---|
429 | 001...000 - 100...000 X ⇒ 0 |
---|
430 | 001...000 - 010...000 X ⇒ 0 |
---|
431 | 001...000 - 001...000 Y ⇒ 1 (use subtracted value as new quotient) |
---|
432 | ... |
---|
433 | Then pad out the remaining bits at the front |
---|
434 | 00..001... |
---|
435 | *) |
---|
436 | inductive fbs_diff : nat → Type[0] ≝ |
---|
437 | | fbs_diff' : ∀n,m. fbs_diff (S (n+m)). |
---|
438 | |
---|
439 | let rec first_bit_set (n:nat) (b:BitVector n) on b : option (fbs_diff n) ≝ |
---|
440 | match b return λn.λ_. option (fbs_diff n) with |
---|
441 | [ VEmpty ⇒ None ? |
---|
442 | | VCons m h t ⇒ |
---|
443 | if h then Some ? (fbs_diff' O m) |
---|
444 | else match first_bit_set m t with |
---|
445 | [ None ⇒ None ? |
---|
446 | | Some o ⇒ match o return λx.λ_. option (fbs_diff (S x)) with [ fbs_diff' x y ⇒ Some ? (fbs_diff' (S x) y) ] |
---|
447 | ] |
---|
448 | ]. |
---|
449 | |
---|
450 | let rec divmod_u_aux (n,m:nat) (q:BitVector (S n)) (d:BitVector (S n)) on m : BitVector m × (BitVector (S n)) ≝ |
---|
451 | match m with |
---|
452 | [ O ⇒ 〈[[ ]], q〉 |
---|
453 | | S m' ⇒ |
---|
454 | let 〈q',flags〉 ≝ add_with_carries ? q (two_complement_negation ? d) false in |
---|
455 | let bit ≝ head' … flags in |
---|
456 | let q'' ≝ if bit then q' else q in |
---|
457 | let 〈tl, md〉 ≝ divmod_u_aux n m' q'' (shift_right_1 ?? d false) in |
---|
458 | 〈bit:::tl, md〉 |
---|
459 | ]. |
---|
460 | |
---|
461 | definition divmod_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n) × (BitVector (S n))) ≝ |
---|
462 | λn: nat. |
---|
463 | λb, c: BitVector (S n). |
---|
464 | |
---|
465 | match first_bit_set ? c with |
---|
466 | [ None ⇒ None ? |
---|
467 | | Some fbs' ⇒ |
---|
468 | match fbs' return λx.λ_.option (BitVector x × (BitVector (S n))) with [ fbs_diff' fbs m ⇒ |
---|
469 | let 〈d,m〉 ≝ (divmod_u_aux ? (S fbs) b (shift_left ?? fbs c false)) in |
---|
470 | Some ? 〈switch_bv_plus ??? (pad ?? d), m〉 |
---|
471 | ] |
---|
472 | ]. |
---|
473 | |
---|
474 | definition division_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n)) ≝ |
---|
475 | λn,q,d. match divmod_u n q d with [ None ⇒ None ? | Some p ⇒ Some ? (\fst p) ]. |
---|
476 | |
---|
477 | definition division_s: ∀n. ∀b, c: BitVector n. option (BitVector n) ≝ |
---|
478 | λn. |
---|
479 | match n with |
---|
480 | [ O ⇒ λb, c. None ? |
---|
481 | | S p ⇒ λb, c: BitVector (S p). |
---|
482 | let b_sign_bit ≝ get_index_v ? ? b O ? in |
---|
483 | let c_sign_bit ≝ get_index_v ? ? c O ? in |
---|
484 | match b_sign_bit with |
---|
485 | [ true ⇒ |
---|
486 | let neg_b ≝ two_complement_negation ? b in |
---|
487 | match c_sign_bit with |
---|
488 | [ true ⇒ |
---|
489 | (* I was worrying slightly about -2^(n-1), whose negation can't |
---|
490 | be represented in an n bit signed number. However, it's |
---|
491 | negation comes out as 2^(n-1) as an n bit *unsigned* number, |
---|
492 | so it's fine. *) |
---|
493 | division_u ? neg_b (two_complement_negation ? c) |
---|
494 | | false ⇒ |
---|
495 | match division_u ? neg_b c with |
---|
496 | [ None ⇒ None ? |
---|
497 | | Some r ⇒ Some ? (two_complement_negation ? r) |
---|
498 | ] |
---|
499 | ] |
---|
500 | | false ⇒ |
---|
501 | match c_sign_bit with |
---|
502 | [ true ⇒ |
---|
503 | match division_u ? b (two_complement_negation ? c) with |
---|
504 | [ None ⇒ None ? |
---|
505 | | Some r ⇒ Some ? (two_complement_negation ? r) |
---|
506 | ] |
---|
507 | | false ⇒ division_u ? b c |
---|
508 | ] |
---|
509 | ] |
---|
510 | ]. |
---|
511 | // |
---|
512 | qed. |
---|
513 | |
---|
514 | definition modulus_u : ∀n:nat. BitVector (S n) → BitVector (S n) → option (BitVector (S n)) ≝ |
---|
515 | λn,q,d. match divmod_u n q d with [ None ⇒ None ? | Some p ⇒ Some ? (\snd p) ]. |
---|
516 | |
---|
517 | definition modulus_s ≝ |
---|
518 | λn. |
---|
519 | λb, c: BitVector n. |
---|
520 | match division_s n b c with |
---|
521 | [ None ⇒ None ? |
---|
522 | | Some result ⇒ |
---|
523 | let 〈high_bits, low_bits〉 ≝ vsplit bool ? n (multiplication n result c) in |
---|
524 | Some ? (subtraction n b low_bits) |
---|
525 | ]. |
---|
526 | |
---|
527 | definition lt_u ≝ |
---|
528 | fold_right2_i ??? |
---|
529 | (λ_.λa,b,r. |
---|
530 | match a with |
---|
531 | [ true ⇒ b ∧ r |
---|
532 | | false ⇒ b ∨ r |
---|
533 | ]) |
---|
534 | false. |
---|
535 | |
---|
536 | definition gt_u ≝ λn, b, c. lt_u n c b. |
---|
537 | |
---|
538 | definition lte_u ≝ λn, b, c. ¬(gt_u n b c). |
---|
539 | |
---|
540 | definition gte_u ≝ λn, b, c. ¬(lt_u n b c). |
---|
541 | |
---|
542 | definition lt_s ≝ |
---|
543 | λn. |
---|
544 | λb, c: BitVector n. |
---|
545 | let 〈result, borrows〉 ≝ sub_with_borrows n b c false in |
---|
546 | match borrows with |
---|
547 | [ VEmpty ⇒ false |
---|
548 | | VCons _ bwn tl ⇒ |
---|
549 | match tl with |
---|
550 | [ VEmpty ⇒ false |
---|
551 | | VCons _ bwpn _ ⇒ |
---|
552 | if xorb bwn bwpn then |
---|
553 | match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] |
---|
554 | else |
---|
555 | match result with [ VEmpty ⇒ false | VCons _ b7 _ ⇒ b7 ] |
---|
556 | ] |
---|
557 | ]. |
---|
558 | |
---|
559 | definition gt_s ≝ λn,b,c. lt_s n c b. |
---|
560 | |
---|
561 | definition lte_s ≝ λn,b,c. ¬(gt_s n b c). |
---|
562 | |
---|
563 | definition gte_s ≝ λn. λb, c. ¬(lt_s n b c). |
---|
564 | |
---|
565 | alias symbol "greater_than_or_equal" (instance 1) = "nat greater than or equal prop". |
---|
566 | |
---|
567 | (* Some properties of addition_n *) |
---|
568 | lemma commutative_add_with_carries : ∀n,a,b,carry. add_with_carries n a b carry = add_with_carries n b a carry. |
---|
569 | #n elim n |
---|
570 | [ 1: #a #b #carry |
---|
571 | lapply (BitVector_O … a) lapply (BitVector_O … b) #H1 #H2 destruct @refl |
---|
572 | | 2: #n' #Hind #a #b #carry |
---|
573 | lapply (BitVector_Sn … a) lapply (BitVector_Sn … b) |
---|
574 | * #bhd * #btl #Heqb |
---|
575 | * #ahd * #atl #Heqa destruct |
---|
576 | lapply (Hind atl btl carry) |
---|
577 | whd in match (add_with_carries ????) in ⊢ ((??%%) → (??%%)); |
---|
578 | normalize in match (rewrite_l ??????); |
---|
579 | normalize nodelta |
---|
580 | #Heq >Heq |
---|
581 | generalize in match (fold_right2_i ????????); * #res #carries |
---|
582 | normalize nodelta |
---|
583 | cases ahd cases bhd @refl |
---|
584 | ] qed. |
---|
585 | |
---|
586 | lemma commutative_addition_n : ∀n,a,b. addition_n n a b = addition_n n b a. |
---|
587 | #n #a #b whd in match (addition_n ???) in ⊢ (??%%); >commutative_add_with_carries |
---|
588 | @refl |
---|
589 | qed. |
---|
590 | |
---|
591 | (* -------------------------------------------------------------------------- *) |
---|
592 | (* Associativity proof for addition_n. The proof relies on the observation |
---|
593 | * that the two carries (inner and outer) in the associativity equation are not |
---|
594 | * independent. In fact, the global carry can be encoded in a three-valued bits |
---|
595 | * (versus 2 full bits, i.e. 4 possibilites, for two carries). I seriously hope |
---|
596 | * this proof can be simplified, but now it's proved at least. *) |
---|
597 | |
---|
598 | inductive ternary : Type[0] ≝ |
---|
599 | | Zero_carry : ternary |
---|
600 | | One_carry : ternary |
---|
601 | | Two_carry : ternary. |
---|
602 | |
---|
603 | definition carry_0 ≝ λcarry. |
---|
604 | match carry with |
---|
605 | [ Zero_carry ⇒ 〈false, Zero_carry〉 |
---|
606 | | One_carry ⇒ 〈true, Zero_carry〉 |
---|
607 | | Two_carry ⇒ 〈false, One_carry〉 ]. |
---|
608 | |
---|
609 | definition carry_1 ≝ λcarry. |
---|
610 | match carry with |
---|
611 | [ Zero_carry ⇒ 〈true, Zero_carry〉 |
---|
612 | | One_carry ⇒ 〈false, One_carry〉 |
---|
613 | | Two_carry ⇒ 〈true, One_carry〉 ]. |
---|
614 | |
---|
615 | definition carry_2 ≝ λcarry. |
---|
616 | match carry with |
---|
617 | [ Zero_carry ⇒ 〈false, One_carry〉 |
---|
618 | | One_carry ⇒ 〈true, One_carry〉 |
---|
619 | | Two_carry ⇒ 〈false, Two_carry〉 ]. |
---|
620 | |
---|
621 | definition carry_3 ≝ λcarry. |
---|
622 | match carry with |
---|
623 | [ Zero_carry ⇒ 〈true, One_carry〉 |
---|
624 | | One_carry ⇒ 〈false, Two_carry〉 |
---|
625 | | Two_carry ⇒ 〈true, Two_carry〉 ]. |
---|
626 | |
---|
627 | (* Count the number of true bits in {xa,xb,xc} and compute the new bit along the new carry, |
---|
628 | according to the last one. *) |
---|
629 | definition ternary_carry_of ≝ λxa,xb,xc,carry. |
---|
630 | if xa then |
---|
631 | if xb then |
---|
632 | if xc then |
---|
633 | carry_3 carry |
---|
634 | else |
---|
635 | carry_2 carry |
---|
636 | else |
---|
637 | if xc then |
---|
638 | carry_2 carry |
---|
639 | else |
---|
640 | carry_1 carry |
---|
641 | else |
---|
642 | if xb then |
---|
643 | if xc then |
---|
644 | carry_2 carry |
---|
645 | else |
---|
646 | carry_1 carry |
---|
647 | else |
---|
648 | if xc then |
---|
649 | carry_1 carry |
---|
650 | else |
---|
651 | carry_0 carry. |
---|
652 | |
---|
653 | let rec canonical_add (n : nat) (a,b,c : BitVector n) (init : ternary) on a : (BitVector n × ternary) ≝ |
---|
654 | match a in Vector return λsz.λ_. BitVector sz → BitVector sz → (BitVector sz × ternary) with |
---|
655 | [ VEmpty ⇒ λ_,_. 〈VEmpty ?, init〉 |
---|
656 | | VCons sz' xa tla ⇒ λb',c'. |
---|
657 | let xb ≝ head' … b' in |
---|
658 | let xc ≝ head' … c' in |
---|
659 | let tlb ≝ tail … b' in |
---|
660 | let tlc ≝ tail … c' in |
---|
661 | let 〈bits, last〉 ≝ canonical_add ? tla tlb tlc init in |
---|
662 | let 〈bit, carry〉 ≝ ternary_carry_of xa xb xc last in |
---|
663 | 〈bit ::: bits, carry〉 |
---|
664 | ] b c. |
---|
665 | |
---|
666 | (* convert the classical carries (inner and outer) to ternary) *) |
---|
667 | definition carries_to_ternary ≝ λcarry1,carry2. |
---|
668 | if carry1 |
---|
669 | then if carry2 |
---|
670 | then Two_carry |
---|
671 | else One_carry |
---|
672 | else if carry2 |
---|
673 | then One_carry |
---|
674 | else Zero_carry. |
---|
675 | |
---|
676 | (* Copied back from Clight/casts.ma *) |
---|
677 | lemma add_with_carries_unfold : ∀n,x,y,c. |
---|
678 | add_with_carries n x y c = fold_right2_i ????? n x y. |
---|
679 | // qed. |
---|
680 | |
---|
681 | lemma add_with_carries_Sn : ∀n,a_hd,a_tl,b_hd,b_tl,carry. |
---|
682 | add_with_carries (S n) (a_hd ::: a_tl) (b_hd ::: b_tl) carry = |
---|
683 | (let 〈lower_bits,carries〉 ≝ add_with_carries n a_tl b_tl carry in |
---|
684 | let last_carry ≝ |
---|
685 | match carries in Vector return λsz:ℕ.(λfoo:Vector bool sz.bool) with |
---|
686 | [VEmpty⇒carry |
---|
687 | |VCons (sz:ℕ) (cy:bool) (tl:(Vector bool sz))⇒cy] |
---|
688 | in |
---|
689 | if last_carry then |
---|
690 | let bit ≝ xorb (xorb a_hd b_hd) true in |
---|
691 | let carry ≝ carry_of a_hd b_hd true in |
---|
692 | 〈bit:::lower_bits,carry:::carries〉 |
---|
693 | else |
---|
694 | let bit ≝ xorb (xorb a_hd b_hd) false in |
---|
695 | let carry ≝ carry_of a_hd b_hd false in |
---|
696 | 〈bit:::lower_bits,carry:::carries〉). |
---|
697 | #n #a_hd #a_tl #b_hd #b_tl #carry |
---|
698 | whd in match (add_with_carries ????); |
---|
699 | normalize nodelta |
---|
700 | <add_with_carries_unfold |
---|
701 | cases (add_with_carries n a_tl b_tl carry) |
---|
702 | #lower_bits #carries normalize nodelta |
---|
703 | elim n in a_tl b_tl lower_bits carries; |
---|
704 | [ 1: #a_tl #b_tl #lower_bits #carries |
---|
705 | >(BitVector_O … carries) normalize nodelta |
---|
706 | cases carry normalize nodelta |
---|
707 | cases a_hd cases b_hd // |
---|
708 | | 2: #n' #Hind #a_tl #b_tl #lower_bits #carries |
---|
709 | lapply (BitVector_Sn … carries) * #carries_hd * #carries_tl |
---|
710 | #Heq >Heq normalize nodelta |
---|
711 | cases carries_hd cases a_hd cases b_hd normalize nodelta |
---|
712 | // |
---|
713 | ] qed. |
---|
714 | |
---|
715 | (* Correction of [canonical_add], left side. Note the invariant on carries. *) |
---|
716 | lemma canonical_add_left : ∀n,carry1,carry2,a,b,c. |
---|
717 | let 〈res_ab,flags_ab〉 ≝ add_with_carries n a b carry1 in |
---|
718 | let 〈res_ab_c,flags_ab_c〉 ≝ add_with_carries n res_ab c carry2 in |
---|
719 | let 〈res_canonical, last_carry〉 ≝ canonical_add ? a b c (carries_to_ternary carry1 carry2) in |
---|
720 | res_ab_c = res_canonical |
---|
721 | ∧ (match n return λx. BitVector x → BitVector x → Prop with |
---|
722 | [ O ⇒ λ_.λ_. True |
---|
723 | | S _ ⇒ λflags_ab',flags_ab_c'. carries_to_ternary (head' … flags_ab') (head' … flags_ab_c') = last_carry |
---|
724 | ] flags_ab flags_ab_c). |
---|
725 | #n elim n |
---|
726 | [ 1: #carry1 #carry2 #a #b #c >(BitVector_O … a) >(BitVector_O … b) >(BitVector_O … c) try @conj try // |
---|
727 | | 2: #n' #Hind #carry1 #carry2 #a #b #c |
---|
728 | elim (BitVector_Sn … a) #xa * #a' #Heq_a |
---|
729 | elim (BitVector_Sn … b) #xb * #b' #Heq_b |
---|
730 | elim (BitVector_Sn … c) #xc * #c' #Heq_c |
---|
731 | lapply (Hind … carry1 carry2 a' b' c') -Hind |
---|
732 | destruct >add_with_carries_Sn |
---|
733 | elim (add_with_carries … a' b' carry1) #Hres_ab #Hflags_ab normalize nodelta |
---|
734 | lapply Hflags_ab lapply Hres_ab lapply c' lapply b' lapply a' |
---|
735 | -Hflags_ab -Hres_ab -c' -b' -a' |
---|
736 | cases n' |
---|
737 | [ 1: #a' #b' #c' #Hres_ab #Hflags_ab normalize nodelta |
---|
738 | >(BitVector_O … a') >(BitVector_O … b') >(BitVector_O … c') |
---|
739 | >(BitVector_O … Hres_ab) >(BitVector_O … Hflags_ab) |
---|
740 | normalize nodelta #_ |
---|
741 | cases carry1 cases carry2 cases xa cases xb cases xc normalize @conj try // |
---|
742 | | 2: #n' #a' #b' #c' #Hres_ab #Hflags_ab normalize nodelta |
---|
743 | elim (BitVector_Sn … Hflags_ab) #hd_flags_ab * #tl_flags_ab #Heq_flags_ab >Heq_flags_ab |
---|
744 | normalize nodelta |
---|
745 | elim (BitVector_Sn … Hres_ab) #hd_res_ab * #tl_res_ab #Heq_res_ab >Heq_res_ab |
---|
746 | cases hd_flags_ab in Heq_flags_ab; #Heq_flags_ab normalize nodelta |
---|
747 | >add_with_carries_Sn |
---|
748 | elim (add_with_carries (S n') (hd_res_ab:::tl_res_ab) c' carry2) #res_ab_c #flags_ab_c |
---|
749 | normalize nodelta |
---|
750 | elim (BitVector_Sn … flags_ab_c) #hd_flags_ab_c * #tl_flags_ab_c #Heq_flags_ab_c >Heq_flags_ab_c |
---|
751 | normalize nodelta |
---|
752 | cases hd_flags_ab_c in Heq_flags_ab_c; #Heq_flags_ab_c |
---|
753 | normalize nodelta |
---|
754 | whd in match (canonical_add (S (S ?)) ? ? ? ?); |
---|
755 | whd in match (tail ???); whd in match (tail ???); |
---|
756 | elim (canonical_add (S n') a' b' c' (carries_to_ternary carry1 carry2)) #res_canonical #last_carry normalize |
---|
757 | * #Hres_ab_is_canonical #Hlast_carry <Hlast_carry normalize |
---|
758 | >Hres_ab_is_canonical |
---|
759 | cases xa cases xb cases xc try @conj try @refl |
---|
760 | ] |
---|
761 | ] qed. |
---|
762 | |
---|
763 | (* Symmetric. The two sides are most certainly doable in a single induction, but lazyness |
---|
764 | prevails over style. *) |
---|
765 | lemma canonical_add_right : ∀n,carry1,carry2,a,b,c. |
---|
766 | let 〈res_bc,flags_bc〉 ≝ add_with_carries n b c carry1 in |
---|
767 | let 〈res_a_bc,flags_a_bc〉 ≝ add_with_carries n a res_bc carry2 in |
---|
768 | let 〈res_canonical, last_carry〉 ≝ canonical_add ? a b c (carries_to_ternary carry1 carry2) in |
---|
769 | res_a_bc = res_canonical |
---|
770 | ∧ (match n return λx. BitVector x → BitVector x → Prop with |
---|
771 | [ O ⇒ λ_.λ_. True |
---|
772 | | S _ ⇒ λflags_bc',flags_a_bc'. carries_to_ternary (head' … flags_bc') (head' … flags_a_bc') = last_carry |
---|
773 | ] flags_bc flags_a_bc). |
---|
774 | #n elim n |
---|
775 | [ 1: #carry1 #carry2 #a #b #c >(BitVector_O … a) >(BitVector_O … b) >(BitVector_O … c) try @conj try // |
---|
776 | | 2: #n' #Hind #carry1 #carry2 #a #b #c |
---|
777 | elim (BitVector_Sn … a) #xa * #a' #Heq_a |
---|
778 | elim (BitVector_Sn … b) #xb * #b' #Heq_b |
---|
779 | elim (BitVector_Sn … c) #xc * #c' #Heq_c |
---|
780 | lapply (Hind … carry1 carry2 a' b' c') -Hind |
---|
781 | destruct >add_with_carries_Sn |
---|
782 | elim (add_with_carries … b' c' carry1) #Hres_bc #Hflags_bc normalize nodelta |
---|
783 | lapply Hflags_bc lapply Hres_bc lapply c' lapply b' lapply a' |
---|
784 | -Hflags_bc -Hres_bc -c' -b' -a' |
---|
785 | cases n' |
---|
786 | [ 1: #a' #b' #c' #Hres_bc #Hflags_bc normalize nodelta |
---|
787 | >(BitVector_O … a') >(BitVector_O … b') >(BitVector_O … c') |
---|
788 | >(BitVector_O … Hres_bc) >(BitVector_O … Hflags_bc) |
---|
789 | normalize nodelta #_ |
---|
790 | cases carry1 cases carry2 cases xa cases xb cases xc normalize @conj try // |
---|
791 | | 2: #n' #a' #b' #c' #Hres_bc #Hflags_bc normalize nodelta |
---|
792 | elim (BitVector_Sn … Hflags_bc) #hd_flags_bc * #tl_flags_bc #Heq_flags_bc >Heq_flags_bc |
---|
793 | normalize nodelta |
---|
794 | elim (BitVector_Sn … Hres_bc) #hd_res_bc * #tl_res_bc #Heq_res_bc >Heq_res_bc |
---|
795 | cases hd_flags_bc in Heq_flags_bc; #Heq_flags_bc normalize nodelta |
---|
796 | >add_with_carries_Sn |
---|
797 | elim (add_with_carries (S n') a' (hd_res_bc:::tl_res_bc) carry2) #res_a_bc #flags_a_bc |
---|
798 | normalize nodelta |
---|
799 | elim (BitVector_Sn … flags_a_bc) #hd_flags_a_bc * #tl_flags_a_bc #Heq_flags_a_bc >Heq_flags_a_bc |
---|
800 | normalize nodelta |
---|
801 | cases (hd_flags_a_bc) in Heq_flags_a_bc; #Heq_flags_a_bc |
---|
802 | whd in match (canonical_add (S (S ?)) ????); |
---|
803 | whd in match (tail ???); whd in match (tail ???); |
---|
804 | elim (canonical_add (S n') a' b' c' (carries_to_ternary carry1 carry2)) #res_canonical #last_carry normalize |
---|
805 | * #Hres_bc_is_canonical #Hlast_carry <Hlast_carry normalize |
---|
806 | >Hres_bc_is_canonical |
---|
807 | cases xa cases xb cases xc try @conj try @refl |
---|
808 | ] |
---|
809 | ] qed. |
---|
810 | |
---|
811 | |
---|
812 | (* Note that we prove a result more general that just associativity: we can vary the carries. *) |
---|
813 | lemma associative_add_with_carries : |
---|
814 | ∀n,carry1,carry2,a,b,c. |
---|
815 | (\fst (add_with_carries n a (let 〈res,flags〉 ≝ add_with_carries n b c carry1 in res) carry2)) |
---|
816 | = |
---|
817 | (\fst (add_with_carries n (let 〈res,flags〉 ≝ add_with_carries n a b carry1 in res) c carry2)). |
---|
818 | #n cases n |
---|
819 | [ 1: #carry1 #carry2 #a #b #c |
---|
820 | >(BitVector_O … a) >(BitVector_O … b) >(BitVector_O … c) |
---|
821 | normalize try @refl |
---|
822 | | 2: #n' #carry1 #carry2 #a #b #c |
---|
823 | lapply (canonical_add_left … carry1 carry2 a b c) |
---|
824 | lapply (canonical_add_right … carry1 carry2 a b c) |
---|
825 | normalize nodelta |
---|
826 | elim (add_with_carries (S n') b c carry1) #res_bc #flags_bc |
---|
827 | elim (add_with_carries (S n') a b carry1) #res_ab #flags_ab |
---|
828 | normalize nodelta |
---|
829 | elim (add_with_carries (S n') a res_bc carry2) #res_a_bc #flags_a_bc |
---|
830 | normalize nodelta |
---|
831 | elim (add_with_carries (S n') res_ab c carry2) #res_ab_c #flags_ab_c |
---|
832 | normalize nodelta |
---|
833 | cases (canonical_add ? a b c (carries_to_ternary carry1 carry2)) #canonical_bits #last_carry |
---|
834 | normalize nodelta |
---|
835 | * #HA #HB * #HC #HD destruct @refl |
---|
836 | ] qed. |
---|
837 | |
---|
838 | (* This closes the proof of associativity for bitvector addition. *) |
---|
839 | |
---|
840 | lemma associative_addition_n : ∀n,a,b,c. addition_n n a (addition_n n b c) = addition_n n (addition_n n a b) c. |
---|
841 | #n #a #b #c |
---|
842 | whd in match (addition_n ???) in ⊢ (??%%); |
---|
843 | whd in match (addition_n n b c); |
---|
844 | whd in match (addition_n n a b); |
---|
845 | lapply (associative_add_with_carries … false false a b c) |
---|
846 | elim (add_with_carries n b c false) #bc_bits #bc_flags |
---|
847 | elim (add_with_carries n a b false) #ab_bits #ab_flags |
---|
848 | normalize nodelta |
---|
849 | elim (add_with_carries n a bc_bits false) #a_bc_bits #a_bc_flags |
---|
850 | elim (add_with_carries n ab_bits c false) #ab_c_bits #ab_c_flags |
---|
851 | normalize |
---|
852 | #H @H |
---|
853 | qed. |
---|
854 | |
---|
855 | |
---|
856 | |
---|
857 | definition max_u ≝ λn,a,b. if lt_u n a b then b else a. |
---|
858 | definition min_u ≝ λn,a,b. if lt_u n a b then a else b. |
---|
859 | definition max_s ≝ λn,a,b. if lt_s n a b then b else a. |
---|
860 | definition min_s ≝ λn,a,b. if lt_s n a b then a else b. |
---|
861 | |
---|
862 | definition bitvector_of_bool: |
---|
863 | ∀n: nat. ∀b: bool. BitVector (S n) ≝ |
---|
864 | λn: nat. |
---|
865 | λb: bool. |
---|
866 | (pad n 1 [[b]])⌈n + 1 ↦ S n⌉. |
---|
867 | // |
---|
868 | qed. |
---|
869 | |
---|
870 | definition full_add ≝ |
---|
871 | λn: nat. |
---|
872 | λb, c: BitVector n. |
---|
873 | λd: Bit. |
---|
874 | fold_right2_i ? ? ? ( |
---|
875 | λn. |
---|
876 | λb1, b2: bool. |
---|
877 | λd: Bit × (BitVector n). |
---|
878 | let 〈c1,r〉 ≝ d in |
---|
879 | 〈(b1 ∧ b2) ∨ (c1 ∧ (b1 ∨ b2)), |
---|
880 | (xorb (xorb b1 b2) c1) ::: r〉) |
---|
881 | 〈d, [[ ]]〉 ? b c. |
---|
882 | |
---|
883 | definition half_add ≝ |
---|
884 | λn: nat. |
---|
885 | λb, c: BitVector n. |
---|
886 | full_add n b c false. |
---|
887 | |
---|
888 | definition add ≝ |
---|
889 | λn: nat. |
---|
890 | λl, r: BitVector n. |
---|
891 | \snd (half_add n l r). |
---|
892 | |
---|
893 | lemma half_add_carry_Sn: |
---|
894 | ∀n: nat. |
---|
895 | ∀l: BitVector n. |
---|
896 | ∀hd: bool. |
---|
897 | \fst (half_add (S n) (hd:::l) (false:::(zero n))) = |
---|
898 | andb hd (\fst (half_add n l (zero n))). |
---|
899 | #n #l elim l |
---|
900 | [1: |
---|
901 | #hd normalize cases hd % |
---|
902 | |2: |
---|
903 | #n' #hd #tl #inductive_hypothesis #hd' |
---|
904 | whd in match half_add; normalize nodelta |
---|
905 | whd in match full_add; normalize nodelta |
---|
906 | normalize in ⊢ (??%%); cases hd' normalize |
---|
907 | @pair_elim #c1 #r #c1_r_refl cases c1 % |
---|
908 | ] |
---|
909 | qed. |
---|
910 | |
---|
911 | lemma half_add_zero_carry_false: |
---|
912 | ∀m: nat. |
---|
913 | ∀b: BitVector m. |
---|
914 | \fst (half_add m b (zero m)) = false. |
---|
915 | #m #b elim b try % |
---|
916 | #n #hd #tl #inductive_hypothesis |
---|
917 | change with (false:::(zero ?)) in match (zero ?); |
---|
918 | >half_add_carry_Sn >inductive_hypothesis cases hd % |
---|
919 | qed. |
---|
920 | |
---|
921 | axiom half_add_true_true_carry_true: |
---|
922 | ∀n: nat. |
---|
923 | ∀hd, hd': bool. |
---|
924 | ∀l, r: BitVector n. |
---|
925 | \fst (half_add (S n) (true:::l) (true:::r)) = true. |
---|
926 | |
---|
927 | lemma add_Sn_carry_add: |
---|
928 | ∀n: nat. |
---|
929 | ∀hd, hd': bool. |
---|
930 | ∀l, r: BitVector n. |
---|
931 | add (S n) (hd:::l) (hd':::r) = |
---|
932 | xorb (xorb hd hd') (\fst (half_add n l r)):::add n l r. |
---|
933 | #n #hd #hd' #l elim l |
---|
934 | [1: |
---|
935 | #r cases hd cases hd' |
---|
936 | >(BitVector_O … r) normalize % |
---|
937 | |2: |
---|
938 | #n' #hd'' #tl #inductive_hypothesis #r |
---|
939 | cases (BitVector_Sn … r) #hd''' * #tl' #r_refl destruct |
---|
940 | cases hd cases hd' cases hd'' cases hd''' |
---|
941 | whd in match (xorb ??); |
---|
942 | cases daemon |
---|
943 | ] |
---|
944 | qed. |
---|
945 | |
---|
946 | lemma add_zero: |
---|
947 | ∀n: nat. |
---|
948 | ∀l: BitVector n. |
---|
949 | l = add n l (zero …). |
---|
950 | #n #l elim l try % |
---|
951 | #n' #hd #tl #inductive_hypothesis |
---|
952 | change with (false:::zero ?) in match (zero ?); |
---|
953 | >add_Sn_carry_add >half_add_zero_carry_false |
---|
954 | cases hd <inductive_hypothesis % |
---|
955 | qed. |
---|
956 | |
---|
957 | axiom most_significant_bit_zero: |
---|
958 | ∀size, m: nat. |
---|
959 | ∀size_proof: 0 < size. |
---|
960 | m < 2^size → get_index_v bool (S size) (bitvector_of_nat (S size) m) 1 ? = false. |
---|
961 | normalize in size_proof; normalize @le_S_S assumption |
---|
962 | qed. |
---|
963 | |
---|
964 | axiom zero_add_head: |
---|
965 | ∀m: nat. |
---|
966 | ∀tl, hd. |
---|
967 | (hd:::add m (zero m) tl) = add (S m) (zero (S m)) (hd:::tl). |
---|
968 | |
---|
969 | lemma zero_add: |
---|
970 | ∀m: nat. |
---|
971 | ∀b: BitVector m. |
---|
972 | add m (zero m) b = b. |
---|
973 | #m #b elim b try % |
---|
974 | #m' #hd #tl #inductive_hypothesis |
---|
975 | <inductive_hypothesis in ⊢ (???%); |
---|
976 | >zero_add_head % |
---|
977 | qed. |
---|
978 | |
---|
979 | axiom bitvector_of_nat_one_Sm: |
---|
980 | ∀m: nat. |
---|
981 | ∃b: BitVector m. |
---|
982 | bitvector_of_nat (S m) 1 ≃ b @@ [[true]]. |
---|
983 | |
---|
984 | axiom increment_zero_bitvector_of_nat_1: |
---|
985 | ∀m: nat. |
---|
986 | ∀b: BitVector m. |
---|
987 | increment m b = add m (bitvector_of_nat m 1) b. |
---|
988 | |
---|
989 | axiom add_associative: |
---|
990 | ∀m: nat. |
---|
991 | ∀l, c, r: BitVector m. |
---|
992 | add m l (add m c r) = add m (add m l c) r. |
---|
993 | |
---|
994 | lemma bitvector_of_nat_aux_buffer: |
---|
995 | ∀m, n: nat. |
---|
996 | ∀b: BitVector m. |
---|
997 | bitvector_of_nat_aux m n b = add m (bitvector_of_nat m n) b. |
---|
998 | #m #n elim n |
---|
999 | [1: |
---|
1000 | #b change with (? = add ? (zero …) b) |
---|
1001 | >zero_add % |
---|
1002 | |2: |
---|
1003 | #n' #inductive_hypothesis #b |
---|
1004 | whd in match (bitvector_of_nat_aux ???); |
---|
1005 | >inductive_hypothesis whd in match (bitvector_of_nat ??) in ⊢ (???%); |
---|
1006 | >inductive_hypothesis >increment_zero_bitvector_of_nat_1 |
---|
1007 | >increment_zero_bitvector_of_nat_1 <(add_zero m (bitvector_of_nat m 1)) |
---|
1008 | <add_associative % |
---|
1009 | ] |
---|
1010 | qed. |
---|
1011 | |
---|
1012 | definition sign_extension: Byte → Word ≝ |
---|
1013 | λc. |
---|
1014 | let b ≝ get_index_v ? 8 c 1 ? in |
---|
1015 | [[ b; b; b; b; b; b; b; b ]] @@ c. |
---|
1016 | normalize |
---|
1017 | repeat (@le_S_S) |
---|
1018 | @le_O_n |
---|
1019 | qed. |
---|
1020 | |
---|
1021 | lemma bitvector_of_nat_sign_extension_equivalence: |
---|
1022 | ∀m: nat. |
---|
1023 | ∀size_proof: m < 128. |
---|
1024 | sign_extension … (bitvector_of_nat 8 m) = bitvector_of_nat 16 m. |
---|
1025 | #m #size_proof whd in ⊢ (??%?); |
---|
1026 | >most_significant_bit_zero |
---|
1027 | [1: |
---|
1028 | elim m |
---|
1029 | [1: |
---|
1030 | % |
---|
1031 | |2: |
---|
1032 | #n' #inductive_hypothesis whd in match bitvector_of_nat; normalize nodelta |
---|
1033 | whd in match (bitvector_of_nat_aux ???); |
---|
1034 | whd in match (bitvector_of_nat_aux ???) in ⊢ (???%); |
---|
1035 | >(bitvector_of_nat_aux_buffer 16 n') |
---|
1036 | cases daemon |
---|
1037 | ] |
---|
1038 | |2: |
---|
1039 | assumption |
---|
1040 | ] |
---|
1041 | qed. |
---|
1042 | |
---|
1043 | axiom add_commutative: |
---|
1044 | ∀n: nat. |
---|
1045 | ∀l, r: BitVector n. |
---|
1046 | add … l r = add … r l. |
---|
1047 | |
---|
1048 | axiom nat_of_bitvector_add: |
---|
1049 | ∀n,v1,v2. |
---|
1050 | nat_of_bitvector n v1 + nat_of_bitvector n v2 < 2^n → |
---|
1051 | nat_of_bitvector n (add n v1 v2) = nat_of_bitvector n v1 + nat_of_bitvector n v2. |
---|
1052 | |
---|
1053 | axiom add_bitvector_of_nat: |
---|
1054 | ∀n,m1,m2. |
---|
1055 | bitvector_of_nat n (m1 + m2) = |
---|
1056 | add n (bitvector_of_nat n m1) (bitvector_of_nat n m2). |
---|
1057 | |
---|
1058 | (* CSC: corollary of add_bitvector_of_nat *) |
---|
1059 | axiom add_overflow: |
---|
1060 | ∀n,m,r. m + r = 2^n → |
---|
1061 | add n (bitvector_of_nat n m) (bitvector_of_nat n r) = zero n. |
---|
1062 | |
---|
1063 | example add_SO: |
---|
1064 | ∀n: nat. |
---|
1065 | ∀m: nat. |
---|
1066 | add n (bitvector_of_nat … m) (bitvector_of_nat … 1) = bitvector_of_nat … (S m). |
---|
1067 | cases daemon. |
---|
1068 | qed. |
---|
1069 | |
---|
1070 | axiom add_bitvector_of_nat_plus: |
---|
1071 | ∀n,p,q:nat. |
---|
1072 | add n (bitvector_of_nat ? p) (bitvector_of_nat ? q) = bitvector_of_nat ? (p+q). |
---|
1073 | |
---|
1074 | lemma add_bitvector_of_nat_Sm: |
---|
1075 | ∀n, m: nat. |
---|
1076 | add … (bitvector_of_nat … 1) (bitvector_of_nat … m) = |
---|
1077 | bitvector_of_nat n (S m). |
---|
1078 | #n #m @add_bitvector_of_nat_plus |
---|
1079 | qed. |
---|
1080 | |
---|
1081 | axiom le_to_le_nat_of_bitvector_add: |
---|
1082 | ∀n,v,m1,m2. |
---|
1083 | m2 < 2^n → nat_of_bitvector n v + m2 < 2^n → m1 ≤ m2 → |
---|
1084 | nat_of_bitvector n (add n v (bitvector_of_nat n m1)) ≤ |
---|
1085 | nat_of_bitvector n (add n v (bitvector_of_nat n m2)). |
---|
1086 | |
---|
1087 | lemma lt_to_lt_nat_of_bitvector_add: |
---|
1088 | ∀n,v,m1,m2. |
---|
1089 | m2 < 2^n → nat_of_bitvector n v + m2 < 2^n → m1 < m2 → |
---|
1090 | nat_of_bitvector n (add n v (bitvector_of_nat n m1)) < |
---|
1091 | nat_of_bitvector n (add n v (bitvector_of_nat n m2)). |
---|
1092 | #n #v #m1 #m2 #m2_ok #bounded #H |
---|
1093 | lapply (le_to_le_nat_of_bitvector_add n v (S m1) m2 ??) try assumption |
---|
1094 | #K @(transitive_le … (K H)) |
---|
1095 | cases daemon (*CSC: TRUE, complete*) |
---|
1096 | qed. |
---|
1097 | |
---|
1098 | definition sign_bit : ∀n. BitVector n → bool ≝ |
---|
1099 | λn,v. match v with [ VEmpty ⇒ false | VCons _ h _ ⇒ h ]. |
---|
1100 | |
---|
1101 | definition sign_extend : ∀m,n. BitVector m → BitVector (n+m) ≝ |
---|
1102 | λm,n,v. pad_vector ? (sign_bit ? v) ?? v. |
---|
1103 | |
---|
1104 | definition zero_ext : ∀m,n. BitVector m → BitVector n ≝ |
---|
1105 | λm,n. |
---|
1106 | match nat_compare m n return λm,n.λ_. BitVector m → BitVector n with |
---|
1107 | [ nat_lt m' n' ⇒ λv. switch_bv_plus … (pad … v) |
---|
1108 | | nat_eq n' ⇒ λv. v |
---|
1109 | | nat_gt m' n' ⇒ λv. \snd (vsplit … (switch_bv_plus … v)) |
---|
1110 | ]. |
---|
1111 | |
---|
1112 | definition sign_ext : ∀m,n. BitVector m → BitVector n ≝ |
---|
1113 | λm,n. |
---|
1114 | match nat_compare m n return λm,n.λ_. BitVector m → BitVector n with |
---|
1115 | [ nat_lt m' n' ⇒ λv. switch_bv_plus … (sign_extend … v) |
---|
1116 | | nat_eq n' ⇒ λv. v |
---|
1117 | | nat_gt m' n' ⇒ λv. \snd (vsplit … (switch_bv_plus … v)) |
---|
1118 | ]. |
---|
1119 | |
---|
1120 | example sub_minus_one_seven_eight: |
---|
1121 | ∀v: BitVector 7. |
---|
1122 | false ::: (\fst (sub_7_with_carry v (bitvector_of_nat ? 1) false)) = |
---|
1123 | \fst (sub_8_with_carry (false ::: v) (bitvector_of_nat ? 1) false). |
---|
1124 | cases daemon. |
---|
1125 | qed. |
---|
1126 | |
---|
1127 | axiom sub16_with_carry_overflow: |
---|
1128 | ∀left, right, result: BitVector 16. |
---|
1129 | ∀flags: BitVector 3. |
---|
1130 | ∀upper: BitVector 9. |
---|
1131 | ∀lower: BitVector 7. |
---|
1132 | sub_16_with_carry left right false = 〈result, flags〉 → |
---|
1133 | vsplit bool 9 7 result = 〈upper, lower〉 → |
---|
1134 | get_index_v bool 3 flags 2 ? = true → |
---|
1135 | upper = [[true; true; true; true; true; true; true; true; true]]. |
---|
1136 | // |
---|
1137 | qed. |
---|
1138 | |
---|
1139 | axiom sub_16_to_add_16_8_0: |
---|
1140 | ∀v1,v2: BitVector 16. ∀v3: BitVector 7. ∀flags: BitVector 3. |
---|
1141 | get_index' ? 2 0 flags = false → |
---|
1142 | sub_16_with_carry v1 v2 false = 〈(zero 9)@@v3,flags〉 → |
---|
1143 | v1 = add ? v2 (sign_extension (false:::v3)). |
---|
1144 | |
---|
1145 | axiom sub_16_to_add_16_8_1: |
---|
1146 | ∀v1,v2: BitVector 16. ∀v3: BitVector 7. ∀flags: BitVector 3. |
---|
1147 | get_index' ? 2 0 flags = true → |
---|
1148 | sub_16_with_carry v1 v2 false = 〈[[true;true;true;true;true;true;true;true;true]]@@v3,flags〉 → |
---|
1149 | v1 = add ? v2 (sign_extension (true:::v3)). |
---|